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SUMMARY

Effective error-driven learning benefits from scaling of
prediction errors to reward variability. Suchbehavioral
adaptation may be facilitated by neurons coding
prediction errors relative to the standard deviation
(SD) of reward distributions. To investigate this hy-
pothesis, we required participants to predict the
magnitude of upcoming reward drawn from distri-
butions with different SDs. After each prediction,
participants received a reward, yielding trial-by-trial
prediction errors. In line with the notion of adaptive
coding, BOLD response slopes in the Substantia
Nigra/Ventral Tegmental Area (SN/VTA) and ventral
striatum were steeper for prediction errors occurring
in distributions with smaller SDs. SN/VTA adaptation
was not instantaneous but developed across trials.
Adaptive prediction error coding was paralleled by
behavioral adaptation, as reflected by SD-dependent
changes in learning rate. Crucially, increased SN/VTA
andventral striatal adaptationwas related to improved
taskperformance.These resultssuggest thatadaptive
coding facilitates behavioral adaptation and supports
efficient learning.

INTRODUCTION

Learning to accurately predict upcoming reward is essential for

decision making. A critical challenge during learning is that

most reward fluctuate from one moment to the next (i.e., reward

are elements of probability distributions with a certain mean and

SD) (Schultz et al., 2008). Consequently, prediction errors not

only indicate the extent to which our predictions are wrong,

but also represent the extent of fluctuation in reward value. Since

it would be sub-optimal to update predictions too readily when

the prediction error signal itself is unreliable, effective error-

driven learning requires individuals to adapt to reward variability.

Such adaptation may be accomplished through the use of SD-

dependent learning rates or via the direct scaling of prediction

errors (Diederen and Schultz, 2015).
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The wealth of studies reporting prediction error coding in

midbrain dopaminergic nuclei and the ventral striatum render it

conceivable that prediction errors are directly scaled by SD.

Scaled prediction error coding optimally exploits the limited

coding capacity of the brain by tuning it to the expected vari-

ability of these errors (Tobler et al., 2005). By tuning coding ca-

pacity relative to the SD of the predicted distribution, the gain

(i.e., the relationship between prediction error size and neural re-

sponses) adapts, and neural sensitivity is optimized for detection

of smaller differences when the variability of possible prediction

errors is smaller (Kobayashi et al., 2010). Indeed, prediction error

responses in monkey midbrain dopamine neurons do not code

the simple difference between reward and prediction but adapt

to the probability distribution of predicted reward (Tobler et al.,

2005). In addition, when reward contingencies are made explicit,

BOLD responses in the human striatum vary with the probability

(high versus low) and sign (positive versus negative) of prediction

errors independently of prediction error magnitude (Bunzeck

et al., 2010; Park et al., 2012). Although these studies provide

preliminary support for adaptive prediction error coding, it is crit-

ical to investigate adaptive coding during learning, as adaptation

should serve to make learning more efficient. In addition, it is un-

known whether prediction error responses in the human brain

adapt to the SD of these errors and whether such adaptation

benefits learning.

Here, we investigated whether prediction error responses can

adapt to reward variability during learning in the human midbrain

(substantia nigra/ventral tegmental area [SN/VTA] complex) and

ventral striatum, areas implicated in reward prediction error

(RPE) coding, and whether efficient adaptation benefits learning.

We also addressed the alternative hypothesis that behavioral

adaptation is facilitated by SD-dependent learning rate coding.

The experimental design was modified from a recent study that

showed behavioral adaptation to reward variability in humans

(Diederen and Schultz, 2015). During fMRI data acquisition,

participants explicitly predicted the expected magnitude of up-

coming rewards that were drawn from distributions with different

SDs (i.e., 5, 10, or 15). We used explicit symbolic cues to indicate

the relative magnitude of reward variability (i.e., small, medium,

large); however, participants were unaware of the exact SDs,

which thus had to be learned. Each SD was paired with two

different means resulting in a total of six conditions. In each of

three task sessions, participants alternatingly predicted reward
June 1, 2016 ª 2016 The Authors. Published by Elsevier Inc. 1127
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Figure 1. Experimental Task and Behavioral Results
(A) Participants predicted the magnitude of upcoming reward as closely as possible from the past reward history. Vertical bar cues signaled whether rewards

would be drawn from a distribution with small, medium, or large variability. After stating their prediction, participants received a reward, displayed in green.

A yellow bar spanning the distance between the predicted and the received reward indicated the reward prediction error (RPE).

(B) Experienced RPEs averaged across all participants. An increase in the fluctuation of reward value was associated with an increase in the range and SD of

experienced RPEs indicating that the experimental manipulation was successful.

(C) Initial learning rates for the Pearce-Hall model decreased significantly for increases in SD, suggesting behavioral adaptation to reward variability. Data were Z

scored per participant across SDs to control for potential outliers. Thus, initial learning rate data are presented in a.u. Bar graphs depict average ± SEM initial

learning rates.

(D) Initial learning rates for SD 10 conditions did not depend on the magnitude of the second SD within a session (i.e., SD 5 or SD 15), suggesting an absence of

contextual effects on initial learning rates. Data were Z scored per participant across the two SD 10 conditions to control for potential outliers. Bar graphs depict

average ± SEM initial learning rates.

(E) Increasedbehavioral adaptationcorrelateswithdecreasedperformanceerror, indicating improvedperformancewithadaptation. Toquantify behavioral adaptation

(ranked), we determined whether SD�1 was a significant predictor of learning rates: b0 + b1 SD
�1. The higher is R2 the better is SD a predictor of learning rate.

(F) Performance error did not depend on working memory capacity measured using the Wechsler reverse Digit Span task.

RPE, reward prediction error; RT, reaction time; LR, learning rate. U, behavioral adaptation.
from one of two conditions, each with a different SD. After each

prediction participants received a reward (see Figure 1A for an

example trial). Theexplicit presentationsof predictionand reward

enabled us to compute and display the RPE on each trial. Trial-

by-trial variation in RPE magnitude ensured that the prediction

errors covered the whole range of potential errors (Figure 1B).

BOLD responses in the human midbrain (SN/VTA) and ventral

striatum adapted to the variability of prediction errors, as re-

flected in steeper prediction error coding slopes when the SD

was lower. Subsequent analyses suggested that prediction

errors were encoded as a function of SD as BOLD responses

varied with normalized rather than absolute RPEs. We found no

support for the alternative hypothesis that the adaptive process

is mediated through coding of SD-dependent learning rates.

SN/VTA adaptive prediction error coding was not immediate

but emerged as trials progressed. Importantly, the individual

degree of adaptive coding in the SN/VTA complex and ventral
1128 Neuron 90, 1127–1138, June 1, 2016
striatum correlated with behavioral measures of adaptation and

was predictive of performance.

RESULTS

Behavior
Participants indicated the expected magnitude of upcoming

reward on every trial of the task. Following reward prediction,

the computer revealed the actual reward that was drawn from

an approximate Gaussian distribution. Thus, on every trial the

participants experienced a prediction error (reward received–

reward predicted). Optimal updating of reward predictions

would require participants to infer the expected value (EV) of

the reward distributions using Bayesian mean-tracking. Thus,

Bayesian mean-tracking constituted our null model. In this

model, rewards are assumed to be drawn from distributions

with variance s2, which was a free parameter that was estimated



Table 1. Quality of the Generative Models Fitted to Behavioral

DataGiven as theMeanDifference (d) in Criterion Values (AIC and

BIC) across Participants

Model Bayes RW PH

RW

dAIC �2.8

dBIC �2.4

PH

dAIC �7.4 �10.2

dBIC �7.9 �5.5

Adaptive PH

dAIC �8.0 �10.5 �3.8

dBIC �5.2 �4.8 �1.0

RW, Rescorla-Wagner; PH, Pearce-Hall.

Since SD is a key parameter of the Bayesian model, we fitted this model

separately for each SD condition and compared the resulting fits to simi-

larly obtained fits for the RW and the PH model. As the main difference

between the PHmodels is the SD-dependent change in learning rate (im-

plemented using a single scaling parameter), we used model fits across

SD conditions to compare the adaptive PH model to the non-adaptive

models. While model comparisons using AIC provided strong evidence

in favor of the adaptive PH model, BIC only showed a marginal improve-

ment of the adaptive PH model over the non-adaptive variant.
separately for each SD condition (see Supplemental Experi-

mental Procedures; Table S1). Given that Bayesian mean-

tracking is computationally demanding, a biologically plausible

alternative mechanism for updating predictions is reinforcement

learning. Formal model comparisons revealed that participants

were more likely to use reinforcement learning compared to

Bayesian mean-tracking (see Table 1 for model comparisons

using Akaike and Bayesian information criteria [AIC/BIC]). Spe-

cifically, participants’ prediction sequences were best predicted

by a dynamic learning rate Pearce-Hall (PH) reinforcement

learning model (Table 1). The PH learning rate depends on the

weighted, unsigned, prediction error across the past trials and

a decay constant. Thus, earlier observations are considered

more informative than later observations. Based on the superior

fit of this model, we used parameters estimated for this model in

subsequent analyses.

SD Impacts on Learning Behavior
Fitted learning rates decreased as SD increased (F (2, 52) = 6.54,

p = 0.003) (Figure 1C), an effect that was most pronounced for

the smallest SDs (i.e., SD 5 versus SD 10; T (26) = 2.20, p =

0.018; SD 10 versus SD 15; T(26) = 1.27, p = 0.108). These results

suggest a non-linear effect of SD on learning rate. Learning rates

for SD 10 conditions did not depend on the SD of the other con-

dition within a session (SD 5 or SD 15; T(26) = 0.023, p = 0.509)

(Figure 1D), which argues against contextual effects on learning

rates. In addition, the decay in learning rate did not vary across

SD conditions, suggesting that SD-dependent differences in

learning rate did not change as trials progressed (p > 0.1; Fig-

ure S2). To formally test for behavioral adaptation, we extended

the PH model by including a scaling parameter on prediction

errors (Diederen and Schultz, 2015). Model comparisons using
AIC and BIC showed that this adaptive PH model outperformed

all other models; the non-adaptive PH model was the second

best model (Table 1). The comparison using BIC only provided

marginal evidence in favor of the adaptive PH model; we there-

fore conducted a fixed effects likelihood ratio test, as previously

reported (Li et al., 2011), to examine the extent to which the

difference in model fit between the two PH variants was signifi-

cant. This test revealed that the adaptive PH model significantly

outperformed the non-adaptive PH model (c2
27 = 156.73). In-

spection of estimated scaling parameters showed that these

parameters differed significantly from zero and that participants

scaled prediction errors relative to, but with a smaller magnitude

than log(SD) (T(31) = 8.876, p < 0.001) (Figure S2). Such behav-

ioral adaptation to SD makes it likely that prediction errors are

encoded relative to SD, and we have suggested that it facilitates

efficient learning (Diederen and Schultz, 2015). Indeed, partici-

pants who showed decreased learning rates with increased SD

presented with lower performance errors (jprediction � EVj)
across all trials (Spearman’s r = �0.455, p = 0.009) (Figure 1E).

Individual differences in performance did not result from varia-

tions in individual working memory capacity as measured using

the Wechsler reverse Digit Span task (Wechsler, 1958) (Spear-

man’s r = �0.123, p = 0.270) (Figure 1F). These results confirm

that prediction errors scale to reward variability and that such

adaptation benefits learning.

Adaptive Coding
If the brain’s limited coding capacity is relieved by tuning to

more variable prediction errors (i.e., adaptive coding), this should

result in smaller neural prediction error coding slopes for larger

SDs (Figure 2A left). In the absence of adaptive coding, regres-

sion slopes would be similar for the different SDs (Figure 2A,

right). The non-linear relationship between SD and initial learning

rates suggests a similar non-linear decrease in prediction error

slopes across SDs. Using a contrast that reflected such non-line-

arity (i.e., 1/SD, centered at zero), we observed that SN/VTA

activity increased more with increases in prediction error magni-

tude in SD 5 conditions compared to SD 10 andSD 15 conditions

(Main effect SD: �8, �18, �10, Z = 3.46/ 3.40 for the 8 mm and

6 mm smoothing, respectively, p < 0.05 FWE, small volume

correction [SVC]) (Figures 2B–2E). A similar effect was observed

in the ventral striatum (�18, 1, �10, Z = 3.54/ 3.54 for the 8 mm

6 mm smoothing, respectively, p < 0.05 FWE SVC) (Figures 2B

and 2C). A linear adaptive contrast (i.e., 1, 0, �1) on prediction

error regression slopes revealed a similar but somewhat less sig-

nificant result compared to the non-linear contrast (SN/VTA:

max. Z: 2.87/2.86 for the 8 mm and 6 mm smoothing, respec-

tively; ventral striatum: 3.17/3.14 for the 8 mm and the 6 mm,

respectively). We observed no significant effect of SD on predic-

tion error coding slopes in the cerebellar control ROI that had the

same dimensions as the experimental ROI (all p > 0.1 SVC), sug-

gesting that adaptation in the a-priori-defined ROI did not merely

result from the more liberal multiple comparisons correction.

Whole-brain analyses (p < 0.05 cluster level) revealed additional

activation for the main effect of SD in a cluster comprising the

parahippocampal gyrus, the lentiform nucleus, and the thalamus

and a second cluster that included the left superior temporal

gyrus and the ventrolateral and dorsolateral prefrontal cortices
Neuron 90, 1127–1138, June 1, 2016 1129
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Figure 2. Adaptive Prediction Error Coding

(A) Schematic of adaptive coding versus absolute coding of RPEs. Left: Hypothesized slopes for adaptive coding of RPEs. If the brains limited coding capacity is

tuned to a larger range of RPEs, BOLD responses should increase less with a certain increase in RPE. Thus, the brains’ sensitivity to detect small changes in RPEs

would be reduced in distributions with a larger SD. Right: Hypothesized slopes for absolute coding of RPEs. In the absence of adaptive coding, RPE slopes should

be similar for the different SDs.

(B) Adaptive RPE coding: small > large SDs (i.e., SD�1 centered at zero). RPE slopes increased when SD decreased, in line with adaptive coding of RPEs.

Significant effects were observed in the midbrain (SN/VTA) complex and ventral striatum ROI (p < 0.05 FWE small volume correction [SVC]). For visual pre-

sentation only, we lowered the threshold to p = 0.1 FWE.

(C) Increased average (± SEM) responses (peristimulus time histograms [PSTHSs]) to similar sized (positive and negative; ± 12 and �12) RPEs in SD conditions

with a lower SD, in line with adaptive coding. To obtain these time courses, we binned trials associated with RPEs between 5 and 15 and between�5 and�15 for

each condition and participant. Subsequently, we extracted PSTHs at individual peak voxels displaying adaptive coding for positive and negative RPEs.

(D) A non-linear adaptive model (SD�1) provided a superior fit of RPE slopes compared to a linear adaptive model, in line with the non-linear decrease in initial

learning rate for increases in SD.

(E) RPE coding slopes. Increase in average (± SEM) RPE coding slopes and median % signal change when SD is smaller. We displayed both the average and

median for completeness. Coding slopes for the midbrain (SN/VTA) and ventral striatum were averaged over all voxels in the a-priori-defined ROIs. Data were

Z scored per participant across SDs to control for potential outliers.

(F) Average (± SEM) RPE coding slopes for SD 10 conditions did not depend on the SD of the second condition in a session (SD 5 or SD 15), suggesting that there

were no contextual effects on RPE coding. Data were Z scored per participant across SD 10 conditions to control for potential outliers. Vstr, ventral striatum; SN/

VTA, substantia nigra/ventral tegmental area; param. est., parameter estimates; ROI, region of interest;J, neural adaptation. Although we used different tests to

establish neural adaptation, we used J to refer to neural adaptation independently of the specific test used.

1130 Neuron 90, 1127–1138, June 1, 2016



Table 2. Whole-Brain Adaptive Coding

Brain Area Cluster Size Max. Z Value Cluster p Value

MNI Coordinates

X Y Z

Supramarginal gyrus 452 5.05 0.000 �46 �8 2

Parahippocampal gyrus �18 �40 �5

Superior temporal gyrus 182 4.94 0.000 54 �44 18

Supramarginal gyrus 58 �40 34

Middle frontal gyrus 76 4.72 0.002 �26 28 42

Parahippocampal gyrus 43 4.74 0.007 22 �44 �2

Thalamus 14 �28 �5

Middle temporal gyrus 37 4.56 0.011 50 �12 �14

Superior temporal gyrus 45 �12 �5

Cluster sizes, p values, z values, and locations of local maxima for brain regions, other than the SN/VTA complex and ventral striatum, showing adap-

tive coding of prediction errors to reward variability.
(Table 2). ROI analyses (averaged over all voxels in the a-priori-

defined ROIs) confirmed that SD-specific prediction error slopes

decreased non-linearly with increases in SD (comparison of R2

for a linear [1, 0, �1] and non-linear model [1/SD centered at

zero]: T(53) = 2.2340, p = 0.0149) (Figure 2D). In line with the

behavioral results, prediction error coding slopes for SD 10

conditions did not depend on the SD of the second condition

within a session (SD 5 or SD 15; all p > 0.1 FWE SVC, cluster

and voxel-wise analyses; ROI analysis: T(53) = 0.8763, p =

0.1924) (Figure 2F). These results suggest that prediction error

coding slopes adapt to SD and not to the context.

Prediction Errors Are Encoded Relative to SD
The decrease in prediction error coding slopes for larger SDs

suggests that prediction errors are encoded relative to the SD

of reward. Thus, we sought to establish whether a normalized

code (prediction error/SD) would be superior in explaining varia-

tions in BOLD responses compared to a non-normalized code.

After removing all variance shared by normalized and non-

normalized prediction errors, BOLD responses no longer varied

significantly with non-normalized prediction errors neither in

the SN/VTA and ventral striatum (p > 0.9 FWE SVC), nor at

whole-brain level (p > 0.1 FWE cluster and voxel-wise correc-

tion). In sharp contrast, normalized prediction errors still tracked

BOLD responses in a midbrain cluster that included the SN/VTA

complex and extended into the hypothalamus (�14, �26, �10,

Z = 4.35, p < 0.05 FWE cluster correction and �11, �18, �6,

Z = 3.07/3.06 for the 8 mm and 6 mm smoothing, respectively,

p < 0.05 FWE SVC) (Figure 3A). The ventral striatum did not

significantly code normalized prediction errors when all shared

variance between non-normalized and normalized prediction er-

rors was removed (�14, 8, �14, Z = 2.50/2.48, p = 0.190/0.196

FWE SVC for the 8 mm and 6 mm smoothing, respectively).

However, when we restricted the search volume to the cluster

showing significant adaptive coding in the previous, less con-

servative analysis by drawing a 9 mm sphere centered on the

coordinate of maximum activation in that analysis, we observed

significant normalized prediction error coding (�14, �8, �6, Z =

2.94/ 2.92 for the 8 mm and 6 mm smoothing, respectively,

p < 0.05 FWE) (Figure 3A). ROI analyses revealed a significant
increase in coding slopes for normalized compared to non-

normalized prediction errors in the a-priori-defined SN/VTA

complex (Wilcoxon signed rank = 431, Z = 2.682, p = 0.007)

and ventral striatal ROI (Wilcoxon signed rank = 416, Z =

2.811, p = 0.005) (Figure 3B). We observed no significant effects

in the control ROI (p > 0.1), thus suggesting that adaptation in

the a-priori-defined ROI did not merely result from the more lib-

eral multiple comparisons correction. These results suggest that

prediction errors are coded relative to reward variability in the

human SN/VTA and to a lesser extent in the ventral striatum.

Learning Rate Coding
It has to be noted that although a superior fit of the adaptive

PH model indicated scaling of prediction errors relative to SD,

computational modeling cannot distinguish between predic-

tion error scaling and learning rate scaling. Thus, the observed

behavioral adaptation may be facilitated by SD-dependent

learning-rate coding rather than normalized prediction error

coding. BOLD responses in two large clusters encompassing

the bilateral cerebellum and inferior occipital gyrus varied signif-

icantly with trial-by-trial PH learning rates (34, �68, �18, Z =

4.22; �42, 72, �18, Z = 4.17, p < 0.05 FWE cluster-level correc-

tion) (Figure 3C). This effect did not depend on the SD of reward

distributions in either the a-priori-defined ROI or at whole-brain

level (all p values > 0.1), arguing against scaled learning-rate

coding underlying behavioral adaptation to reward variability.

Thus, these results suggest that the effect of SD on learning is

incorporated via the scaling of prediction errors, not learning

rate. In addition, as the PH learning rate decays in a trial-wise

manner, these results suggest that the effect of trial number on

learning is facilitated via the coding of dynamic learning rates.

Indeed, a parametric modulator that scaled prediction errors

relative to both SD and the trial-wise decay in learning rate did

not provide a better fit of the fMRI data compared to a parametric

modulator that only normalized prediction errors to reward vari-

ability in either the a-priori-defined ROI or at whole-brain level

(p > 0.1). In addition, prediction errors that were scaled by dy-

namic learning rates (but not SD) did not provide a better fit of

the fMRI data compared to unscaled prediction errors. These re-

sults confirm that the effect of trial number is regulated via the
Neuron 90, 1127–1138, June 1, 2016 1131



A B C Figure 3. Prediction Errors Are Coded Rela-

tive to SD

(A) Normalized RPE responses. Significant coding

of normalized RPEs (I.e., RPE/SD) after removing

all shared variance between normalized and

non-normalized RPEs. To facilitate comparison of

normalized and non-normalized regressors, para-

metric modulators were Z scored prior to model

estimation. Z scores were calculated per sub-

ject, across all SD conditions. Whereas BOLD re-

sponses were significant on cluster level as well as

in the a-priori-defined ROI in the midbrain (SN/VTA

complex), activity in the ventral striatum only became significant when we decreased the search volume to a 9-mm sphere centered on the peak area showing

significant adaptation in the previous analysis (see Figure 2).

(B) Increased average (± SEM) RPE coding slopes (parameter estimates) for normalized RPEs compared to (non-normalized) RPEs in the SN/VTA complex and

ventral striatum. Coding slopes for the SN/VTA complex and ventral striatum were averaged over all voxels in the a-priori-defined ROI. Data were Z scored per

participant across parameter estimates for normalized and non-normalized RPEs to control for potential outliers.

(C) Significant learning rate coding slopes in a cluster including the occipital cortex and cerebellum.

Vstr, ventral striatum; SN/VTA, substantia nigra/ventral tegmental area; param. est., parameter estimates. J, neural adaptation.
learning rate, whereas the effect of SD is incorporated through

the use of scaled prediction errors.

Timescale Adaptive Coding
As the adaptive process conceivably requires time, we inves-

tigated adaptive coding to SD during early, middle, and late

trials. Although the non-linear adaptive model provided a good

description of SD-specific prediction error coding slopes for

each of the different task phases, adaptive coding increased

for late compared to early trials in the SN/VTA a-priori-defined

ROI (F(1,26) = 6.85, p = 0.015) (Figure 4A). In strong contrast,

adaptive coding was highly similar for early and late trials in

the ventral striatal ROI (F(1,26) = 0, p = 0.989) (Figure 4B). These

results show a clear distinction between adaptive coding in the

SN/VTA complex and ventral striatum and render it likely that

adaptation of RPEs in the SN/VTA complex does not occur

instantaneously.

Behavioral Adaptation, Adaptive Coding, and
Performance
The observed behavioral scaling of prediction errors to reward

variability may be facilitated by adaptive coding to the SD of

RPEs. Indeed, the degree of behavioral adaptation varied signif-

icantly with individual differences in adaptive coding in the

SN/VTA complex (Spearman’s r = 0.329, p = 0.047) (Figure 5A)

and ventral striatum (Spearman’s r = 0.406, p = 0.018)

(Figure 5A).

Importantly, adaptive coding should not only facilitate behav-

ioral adaptation to reward variability but should also serve to

make learning more efficient. Thus, we investigated whether

the individual degree of adaptive prediction error coding was

related to task performance. Participants displaying a higher de-

gree of adaptive prediction error coding in the SN/VTA complex

and the ventral striatum outperformed participants with a lower

degree of adaptation (Spearman’s r =�0.431, p = 0.013; Spear-

man’s r =�0.407, p = 0.018 for the SN/VTA and ventral striatum,

respectively) (Figure 5B). The tight relationship between behav-

ioral adaptation and adaptive coding suggests that adaptive

coding of prediction errors underlies behavioral adaptation and

facilitates learning.
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Positive and Negative Prediction Errors
As previous work indicated differences in the coding of pos-

itive versus negative prediction errors (D’Ardenne et al., 2008),

we inspected the effect of prediction error sign on BOLD re-

sponses. Prediction error coding slopes varied more with nega-

tive compared to positive prediction errors after accounting for

the effect of SD (F(1,320) = 4.60, p = 0.033) (Figure 6A). However,

the effect of SD on prediction error coding slopes (i.e., adaptive

coding) did not depend on the sign of the prediction error (T(53) =

0.045, p = 0.964) (Figure 6B), which suggests that adaptation

was consistent across positive and negative prediction errors.

To investigate whether participants’ behavior varied with the

sign of prediction errors, we fitted a simple Rescorla-Wagner

(RW) reinforcement-learning model with separate learning rates

for positive and negative prediction errors to participants’ pre-

diction sequences. Learning rates were significantly higher for

negative compared to positive prediction errors after accounting

for the effect of SD (F(1,158) = 5.47, p = 0.021) (Figure 6C).

To characterize the relationship between behavioral and fMRI

markers of prediction error sign, we measured correlations be-

tween individual learning rates for positive compared to negative

prediction errors and differences in adaptive coding for positive

versus negative prediction errors. We observed a significant

positive relationship between the effect of prediction error sign

on learning rates and its effect on prediction error coding slopes

(Pearson’s r = 0.260, p = 0.029; in the a-priori-defined ROI that

comprised the SN/VTA and ventral striatal ROI) (Figure 6D).

These results indicate that individuals who weighted negative

prediction errors more heavily during learning also showed

stronger neural coding of negative prediction errors compared

to positive prediction errors.

DISCUSSION

We investigated adaptation of BOLD responses to the SD of

prediction errors during learning. Our data show that BOLD re-

sponses in the human midbrain (SN/VTA complex) and ventral

striatum can adapt to the SD of prediction errors. In the SN/

VTA, this effect only emerged as the task progressed. Thus,

the magnitude of BOLD responses to a given prediction error
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Figure 5. Neural Adaptation Correlates with Behavioral Adaptation
and Performance

(A) Superior behavioral adaptation to reward variability is associated with

improved neural adaptation in the SN/VTA complex and ventral striatum. To

quantify behavioral and neural adaptation, we determinedwhether SD�1 was a

significant predictor of learning rates and RPE slopes: b0 + b1 SD
�1. The higher

R2 is, the better SD serves as a predictor of learning rate and RPEs.

(B) Superior neural adaptation in the SN/VTA complex and ventral striatum

correlates with decreases in performance error (jprediction � EVj averaged
across all SDs and trials).

SN/VTA, substantia nigra/ventral tegmental area; Vstr.; ventral striatum. J,

neural adaptation.

A B

Figure 4. Adaptive Coding Emerges across Trials in the SN/VTA

(A) Average (± SEM) adaptive coding in the midbrain (SN/VTA) ROI increased

for later compared to earlier trials.

(B) Average (± SEM) adaptive coding in the ventral striatal ROI did not vary with

later compared to earlier trials. SN/VTA, substantia nigra/ventral tegmental

area; Vstr, ventral striatum; U, behavioral adaptation; J, neural adaptation.

Early, Middle and Late, Early trials, Middle trials, Late trials.
became smaller when prediction errors fluctuated with a

larger SD. Importantly, individual variability in this sensitivity

was observed, and those individuals showing stronger adap-

tive coding in the SN/VTA and ventral striatum also showed

improved behavioral adaptation, and they were able to make

more accurate predictions.

The tight relationship between adaptive prediction error cod-

ing and task performance supports the hypothesis that adaptive

coding serves to make learningmore efficient. Weighting predic-

tion errors with SD is critical as the size of the prediction error is

meaningless without an estimate of its precision. Specifically, a

prediction error of a certain size is less informative in situations

where rewards fluctuate more (Diederen and Schultz, 2015).

Thus, efficient learners should code prediction errors relative to

SD. Such adaptive coding supports the entire dynamical range

of neural systems and ensures similar BOLD responses to the

highest and lowest prediction error in each distribution indepen-

dently of the absolute magnitudes. As such, BOLD responses

should increase similarly for increases in normalized prediction

error across conditions but increase less for a certain absolute

increase in prediction error when the SD is larger. This process

facilitates optimal sensitivity to detect expected differences in

prediction errors for each SD andmakes optimal use of neurons’

limited dynamic firing range. Indeed, we found that partici-

pants represented prediction errors adaptively by differential

prediction error coding slopes between the different reward

distributions: steeper coding slopes for narrower distributions.

After normalizing prediction errors to SD, prediction error coding

slopes were similar across SD conditions, confirming adaptation

to SD. Moreover, the finding of a high correlation between indi-

vidual adaptive coding and behavioral adaptation suggests

that adaptive coding facilitates behavioral adjustment to reward

variability.
Although earlier studies did not investigate adaptive coding

during learning, our results are partly in line with a previous study

that showed that striatal BOLD responses varied with the prob-

ability (high versus low) of reward, but not with prediction error

magnitude (Park et al., 2012). In addition, previous studies

showed adaptive coding of reward value in the striatum, middle

temporal gyrus, medial prefrontal cortex, orbitofrontal cortex,

inferior parietal lobule, and posterior cingulate (Bunzeck et al.,

2010; Cox and Kable, 2014; Elliott et al., 2008; Nieuwenhuis

et al., 2005). Even though these studies focused on reward value,

reward value and prediction error magnitude are typically corre-

lated. As these studies did not separate value from prediction

errors, these results could reflect prediction error coding rather

than reward value adaptation. Strikingly, none of these studies

reported adaptive coding in the human SN/VTA, which is criti-

cally involved in prediction error coding. The fact that reward

contingencies were explicit in these studies and did not have

to be learned might explain this divergence in findings. As adap-

tive coding is essential for learning, it may be more prominent

during the learning process. Moreover, in the current study,

reward distributions alternated in short blocks of four to six trials

rather than trial-wise alteration as used in previous fMRI studies.

This differencemay be crucial, as a previous study in non-human

primates showed that adaptation increased with longer task

blocks (Kobayashi et al., 2010), suggesting that repetition of

stimulus conditions is required to reveal adaptive coding. In

addition, whereas the current study investigated BOLD re-

sponses across the whole range of potential errors, most studies

solely investigated binary coding (high versus low) of reward

value and prediction errors. It is unlikely that our finding of

adaptive coding in the SN/VTA is spurious as an electrophysi-

ology study in non-human primates showed that midbrain

dopamine neurons adapt to the probability of predicted reward

(Tobler et al., 2005). These findings add to previous studies
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Figure 6. Adaptive Prediction Error Coding Is Consistent across Positive and Negative Prediction Errors
(A) Average (± SEM) RPE slope magnitude was significantly higher for negative compared to positive RPEs (results collapsed over the SN/VTA complex and

ventral striatum).

(B) Average (± SEM) estimated learning rates were significantly higher for negative compared to positive RPEs.

(C) The average (± SEM) degree of neural adaptation did no differ significantly between positive and negative RPEs in the SN/VTA complex and ventral striatum.

(D) Significant positive correlation between the effect of RPE error sign on learning rates and its effect on RPE coding slopes.

n-linear, non-linear; SN/VTA, substantia nigra/ventral tegmental area; Vstr, ventral striatum; LR, learning rate; J, neural adaptation.
that described adaptive coding across a wide range of species

and sensory processes, thus suggesting that adaptive coding

constitutes a general process for facilitating efficient coding

(Carandini and Heeger, 2012).

The finding that adaptive coding emerged across subsequent

task blocks in the SN/VTA converges with an earlier study in non-

human primates (Kobayashi et al., 2010). Here, the fraction of

neurons adaptively coding reward in the orbitofrontal cortex

increased with the number of subsequent trials per task block

(Kobayashi et al., 2010). Indeed, SN/VTA adaptation became

most apparent during later trials in the current study. However,

the adaptivemodel already provided a good fit of prediction error

slopes during early trials, a finding that was paralleled by differ-

ences in initial learning rates across SD conditions. It is likely that

this early adaptation arose from the use of explicit SD cues and

generalization of learning from the practice sessions. Interest-

ingly, adaptation did not increase across trials in the ventral stria-

tum. A number of studies have shown divergent responses of the

SN/VTA and the ventral striatum in reward tasks (D’Ardenne

et al., 2008; Klein-Flügge et al., 2011; O’Doherty et al., 2006),

findings that have been taken to suggest that striatal predic-

tion error and reward value representationsmay not bemediated

exclusively by an afferent dopaminergic signal (O’Doherty et al.,

2006). Indeed, the ventral striatum receives input from areas

other than midbrain dopaminergic neurons including the amyg-

dala, orbital prefrontal cortex, insular cortex, and cingulate cor-

tex (Haber, 2011). Moreover, it is possible that activity observed

in the SN/VTA does not directly reflect the activity of intrinsic

dopamine neurons but rather reflects activity within inputs

to this area (Logothetis et al., 2001; O’Doherty et al., 2006).

We did not observe increases in behavioral adaptation as

trials progressed. This difference between behavioral and neural

adaptation may reflect increased sensitivity of fMRI compared to

behavioral analyses (Wilkinson and Halligan, 2004).

The inclusion of two conditions with a different SD in each ses-

sion allowed us to investigate the effect of context on learning

rates and prediction error slopes. Rather than coding prediction

errors relative to SD, learning rates and prediction error coding
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could adapt to the relative SD (i.e., lowest/ highest) within a

session. Specifically, SD 10 conditions could be paired with

either a lower or a higher SD in the same session. We observed

no contextual effects on initial learning rates or on prediction

error coding. This result implies that prediction errors adapt to

SD rather than context.

The observed relationship between behavioral adaptation and

taskperformance is in linewitha previous studybyour group (Die-

deren and Schultz, 2015). Diederen and Schultz (2015) observed

that increases in prediction error scaling benefitted performance.

However, observed over-scaling in this study resulted in perfor-

mance decreases, resulting in a quadratic relationship between

predictionerror scalingand taskperformance.Wedidnotobserve

suchover-scaling in thepresent studyand thus founda linear rela-

tionship between prediction error scaling and task performance.

In addition, the current study used a related, but different, mea-

sure for prediction error scaling (i.e., behavioral adaptation) to

facilitate similarity to the measure for adaptive coding.

We observed a correlation between trial-by-trial learning rates

and BOLD responses in the occipital cortex and cerebellum,

which has been reported previously (Krugel et al., 2009; McGuire

et al., 2014; Payzan-LeNestour et al., 2013). This result suggests

that the effect of trial number on learning is regulated via the

learning rate. The occipital cortex is involved in the direction of

visual attention toward task stimuli (Carter et al., 1995; Corbetta,

1998; Hahn et al., 2006). It has therefore been hypothesized

that increases in learning rate reflect increased visual attention

toward reward stimuli (Payzan-LeNestour et al., 2013). In our

task, earlier rewards are more informative than later ones, as re-

flected in higher learning rates, which would suggest increased

visual attention to earlier outcomes. Alternatively, occipital acti-

vation may be related to the yellow bars that indicated the

magnitude of the prediction error on each trial. Although occipital

responses did not vary with prediction errors, neurons in the

occipital cortex may have visually adapted to the yellow bars

across trials leading to decreases in visual responses, in parallel

with decreases in learning rate. Interestingly, a correlation be-

tween learning rate magnitude and cerebellar activity was only



observed previously when changes in learning rate depended on

reward magnitude, but not when the learning rate depended on

belief uncertainty and outcome volatility (McGuire et al., 2014).

This finding is in line with the current study as our participants

presumably updated their learning rates as a function of the RPE.

It has to be noted that the spatial resolution used in this study

limited our ability to localize BOLD signal changes in the SN/VTA

and the ventral striatum. Although we limited anatomical uncer-

tainty through the use of functional ROIs that were constrained

by anatomical masks, future studies are required that include

higher spatial resolution and anatomical specificity. Another lim-

itation pertains to the possibility that participants scaled their

prediction errors because they were informed that their pay-off

was scaled by SD in the control trials. Thus, our results show

that prediction errors can scale with SD.

EXPERIMENTAL PROCEDURES

Experimental Task

Twenty-seven participants predicted the magnitude of upcoming reward as

closely as possible from the past reward history. Reward (£s) were drawn

from one of six pseudo-Gaussian distributions with a SD of £5, £10, or £15

and an EV (mean) of £35 or £65 (see Supplemental Experimental Procedures).

Trials started with a fixation cross presented on a computer monitor in front

of the participants (Figure 1A). After 2,100–4,200 ms of fixation cross presen-

tation, a visual cue signaled (500 ms) the SD of the reward distribution from

which the upcoming reward would be drawn. Cues were gray vertical rectan-

gles intersected by two horizontal green bars. The vertical distance between

the green bars signaled whether rewards were drawn from a distribution

with a small, medium, or large SD (Figure 1A, inset). Distance was proportional

to SD but did not correspond to the actual SD. Thus, it indicated whether re-

wards were drawn from a distribution with a small, medium, or large level of

variability without informing participants about the actual SD. These explicit

cues facilitated instantaneous adaptation to reward variability. Bar cues con-

tained no explicit information about the EV of the reward. Following the cue,

participants moved a horizontal ‘‘prediction’’ bar on a vertical scale that indi-

cated the range of possible predictions (£0–£100) using a trackball mouse.

Prediction value (in £) was displayed on both sides of the prediction bar and

increased or decreased as participants moved the bar. Participants indicated

their prediction by a mouse click (within 3,500 ms). The prediction bar ap-

peared at a random position on the vertical scale at the start of each trial to de-

correlate prediction magnitude from scrolling distance. After a variable delay

(2,100–5,250ms uniform distribution), which allowed BOLD responses for pre-

diction and reward to be differentiated, the display showed the magnitude of

the actual drawn reward as a green line and figure (corresponding to the mon-

etary value of the reward) on the same scale, as well as the RPE on that trial (a

yellow bar spanning the distance between the lines for the predicted and the

received reward). Failure to make a timely prediction resulted in omission of

the reward. Initial inspection of RPE data revealed that these errors increased

with SD, indicating that the experimental manipulation was successful (Fig-

ure 1B). Participants were instructed on the experiment with the aid of a stan-

dardized tutorial, presented using MATLAB, which fully informed them about

the structure of the task (see Supplemental Experimental Procedures).

To investigate whether task performance was related to individual working

memory capacity, we administered the Wechsler reverse Digit Span task

(Wechsler, 1958). Scores on this measure reflect the longest list of numbers

that a person can correctly repeat in reverse order immediately after presenta-

tion. All stimulus presentation, data acquisition and behavioral analyzes were

programmed using MATLAB (MathWorks) and Cogent 2000 (http://www.

vislab.ucl.ac.uk/cogent_2000.php).

Incentive Compatibility

We pseudo-randomly interspersed unannounced control trials (20%) into the

main task to ensure that participants revealed their true predictions. Pay-off
in control trials depended on performance (jprediction � EVj; Supplemental

Experimental Procedures). In the main trials (80%), the pay-off was a fraction

(10%) of the reward drawn by the computer (e.g., £5 if a participant received

£50). This design motivated the participants to consider the drawn numbers

actual reward. At the end of the experiment, the gains from 1 control and

1 main trial were selected randomly and paid out to the participants who

had been informed about this pay-off procedure.

Computational Models

To infer participants’ strategy on the task, we fitted a number of computational

models to participants’ prediction sequences. We consider the case in which

participants’ predictions (y) are assumed to result from a recursive generative

process:

yn = yn�1 + kndn (Equation 1)

where kn denotes the learning rate (also termed Kalman gain) and dn

denotes the RPE on trial n. Thus, all models contain an error-driven

update. The different models, which we fit to the participants’ prediction

sequences, varied in the calculation of the learning rate, which indicates

the degree to which the RPE on trial n is used to update the prediction

on trial n + 1.

Bayesian Mean-Tracking

Optimal performance on this task is achieved through accurate estimation of

the EV of reward distributions. Optimal estimation of the EV can be derived us-

ing Bayes’ rule, a specific form of statistical reasoning (see Supplemental

Experimental Material). Thus, a Bayesian mean-tracker constituted the null

model for our task. The learning rate for an optimal mean-tracker in these

experiments is

kn =
s2
n�1

s2
n�1 + s2

; (Equation 2)

where s2 is the variance of the reward and s2n�1 is the variance of the prior. For

the Bayesian mean tracker, the posterior variance decreases on every trial

leading to asymptotic update of the posterior mean. Thus, predictions would

not change much after many observations.

RW

As Bayesian mean-tracking is computationally demanding, it is conceivable

that participants use computationally more tractable approaches such as

model-free reinforcement learning. We first consider the most basic reinforce-

ment-learning rule:

kn =a (Equation 3)

in which the gain is the constant RW (Rescorla andWagner, 1972) learning rate

a. Using thismodel, participants update their predictions as a constant fraction

of the RPE.

PH

When rewards are drawn from a Gaussian process, constant (RW) learning

rates interfere with the acquisition of stable predictions. In addition, the use

of constant learning rates would not be compatible with the instruction given

to the participants that the reward are drawn from an approximate Gaussian

distribution with a constant mean. Thus, it seems reasonable to consider a

middle ground between Bayesian updating and constant learning such as

the PH (Pearce and Hall, 1980) associability:

kn =gCjdn�1 j + ð1� gÞkn�1; (Equation 4)

where jdj denotes the absolute RPE and C is an arbitrary scaling coefficient.

The recursive process is initialized with the initial learning rate k0 = a. In this

case, the learning rate depends on the absolute RPE on previous trials, the

learning rate on previous trials, and the decay constant g.

Adaptive PH

To account for the potential effect of SD in the PH model, we scaled the pre-

diction error relative to log(SD) of the reward distributions.
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yn = yn�1 + kndn=u

kn =gCjdn�1 j =u+ ð1� gÞkn�1

u= ð1� nÞ+ n logðSDÞ=D; (Equation 5)

Since scaling compresses the operational range of the learning rate to up-

date predictions, we added an arbitrary scaling coefficient D to ensure scaling

relative to, but with a quantity smaller than log(SD). In addition, as we previ-

ously showed individual variation in the degree of prediction error scaling,

we estimated the extent of prediction error scaling (0% v% 1) per participant

(Diederen and Schultz, 2015).

Model Fitting and Comparison

For each model, we fit the free parameters F to the subjective predictions Y by

maximizing the likelihood pðY jFÞ=QM
mpðym jFÞ, where pðym jFÞ=Nðmm; bs2Þ

and Y = ½y1 y2 :: yM� are the subjective predictions. We used a combination of

nonlinear optimization algorithms implemented in MATLAB to estimate the

free parameters to each participant’s full dataset over the trials of all condi-

tions. Formal model comparisons were conducted using Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) values that take into

account the difference in the numbers of free parameters between models

(see Supplemental Experimental Material).

fMRI

fMRI datawereobtained at theWolfsonBrain ImagingCenter, Cambridge, using

a Siemens Trio 3T MRI scanner (see Supplemental Experimental Procedures).

Adaptive Prediction Error Responses

Our first fMRI analysis investigated whether BOLD responses would adapt to

the variability of RPEs. If the brain’s limited coding capacity adapts to vari-

ability in RPEs, BOLD responses should increase less for a given increase in

RPE. This mechanism would result in shallower slopes for coding RPEs with

larger SDs (Figure 3A, left). Without such adaptation, regression slopes would

be similar for the different SDs (Figure 3B, right). Thus, the brain’s sensitivity to

small changes in RPEs would be lower for distributions with larger SDs.

To test for adaptive RPE coding, we created a single regression model for

each participant. We modeled cue onset, prediction onset and reward onset

as single impulse responses. Events were created separately for each SD.

Furthermore, reward onset events were separately modeled for trials with a

positive RPE and trials with a negative RPE as previous studies reported stron-

ger responses for negative RPEs in the human SN/VTA complex and striatum

(D’Ardenne et al., 2008; Liu et al., 2011). We parametrically modulated reward

onset events with trial-wise (1) reward outcome value and (2) RPEs. The RPE

parametric modulator was orthogonalized with respect to the outcome value

parametric modulator to ensure that this parametric modulator indicated

BOLD responses varying with RPEs, independently of reward magnitude.

The analyses included the main trials (80%) and the control trials (20%) as

the participants indicated that they treated all trails in the same fashion. Spe-

cifically, the participants aimed to predict upcoming reward as well as possible

from the past reward history, and they favored higher reward at the outcome

phase. In addition, preliminary analyses including only the main trials revealed

comparable results to the analyses including all task trials. To account for a

maximal number of variables influencing brain activity, we included covariates.

Covariates consisted of error trials (trials in which participants failed to indicate

their prediction within 3,500 ms) and the prediction time (time between initial

appearance of the scale and the moment participants stated their predic-

tion) in non-error trials. These epochs and all events were convolved with

the standardized hemodynamic response function from SPM8 to introduce

typical delays of fMRI responses. Finally, we modeled movement artifacts

by including the realignment parameters as regressors of no interest. All

regressors were fitted to the data using general linear model estimation.

After model estimation, linear contrasts of regression coefficients of interest

were computed at the individual level and then entered in second level random

effects repeated-measures ANOVAs to test for group effects. We carried out

the following contrast: Main effect RPE adaptation (SD5 > SD10 > SD15);

this contrast revealed regions where BOLD responses to positive and negative
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RPEs varied more strongly with RPEs when the SD was smaller, independent

of outcome value.

Normalized Coding of Prediction Errors

The above analysis aimed to investigate whether BOLD responses adapted to

the variability of RPEs. If so, this would render it likely that these errors are en-

coded in a normalized fashion (i.e., as a function of SD). As before, wemodeled

cue onset, prediction onset, and reward onset as events, and reward onsets

separately for positive and negative RPEs. All events were collapsed over

the different SDs. Reward onset regressors were parametrically modulated

with (1) outcome value, (2) non-normalized RPEs, and (3) normalized RPEs

(RPEs/SD). As we were interested in variance uniquely explained by each of

these parametric modulators, we removed the serial Gram-Smidt orthogo-

nalization procedure from the analysis. This procedure ensured that shared

variance between outcome value and normalized and non-normalized RPEs

would be excluded from the analysis, rather than being attributed to one of

the parametric modulators. This is a highly conservative procedure for partly

correlated regressors, as the shared variance goes in the residuals thus

limiting the statistical quality of the parametric modulator. To facilitate compar-

ison of normalized and non-normalized regressors, parametric modulators

were Z scored prior tomodel estimation. Z scores were calculated per subject,

across all SD conditions. As behavioral adaptation involves learning rate decay

in addition to RPE scaling, we ran an additional model. Here, the second

parametric modulator consisted of RPEs that were multiplied with dynamic

trial-wise learning rates estimated across different SD conditions in addition

to RPE scaling. Error trials and prediction time were included as covariates,

and the realignment parameters were included as regressors of no interest.

Context Dependency

Each session included two conditions differing in SD and alternating in short

blocks. Thus, RPE coding slopes could adapt to the relative SDs (high or

low) of each condition within a session. As SD 10 conditions could be paired

with either a lower or higher SD condition in a session, we investigated this hy-

pothesis by comparing RPE regression slopes for the two SD 10 conditions.

Learning Rate Coding

Whereas we hypothesized that the weight attributed to RPEs as a function of

SD would be reflected in the coding of normalized RPEs, the weight attributed

to RPEs might alternatively be reflected in the coding of SD-dependent dy-

namic learning rates. To investigate this alternative explanation, we repeated

the first fMRI model and used the estimated PH dynamic learning rate rather

than RPE as the second parametric modulator.

Timescale Adaptive Coding

As the adaptive process conceivably requires time, we investigated the time-

scale forSDadaptation.With this aim,wemodifiedourfirstmodel so that reward

onsets were modeled separately for early trials (1–7), middle trials (8–14), and

late trials (15–21). As responses for each SD were averaged for the two EVs,

RPE responses for early, intermediate, and late learning were estimated for

14 trials. Here, reward onset events were combined for positive and negative

predictions errors to ensure a sufficient number of observations for each condi-

tion. In addition,we includednoparametricmodulatorsbesidesRPEsas reliable

estimation of regression slopes for partially correlated parameters is unfeasible

with a small number of observations. For each participant and each timescale,

we estimated SD-specific RPE coding slopes in the a-priori-defined SN/VTA

complex and ventral striatum. Extracted parameter estimates were averaged

over the left and right (1) SN/VTA complex and (2) ventral striatum.

Thresholding

Adaptive coding effects are likely to be subtle as previous fMRI studies

only reported results that were uncorrected for multiple comparisons (Bunzeck

et al., 2010; Park et al., 2012). Thus, weperformedanalyses in ana-priori-defined

ROI that comprised themidbrainSN/VTAcomplex and ventral striatumaswell as

onwhole-brain level. First, we traced the SN/VTA complex on a normalized high-

resolution magnetic transfer image acquired using the sameMRI scanner as the

functionalMR images (Gruberetal., 2014). Inaddition, the ventral striatalROIwas

traced on the average T1 scan of our participants following the definition of the



ventral striatum by Laruelle et al. (Martinez et al., 2003). To increase sensitivity to

identify effectswithin theseROIs, we inclusivelymasked the anatomical ROIwith

clusters of significant RPE related activation reported in a recent meta-analysis

(Gruber et al., 2014; meta-analysis data provided by Garrison et al., 2013) (see

FigureS1 for an illustration of our ROI). TheSN/VTAcomplex and ventral striatum

were combined into one ROI to ensure that corrections formultiple comparisons

were conducted across all voxels in both areas. We also constructed a control

ROI of the same dimensions as the a-priori-defined ROI to ensure that any sig-

nificant results in the aprioriROIdidnot solely result fromthemore liberalmultiple

comparisons correction. The control ROI was centered at the cerebellum

(i.e.,�30/30,�76-40). For the apriori and control ROI, weconsideredactivations

significant at p < 0.05 family-wise error (FWE) corrected using a SVC. Onwhole-

brain level we report results p < 0.05, FWEcorrected at the cluster level aswell as

results p < 0.05 FWE corrected at the voxel-level.

Adaptation to Reward Variability and Task Performance

We hypothesized that neural adaptation to SD would facilitate behavioral

adaptation to SD and that the individual degree of adaptation would correlate

with task performance. To investigate the hypothesized relationships, we first

quantified the individual degree of behavioral and neural adaptation to the SD

of reward. Behavioral adaptation would be reflected in the effect of SD on the

estimated learning rates. Similarly, SD-dependent variation in RPE coding

slopes would be indicative of neural adaptation. In line with previous findings

of a non-linear relationship between SD and learning rates (Diederen and

Schultz, 2015), we used the inverse of SD as predictor. Thus, we quantified

in each participant whether SD�1 was a significant predictor of learning rates

and RPE coding slopes: b0 + b1 SD�1. The R2 of these regression analyses

reflect the individual degree of adaptation: higher R2 indicated that SD was a

better predictor of learning rate and RPE slopes. Since the primary focus

was the effect of SD on learning rates and RPE slopes, we dissociated the

effect of SD from the effect of trial number on learning rates and RPE slopes

in these analyses. Subsequently, we related the individual degree of behavioral

and neural adaptation to task performance. Efficient learning requires individ-

uals to rapidly acquire stable and accurate predictions in contexts with varying

degrees of reward variability. Thus, we quantified task performance as the

performance error (jprediction � EVj) averaged across all trials. Importantly,

performance error reflects both prediction accuracy and stability. Specifically,

large performance errors could result from unstable predictions indicating that

learning had not yet been completed, as well as from stable predictions with

low accuracy (i.e., distant from the EV). We calculated rank correlations

(Spearman’s r) to establish the relationship between behavioral and neural

adaptation and between adaptation and task performance, as this data was

not normally distributed.
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