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Abstract

Before fertilization, sperm bind to epithelial cells of the oviduct isthmus to form a reservoir

that regulates sperm viability and capacitation. The sperm reservoir maintains optimum fer-

tility in species, like swine, in which semen deposition and ovulation may not be well syn-

chronized. We demonstrated previously that porcine sperm bind to two oviductal glycan

motifs, a biantennary 6-sialylated N-acetyllactosamine (bi-SiaLN) oligosaccharide and 3-O-

sulfated Lewis X trisaccharide (suLeX). Here, we assessed the ability of these glycans to

regulate sperm Ca2+ influx, capacitation and affect sperm lifespan. After 24 h, the viability of

sperm bound to immobilized bi-SiaLN and suLeX was higher (46% and 41% respectively)

compared to viability of free-swimming sperm (10–12%). Ca2+ is a central regulator of

sperm function so we assessed whether oviduct glycans could affect the Ca2+ influx that

occurs during capacitation. Using a fluorescent intracellular Ca2+ probe, we observed that

both oviduct glycans suppressed the Ca2+ increase that occurs during capacitation. Thus,

specific oviduct glycans can regulate intracellular Ca2+. Because the increase in intracellular

Ca2+ was suppressed by oviduct glycans, we examined whether glycans affected capacita-

tion, as determined by protein tyrosine phosphorylation and the ability to undergo a Ca2+ ion-

ophore-induced acrosome reaction. We found no discernable suppression of capacitation in

sperm bound to oviduct glycans. We also detected no effect of oviduct glycans on sperm

motility during capacitation. In summary, LeX and bi-SiaLN glycan motifs found on oviduct

oligosaccharides suppress the Ca2+ influx that occurs during capacitation and extend sperm

lifespan but do not affect sperm capacitation or motility.

Introduction

In a variety of mammals [1–7], birds, reptiles and amphibians [8–10], after mating sperm are

stored in a portion of the female reproductive tract, called the sperm reservoir. The functional

sperm reservoir in the mammalian lower oviduct, known as the isthmus, regulates sperm
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function and extends cell viability, traits necessary for high fertility in species like swine in

which semen deposition and ovulation are not always well synchronized [11–13]. Upon semen

deposition into the female tract, a sperm subpopulation is transported to the isthmus, where

the sperm attaches to epithelial cells until unidentified cues trigger their gradual release

towards the ampulla, the fertilization site [2,6]. Sperm binding to epithelial cells regulates

sperm function by suppressing sperm motility and prolonging sperm lifespan [14,15]. Sperm

binding to the oviduct is believed to be mediated by oviduct carbohydrates [6,16] and the par-

ticular adhesion molecules involved in the formation of the sperm reservoir may be species-

specific [6,17–19]. The binding of lectin-like receptors on the sperm head to isthmic cell gly-

cans regulates the succession of changes necessary for fertilization, collectively known as

sperm capacitation [13,20,21].

During capacitation, plasma membrane potential and ionic transport are altered [22–25],

protein phosphorylation is modified [26,27], and there is an efflux of plasma membrane cho-

lesterol [28–30]. Intracellular free Ca2+ is central to sperm function in preparation for fertiliza-

tion [23,25,31,32]. Ca2+ influx is necessary for sperm to hyperactivate and ascend beyond the

oviduct isthmus to fertilize eggs; failure results in infertility in mice [33,34]. Along with

HCO3
-, Ca2+ can activate in sperm a soluble adenylyl cyclase (sAC) [35]. The product of sAC,

cyclic AMP, activates protein kinase A leading to phosphorylation of a series of proteins [36],

although there is also evidence that Ca2+ influx occurs after activation of the protein kinase A

pathway [37]. It has been proposed that the maintenance of low intracellular Ca2+ during the

period of adherence to the oviduct epithelium delays capacitation and extends viability, but

the mechanism by which this is accomplished is unclear [20,38–40] Regardless, it is clear that

the behavior of sperm in the oviduct is heavily dependent on Ca2+.

The glycan components that bind sperm and may be responsible for regulating sperm

behavior in the oviduct are not completely clear. Although there is considerable evidence that

glycans function in cell adhesion [41], it is not known if glycan-mediated adhesion regulates

cell function. A glycan array screening of hundreds of specific glycans indicated that all glycans

that bound porcine sperm with high affinity contained two motifs, either a biantennary 6-sia-

lylated N-acetyllactosamine (bi-SiaLN) structure or a Lewis X trisaccharide (LeX) [42,43].

Because these sugars are at least partially involved in sperm binding to porcine isthmic epithe-

lial cells, we hypothesized that oviduct glycoproteins regulate sperm Ca2+ influx, motility, acro-

some reaction and life span.

Materials and methods

Collection and processing of sperm

Several media were used for these experiments. The medium used when sperm capacitation

was desired was dmTALP (2.1 mM CaCl2, 3.1 mM KCl, 1.5 mM MgCl2, 100 mM NaCl, 0.29

mM KH2PO4, 0.36% lactic acid, 26 mM NaHCO3, 0.6% BSA, 1 mM pyruvic acid, 20 mM

HEPES pH 7.3, 10 U/ml penicillin, 10 μg/ml streptomycin) as described [43]. The medium

used when capacitation was not desired lacked BSA and NaHCO3 and was NC-TALP (2.1

mM CaCl2, 3.1 mM KCl, 1.5 mM MgCl2, 100 mM NaCl, 0.29 mM KH2PO4, 0.36% lactic acid,

0.6% polyvinyl alcohol, 1 mM pyruvic acid, 35 mM HEPES, [pH 7.3], sterile filtered) as

described [44].

Collection and processing of sperm

For each replicate, semen was collected by applying pressure to the glans penis from 3 to 5

mature Sus scrofa boars (Prairie State Semen, Inc., Champaign, IL). Approval from the Institu-

tional Animal Care and Use Committee was not necessary because semen was obtained from a
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commercial facility. Semen was extended in BSA-free Preserv Xtra (Reproquest, Fitchburg,

WI), cooled to 17˚C, transported to the laboratory, and processed within 24 h. The extended

semen was pooled and 3 ml were washed through a Percoll cushion containing 4 ml of

NC-TALP, 0.6 ml of 10X HBS (1.3 M NaCl, 40 mM KCL, 10 mM CaCl2, 5mM MgCl2, 140

mM fructose, 5% BSA, sterile filtered), and 5.4 ml of Percoll for 10 min at 800 x g. The resulting

pellet was re-suspended in 5 ml of NC-TALP and centrifuged for 3 min at 600 x g. Sperm con-

centration was estimated by hemocytometer and only samples with greater than 80% motile

sperm were used for experiments.

Sperm binding to glycan coupled to beads and viability assay

Glycan-coated streptavidin-Sepharose High-Performance beads (GE Healthcare Bio-Sciences,

Pittsburgh, PA, an average diameter of 34 μm) were used to test the ability of bi-SiaLN and LeX

glycan residues to extend the lifespan of non-capacitated porcine sperm. To link glycans to

beads, approximately 60 μg of glycans [45] covalently attached to a biotinylated polyacrylamide

core were incubated with 20 μl of streptavidin-Sepharose beads for 90 min at room tempera-

ture. Each 30-kDa molecule of polyacrylamide had 20% glycan and 5% biotin, by molarity.

To prepare fibronectin-coated beads, fibronectin (FN, Sigma-Aldrich, St. Louis, MO) was

first biotinylated by incubating 45 μl of 10 mM biotin with 1 ml of a 1 mg/ml solution of FN,

both in PBS, pH 7.35. After incubation for 2 h at 5˚C, free biotin was removed using a desalting

spin column (2 ml Zeba Spin Desalting Column, 7K MW Cutoff, Thermo Scientific). The bio-

tinylated FN (60 μg) was incubated with 20 μl of streptavidin-Sepharose beads for 90 min at

room temperature as above for biotinylated glycans. Beads incubated with biotinylated FN or

glycans were washed twice in dmTALP and re-suspended in 100 μl of dmTALP. Once the gly-

can-coupled beads were ready for use, a 100 μl-droplet containing 2 x 105 sperm/ml was pre-

pared to receive 2 μl of glycan-coated beads. Non-capacitated sperm and beads were co-

incubated at 39˚C and collected for evaluation of viability at 0.5, 4, 8, 12, and 24 h.

The viability of bound sperm was determined using the LIVE/DEAD Sperm Viability Kit

(Life Technologies, Grand Island, NY). Live-cell stain SYBR14 at 100 nM and dead-cell stain

propidium iodide at 12 μM were incubated with sperm for 5 min at 39˚C. Subsequently,

sperm were observed by fluorescence microscopy using a 20X dry objective on a Zeiss Axios-

kop equipped with an Axiocam (Carl Zeiss, Thornwood, NY) using Zeiss filters 09 (Band pass

excitation BP 450–490 nm, beamsplitter FT 510 nm, emission LP 515) for SYBR14 and filter

15 (excitation BP 546/12, beamsplitter 580, emission LP 590) for PI. For each treatment, 10

beads were randomly selected in triplicate droplets and the total number of bound live and

dead sperm was enumerated. Some sperm aggregated together and could not be evaluated. For

each experiment, sperm bound to 10 beads in triplicate droplets were counted (triplicate drop-

lets in one experiment). So the total number of sperm evaluated in each replicated experiment

ranged from about 30 bound to the N-acetyllactosamine and suLeA beads to about 200 bound

to the suLeX and bi-SialLN beads. At least 100 free sperm for each treatment replicate were

also counted. Sperm that were self-agglutinated were not included in the counts. The experi-

ment was documented using AxioVision 4.5 software (Zeiss, Thornwood, NY).

Measurement of free Ca2+ influx in sperm populations

Intracellular Ca2+ in sperm populations at a final concentration of 5 x 106 sperm/ml was

assessed by a spectrofluorometric assay using the Ca2+ probe Fluo-4 as used before [46,47].

Fluo-4 AM was loaded into sperm for 30 min at room temperature at a final concentration of

4 μM and protected from light. After loading, sperm were treated with 40 μg soluble glycans

covalently attached to a 30-kDa polyacrylamide chain or the same volume of vehicle control
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(dmKRBT) were incubated at 39˚C and measurements were taken on aliquots every 30 min

for 90 min after glycan addition. To account for probe leaking and extrusion from cells, 8.4

mM EGTA was used to chelate extracellular Ca2+ just before each measurement. Some samples

were treated with 5 μM ionomycin as a positive control [48]. Ca2+ binding to Fluo-4 was

detected by argon-ion laser excitation at 494 nm and emission at 516 nm in a QuantaMaster

4CW fluorescence spectrophotometer (Photo Technology International, North Edison, NJ).

Assessing capacitation by evaluating sperm motility patterns

Motility of sperm bound to soluble glycans was assessed using the Hamilton Thorne Semen

Analysis CASA system (Hamilton Thorne, Beverly, MA, USA). Sperm were incubated with

40 μg of each soluble glycan (bi-SiaLN, suLeX, LN and suLeA; Fig 1) attached to a 30 kDa poly-

acrylamide chain at 39˚C in normal dmTALP and NC-TALP or in dmTALP or NC-TALP with-

out glycans as a control for 4 h. Hyperactivation was assessed by examining curvilinear velocity,

linearity, and amplitude of lateral head displacement [49]. For each experimental condition, 5

random fields were evaluated for a minimum total of 100 cells (in each field) in replicates.

Fig 1. Structures of glycans used. The glycans used in this study are presented showing composition and linkages.

The symbols that represent each monosaccharide are shown at the bottom of the figure. bi-SiaLN and LeX structures

are found in the oviduct. Lewis A trisaccharide is an isomer of LeX but does not bind porcine sperm and was used to

assess non-specific effects. The disaccharide N-acetyllactosamine is a component of both bi-SiaLN and Lewis

structures but it also does not bind sperm and was also used to measure non-specific effects.

https://doi.org/10.1371/journal.pone.0237666.g001
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Assessing capacitation by the ability to undergo an induced acrosome

reaction

Capacitation status of sperm incubated with soluble oviduct glycans (bi-SiaLN, suLeX, LN and

suLeA) was assessed by the ability to undergo a Ca2+ ionophore (A23187)-induced acrosome

reaction. Sperm were incubated with 40 μg of soluble glycans per ml at 39˚C in either dmTALP

or NC-TALP. Acrosome status was assessed on aliquots at 0, 2 and 4 h of incubation after addi-

tion of 5 or 10 μM A23187 and, 10 min later, Coomassie staining [50]. Briefly, sperm were

fixed, attached to microscope slides, and stained with Coomassie Blue G-250. A minimum of

200 sperm were examined for each treatment in each replicate.

Assessing capacitation by sperm protein tyrosine phosphorylation

Changes in sperm protein tyrosine phosphorylation during capacitation were assessed

using SDS-PAGE and immunoblotting. After washing, sperm concentration was adjusted

to 5 x 106 cells for each treatment and sperm were incubated in NC-TALP (negative control

for tyrosine phosphorylation), dmTALP (positive control for tyrosine phosphorylation),

and dmTALP containing 40 μg/ml of either bi-SiaLN, suLeX, LeX, LN, suLeA or LeA (Fig 1).

Sperm were incubated at 39˚C with the soluble oviduct glycans and aliquots were collected

at 0, 2 and 4 h. At each time point, aliquots were centrifuged at 13,000 x g for 5 min at 4˚C.

The supernatant was discarded, and the pellet was re-suspended in ice-cold Nonidet-P40

Lysis Buffer (150 mM NaCl, 50 mM Tris, pH 8.0, and 1% NP-40) containing 0.2 μM sodium

orthovanadate, in addition to a protease inhibitor cocktail containing AEBSF, bestatin, E-

64, pepstatin A, phosphoramidon, and leupeptin (Millipore-Sigma, St. Louis, MO). After

homogenization by repeated pipetting, the samples were boiled for 5 min and centrifuged at

13,000 x g for 5 min at 4˚C. The resulting supernatant was transferred to a fresh micro-cen-

trifuge tube containing 5% β-mercaptoethanol (final concentration) and boiled 5 min. Ali-

quots containing 5 x 106 sperm were diluted in 5X loading buffer (4% SDS, 20% glycerol,

0.1% bromophenol blue, 0.125 mM Tris HCl, pH 6.8), and loaded into a 4–20% gradient gel

(Thermo Fisher Scientific Inc., Waltham, MA). After electrophoresis, proteins were trans-

ferred to a nitrocellulose membrane. The membranes were blocked with 5% BSA and incu-

bated with primary antibody. Phosphotyrosine antibody (4G10, Millipore-Sigma, St. Louis,

MO) was used at 1:1000 dilution in TBST (20 mM Tris, 150 mM NaCl, 0.1% Tween 20) with

5% BSA. Membranes were washed in TBST and incubated with a polyclonal anti-mouse

IgG conjugated to HRP (BD Pharmingen, San Jose, CA) diluted 1:2000. After washing, the

membranes were incubated with a chemiluminescent peroxidase substrate (Thermo Fisher

Scientific Inc., Waltham, MA). Chemiluminescent signals were documented using an Ima-

geQuant LAS 4000 (GE Healthcare Bio-Sciences, Pittsburgh, PA). The primary antibody

was replaced with normal IgG as a control. Three independent biological replicates were

done for each treatment and time point.

Statistical analysis

Replicates were performed independently using semen pooled from different boars. At least 3

replicates were performed for each condition. Differences among means were determined

using a one-way analysis of variance in SAS (v. 9.1 SAS Institute, Inc, Cary, NC). The results

are shown as means ± SEM and the means were considered to belong to distinct populations if

P< 0.05 using Tukey’s test for multiple comparisons.
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Results

Binding to bi-SiaLN and LeX glycans enhances sperm viability

Sperm storage in the oviductal isthmus delays sperm capacitation and lengthens sperm lifespan,

increasing the opportunity for ovulated oocytes to be fertilized [14,38]. Sperm bind to specific gly-

cans on the isthmic epithelium but whether glycan-binding alone could lengthen sperm lifespan

was unknown. We tested the direct influence of individual oviduct glycans that bind porcine

sperm, bi-SiaLN and LeX structures, and related controls (Fig 1) on sperm viability over 24 h

under capacitating conditions (e.g., dmTALP containing BSA, Ca2+, and HCO3
-). We used gly-

cans attached to a 30-kDa polyacrylamide chain, so-called neoglycoproteins, to mimic the multi-

valency common in glycoproteins. These glycans were attached to agarose beads to make them

insoluble, resembling their attachment to oviduct epithelial cells. Following incubation of sperm

with beads and gentle washing, some sperm remained bound to bi-SiaLN, suLeX and fibronectin

(FN) bound to beads but not to LN-beads, a disaccharide found in both suLeX and bi-SiaLN and

used as a control (Fig 2A, LN not shown). Binding to bi-SiaLN increased the percentage of viable

sperm 2 to 3.5-fold from 8 to 24 h, when compared to free-swimming sperm (Fig 2B, P<0.05).

Although not as potent as bi-SiaLN, a biantennary oligosaccharide with N-acetyllactosamine ter-

mini (bi-LN; same as bi-SiaLN except lacking sialyl residues), which binds fewer sperm [43], still

induced a 1.7, 1.9, and 3.2 fold increase in viability at 8, 12, and 24 h, respectively, compared to

free sperm (P<0.05). Sulfated suLeX also extended sperm lifespan during 4–24 h incubation in
vitro (Fig 2C). Compared to free-swimming sperm, suLeX promoted a 1.3, 2, 3.2, and 4.4-fold

increase in viability at 4, 8, 12, and 24 h, respectively (P<0.05). The increase in viability was not

due only to tethering of a sperm because when fibronectin was linked to the agarose beads and

then incubated with sperm, although a high number of sperm bound to the beads, fibronectin

did not increase sperm lifespan to the same degree as glycan-bound beads (Fig 2A; P<0.05). The

increase in viability was not because moribund sperm were released from the glyco-beads. The

number of sperm bound to any of the glyco-beads did not change significantly over 24 h, demon-

strating that the percentage of viable sperm was not affected by the release of moribund sperm

(Fig 3). Therefore, oviduct glycans that bound sperm prolonged sperm lifespan.

Sperm binding to bi-SiaLN and LeX suppresses Ca2+ influx

Previous studies indicated that binding to the oviduct regulated sperm intracellular Ca2+ [20,31].

Limiting Ca2+ entry into sperm may lengthen sperm lifespan by delaying capacitation [39].

Using spectrophotometry and a semi-quantitative analysis, we determined if oviduct glycan

binding influenced intracellular free Ca2+ in sperm using Fluo-4, a Ca2+-sensitive reporter.

Because sperm bound to agarose beads would pull sperm to the bottom of the cuvette quickly,

we used neoglycoproteins (glycans linked to the 30 kDa soluble polyacrylamide chain) for this

experiment. Although there was no difference in the first 60 min, control sperm showed a grad-

ual, albeit non-significant, increase in intracellular free Ca2+ (P>0.10). By 90 min of incubation,

glycans that bound sperm, bi-SiaLN, LeX, and suLeX were able to suppress completely the

increase in intracellular free Ca2+ in sperm (Fig 4; P<0.05). In fact, in the presence of bi-SiaLN,

LeX, and suLeX, there was less intracellular Ca2+ at 90 min than at 0 min. The presence of bian-

tennary structure and a sialyl residue attached to the 6-position of each galactosyl residue in bi-

SiaLN, which are required for maximum sperm binding [43], were also necessary for the delay in

the Ca2+ increase because the disaccharide, N-acetyllactosamine, did not affect Ca2+ (P>0.10).

Furthermore, the positional isomers of LeX and suLeX, Lewis A (Galβ1-3(Fucα1–4)GlcNAc) and

sulfated Lewis A (3’-(O-SO3)Galβ1-3(Fucα1–4)GlcNAc) had no effect on intracellular Ca2+

(P>0.10). Thus, very specific structures were required for glycans to affect intracellular Ca2+.
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Fig 2. Sperm binding to immobilized bi-SiaLN and suLeX glycans lengthens lifespan. Sperm were incubated with

biantennary 6-sialylated N-acetyllactosamine oligosaccharide (bi-SiaLN), biantennary N-acetyllactosamine

terminating oligosaccharide (bi-LN), 3-O-sulfated Lewis X trisaccharide (suLeX), 3-O-sulfated Lewis A trisaccharide

(suLeA), or fibronectin (FN) coupled to beads. Free-swimming sperm were used as controls. A) Representative photos

of sperm stained with SYBR14 (green, live) and propidium iodide (red, dead) after 8 hr of incubation showing free-

swimming sperm in medium, sperm bound to suLeX, bi-SiaLN, or fibronectin (FN) coupled to beads. Scale bar in

lower left panel indicates 20 μm. B) Enumeration of the percentage of live (SYBR14+, propidium iodide-) free-

swimming sperm or sperm bound to bi-SiaLN, bi-LN, or FN on beads. C) Sperm incubated with suLeX coupled to

beads. Sperm that were bound to biantennary glycans with or without sialic acid residues on N-acetyllactosamine or

bound to suLeX maintained higher viability than free-swimming sperm and sperm bound to FN-coated beads. The

asterisks represent significant differences from free-swimming sperm (P< 0.05). These results are means and SEM

from 3–5 experiments.

https://doi.org/10.1371/journal.pone.0237666.g002
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Assessing capacitation by evaluating sperm motility patterns, protein

tyrosine phosphorylation, and induced acrosome reaction

Intracellular free Ca2+ influences many sperm behaviors such as the development of hyperacti-

vated motility, sperm protein tyrosine phosphorylation and the ability to response to acrosome

Fig 3. Most sperm remained bound to immobilized oviduct glycans for 24 h. Sperm were incubated with beads

coupled with biantennary 6-sialylated N-acetyllactosamine oligosaccharide (bi-SiaLN), biantennary N-

acetyllactosamine terminating oligosaccharide (bi-LN), 3-O-sulfated Lewis X trisaccharide (suLeX), 3-O-sulfated Lewis

A trisaccharide (suLeA), or N-acetyllactosamine (LN). The number of bound sperm per bead was counted at time

points over 24 h. There was a slight decline in the number of bound sperm only in the sperm bound to bi-LN coated

beads (P<0.05). Therefore, the number of live sperm bound to the beads was not affected significantly by a release of

moribund sperm from the beads.

https://doi.org/10.1371/journal.pone.0237666.g003

Fig 4. Soluble bi-SiaLN and LeX glycans suppress intracellular Ca2+ increase during porcine sperm capacitation. Fluo-4 loaded sperm were incubated with

biantennary 6-sialylated N-acetyllactosamine oligosaccharide (bi-SiaLN), 3-O-sulfated Lewis X trisaccharide (suLeX), 3-O-sulfated Lewis A trisaccharide (suLeA), LeX, LeA,

and N-acetyllactosamine (LN) and spectrofluorometric readings were taken for 90 min. The intensity of the fluorescent signal (photons per second) is related in

intracellular Ca2+ concentration. Sperm incubated with bi-SiaLN, LeX and suLeX displayed a suppression in the Ca2+ influx that normally accompanies capacitation, as

seen in the control group. Statistical differences (P< 0.05) compared to the control are labelled by an asterisk. These results are means and SEM from 3–5 experiments.

https://doi.org/10.1371/journal.pone.0237666.g004
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reaction inducers [51]. CASA observation of sperm motility parameters incubated with soluble

oviduct glycans showed no changes when compared with controls (Table 1). Binding to ovi-

duct glycans did not delay hyperactivation in sperm or affect any sperm kinematics.

Tyrosine phosphorylation of a 32 kDa sperm protein was used as an assessment of capacita-

tion [52]. Phosphorylation of sp32 in porcine sperm is increased during a 4.5 h capacitation

time, although sp32 phosphorylation is not completely diagnostic of capacitation because it

increases in medium without HCO3
- that does not capacitate sperm [53]. Tyrosine phosphory-

lation of sp32 was increased after a 4 hr incubation of sperm in capacitating conditions and

also in the absence of BSA and HCO3
- (Fig 5), in agreement with previous results [53]. This

increase was not affected by addition by either of the soluble oviduct glycans or controls.

As the acrosome reaction requires sperm to be capacitated, we expected that if oviduct gly-

cans delayed capacitation, a delay in the induced acrosome reaction (a decrease in intact acro-

somes) would follow, as previously published in porcine sperm [53]. Addition of either 5 μM

or 10 μM of Ca2+ ionophore (A23187) decreased the number of sperm with intact acrosomes

when added at either 2 h or 4 h (Fig 6A and 6B, respectively). When soluble glycans were

added to sperm during the entire incubation, the addition of A23187 at 2 h and 4 h of incuba-

tions, oviduct glycans did not affect the acrosome reaction induced by either concentration of

A23187) (Fig 6).

Sperm were incubated in capacitating dmTALP (C), NC-TALP (NC), C with 3-O-sulfated

Lewis X trisaccharide (suLeX), C with biantennary 6-sialylated N-acetyllactosamine oligosac-

charide (bi-SiaLN), C with 3-O-sulfated Lewis A trisaccharide (suLeA), and C with N-acetyllac-

tosamine (LN). Path velocity (VAP) μm/sec, progressive velocity (VSL) μm/sec, track speed

(VCL) μm/sec, amplitude of lateral head displacement (ALH) μm, beat cross frequency (BCF)

Hz. Results are means and SEM from 3–5 experiments.

Discussion

Formation of a sperm reservoir in vivo requires sperm binding to oviductal cells of the lower

oviduct or isthmus. Binding to oviductal cells lengthens sperm lifespan and suppresses Ca2+

influx [39,40]. Previously, the oviduct cell components that mediated these functional out-

comes on sperm were unknown. It was also not clear whether the sperm-oviduct adhesive

molecules might have additional roles in regulating sperm function. The current study showed

that oviduct glycan motifs on the luminal epithelium of the isthmus, both bi-SiaLN and suLeX,

regulate sperm intracellular Ca2+ concentration and lengthen sperm lifespan. In contrast, we

found no evidence that binding to oviduct glycans affects sperm capacitation or development

of hyperactivated motility. Nevertheless, adhesion to oviduct glycans is responsible for at least

two outcomes of sperm interaction with oviduct cells.

The effect of glycan binding on the suppression of Ca2+ influx was very specific. Under nor-

mal capacitating conditions in vitro, the gradual rise in cytosolic Ca2+, an altered pattern of fla-

gellar beating and plasma membrane destabilization occur in preparation for the acrosome

reaction [54]. Here, we show that at the end of 90-min capacitation time, bi-SiaLN and LeX

(sulfated and non-sulfated forms) not only blocked the normal Ca2+ influx associated with

capacitation but actually reduced intracellular Ca2+ below the concentration found at the

beginning of capacitation. In contrast, LeA, a positional isomer of LeX, and LN, a disaccharide

that lacks N-acetylneuraminic acid and is not multivalent, did not affect Ca2+ entry. These gly-

cans that did not affect intracellular Ca2+ also do not bind sperm [42,43]. Regulation of intra-

cellular Ca2+ by the oviduct is key to fertility, particularly in species in which fertilization and

ovulation are poorly synchronized [13,19]. Binding to oviduct glycans may prevent premature

capacitation. Once capacitated, unless the sperm is near an egg, its fate is death; fertility is
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maximized if capacitation is completed near the time a sperm encounters the egg [14,51,54].

Our data demonstrate that sperm binding to glycans on the epithelium of the oviduct isthmus

controls the influx of Ca2+, which we propose allows proper timing of sperm capacitation for

maximal fertility [23,31,55]. However, we did not observe an effect of oviduct glycans on

hyperactivated motility or two other measures of capacitation, sperm sp32 tyrosine phosphor-

ylation or the ability to undergo an induced acrosome reaction.

Although tyrosine phosphorylation of most proteins found in porcine sperm is unchanged

during capacitation, phosphorylation of sp32 is increased during capacitation time if extracel-

lular Ca2+ is present [53]. This increase in sp32 tyrosine phosphorylation was reported to

occur in the absence of NaHCO3 and BSA [53] and our data were consistent with that result

because sp32 tyrosine phosphorylation increased during incubation time in medium lacking

NaHCO3 and BSA but with 2 mM Ca2+ (Fig 5). Notwithstanding that increased tyrosine phos-

phorylation does not necessarily demonstrate that capacitation has been completed, because

extracellular Ca2+ is required for increased sp32 phosphorylation, we anticipated that if the

increase in intracellular Ca2+ were suppressed, sp32 would be diminished. But sp32 tyrosine

phosphorylation was not affected by oviduct glycans. Similarly, soluble oviduct glycans did not

affect motility, as evaluated by CASA. The development of hyperactivated motility, as observed

by changes in VCL, VSL, VAP, linearity, straightness, ALH, and BCF, is associated with capac-

itation [56,57]. However, these motility characteristics were unchanged by soluble glycans.

Furthermore, the ability of sperm to respond to A23187 with acrosome reactions, a measure

used to assess capacitation of porcine sperm [53], was not affected by addition of soluble ovi-

duct glycans. One possible explanation is that the oviduct glycans must be immobilized by

cells or beads to affect capacitation; however, soluble glycans suppressed the increase in intra-

cellular Ca2+. An alternative possibility is that capacitation includes many different processes

including some that are independent of each other, and those we examined happen to be

among those that were unchanged. Regardless, the assessments of capacitation we used, which

are common assessments, were not affected by soluble glycans.

Direct membrane contact between spermatozoa and epithelial cells of the isthmus is neces-

sary to regulate Ca2+ entry, capacitation, minimize oxidative damage and maintain sperm via-

bility over extended periods and improving in vitro fertilization success of sperm released

from oviduct cells [20,38,39,58]. The carbohydrate interactions studied in this work are at least

partially responsible for sperm adhesion to the oviduct and indicate that bi-SiaLN and LeX

each regulate porcine sperm viability. Viability was tested over a 24 h-period using agarose

beads coated with specific glycans as binding matrices. The effect of glycan binding on sperm

Table 1. Sperm motility parameters after 4 h incubation with soluble suLeX, bi-SiaLN, or without glycans.

Motility Parameters after 4 h C NC suLeX bi-SiaLN suLeA LN

Motility % 41.2 ± 7.8 38.8 ± 7.4 41.8 ± 8.6 41.2 ± 8.7 47.6 ± 8.5 44.0 ± 8.6

Progressive cells % 21.0 ± 5.6 14.2 ± 3.2 16.4 ± 3.8 18.6 ± 4.9 22.8 ± 4.8 15.6 ± 3.5

Rapid cells % 29.6 ± 5.7 24.7 ± 4.5 26.6 ± 5.3 27.8 ± 6.5 33.2 ± 6.0 29.4 ± 6.6

(VAP) um/sec 68.7 ± 3.3 57.0 ± 5.1 66.1 ± 6.3 69.0 ± 5.3 68.3 ± 1.8 65.2 ± 4.8

(VSL) um/sec 40.6 ± 3.1 31.3 ± 2.9 36.5 ± 2.6 39.7 ± 3.5 41.4 ± 1.45 37.3 ± 3.9

(VCL) um/sec 150.2 ± 6.7 128.8 ± 9.4 151.8 ± 3.2 155.1 ± 9.6 150.4 ± 3.2 145.8 ± 8.3

(ALH) um 7.9 ± 0.18 7.5 ± 0.4 8.4 ± 0.3 8.5 ± 0.2 8.0 ± 0.27 7.6 ± 0.2

(BCF) Hz 37.6 ± 0.9 37.0 ± 1.7 38.8 ± 0.6 36.0 ± 0.8 37.1 ± 0.4 37.6 ± 0.8

Straightness % 56.6 ± 3.5 54.4 ± 1.9 53.8 ± 2.5 54.8 ± 2.3 57.8 ± 2.7 54.2 ± 2.8

Linearity % 27.8 ± 1.4 25.0 ± 0.5 24.8 ± 1.1 26.0 ± 1.6 31.0 ± 3.1 29.4 ± 3.1

Static cells % 50.0 ± 8.1 54.6 ± 8.3 46.4 ± 10.0 49.6 ± 9.1 43.4 ± 8.2 47.4 ± 8.7

https://doi.org/10.1371/journal.pone.0237666.t001
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Fig 5. Sperm protein tyrosine phosphorylation increases during capacitation but is not affected by oviduct

glycans. SDS-PAGE and immunoblotting with a monoclonal phosphotyrosine antibody (4G10) to detect specific

phosphotyrosine-containing proteins showed no differences in the sperm incubated with soluble oviduct glycans when

compared to controls at A) 0 h or B) 4 h of incubation for capacitation. An arrow indicates the migration of sp32, a

sperm protein that is phosphorylated on tyrosine residues as sperm are incubated in capacitating conditions.

Capacitating dmTALP (C), non-capacitating dmTALP (NC), C with 3-O-sulfated Lewis X trisaccharide (suLeX), C

with biantennary 6-sialylated N-acetyllactosamine oligosaccharide (bi-SiaLN), C with 3-O-sulfated Lewis A

trisaccharide (suLeA), C with N-acetyllactosamine disaccharide (LN), Ladder (LD) and control without primary

antibody (Cont), n = 3.

https://doi.org/10.1371/journal.pone.0237666.g005
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Fig 6. Oviduct glycans do not affect capacitation, as assessed by the ionophore-induced acrosome reaction. Sperm were incubated in capacitating

medium dmTALP (C), non-capacitating medium NC-TALP (NC), C with 3-O-sulfated Lewis X trisaccharide (suLeX), C with biantennary 6-sialylated N-

acetyllactosamine oligosaccharide (bi-SiaLN), C with 3-O-sulfated Lewis A trisaccharide (suLeA), C with N-acetyllactosamine disaccharide (LN), all with

A23187, C without A23187 (Cont-C) and NC without A23187 (Cont-NC). The acrosome reaction was induced by two concentrations of Ca2+ ionophore
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viability was clear as soon as 4 and 8 h of incubation with suLeX and bi-SiaLN coated beads,

respectively. The prolonged viability may be due to suppression of the Ca2+ influx. Sperm

binding to the isthmic epithelium delays capacitation [38] and lengthens sperm fertilizing abil-

ity [40], perhaps by suppressing the Ca2+ influx associated with capacitation. The time course

of the Ca2+ measurements was much different than the viability measurements. Due to leakage

of Fluo-4 from the cells, we were unable to make accurate measurements of intracellular Ca2+

over longer time intervals. But the glycans that suppressed Ca2+ influx at 90 min were also the

glycans that extended sperm lifespan as late as 24 h.

The increase in sperm lifespan had two components. The first component was an increase

in sperm lifespan by simply anchoring sperm to a bead, exemplified by sperm binding to fibro-

nectin-coated beads. There was a significant increase in viability compared to free-swimming

sperm. The second component was glycan dependent. An even higher percentage of sperm

bound to beads coated with bi-SiaLN and LeX were alive after up to 24 h. Although immobiliz-

ing sperm on fibronectin or glycan coated beads improved their lifespan (Fig 2), glycans that

were not immobilized were still able to suppress the increase in Ca2+ (Fig 4). Thus, soluble gly-

cans have the ability to regulate sperm function.

One hypothesis to explain the increased lifespan in glycan-bound sperm is that some

unidentified growth factors that lengthen sperm lifespan might be bound to the glycans in the

same way that growth factors bind and are stabilized by proteoglycans [59]. However, the gly-

cans we used are not related to glycosaminoglycans, the glycans commonly found on proteo-

glycans. Furthermore, prior to binding to beads, sperm are washed extensively in a medium

lacking protein except BSA. Thus, a direct effect of the glycan ligand binding to unknown

receptors seems more likely. A rational exploration of the biological effects of binding to gly-

can receptors awaits identification of these receptors.

This study shows that oviduct LeX and bi-SiaLN glycans suppressed the influx of Ca2+and

extended sperm viability. This suggests that binding to specific components of the extracellular

matrix can lengthen the lifespan of a cell normally in suspension, like sperm. Although there is

much information about how the extracellular matrix affects cell behavior [27,60], to our

knowledge, these data are the first to demonstrate that adhesion specifically to a glycan matrix

can affect the viability of sperm or any other cells and can influence intracellular Ca2+.
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