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Background: There is growing evidence linking low blood vitamin D concentration to numerous diseases in people and in dogs. Vitamin

D influences cellular function by signaling through the vitamin D receptor (VDR). Little is known about which non-skeletal tissues

express the VDR or how inflammation influences its expression in the dog.

Objectives: To define which non-skeletal canine tissues express the VDR and to investigate expression in inflamed small intestine.

Animals: Thirteen non-skeletal tissues were collected prospectively from 6 control dogs. Thirty-five dogs diagnosed with a chronic

enteropathy (CE) and 24 control dogs were prospectively enrolled and duodenal biopsies were evaluated for VDR expression.

Methods: Prospective; blinded assessment of canine intestinal VDR. Dogs with CE were included once other identifiable causes of

intestinal disease were excluded. Age matched controls were included with no intestinal clinical signs. VDR expression was assessed

immunohistochemically in all samples, using a Rat IgG VDR monoclonal antibody. Quantitative real-time polymerase chain reaction

(qPCR) was also used for duodenal biopsies.

Results: VDR expression as assessed by immunohistochemistry (IHC) was highest in the kidney, duodenum, skin, ileum and spleen, and

weak in the colon, heart, lymph node, liver, lung, and ovary. Gastric and testicular tissue did not express the VDR. There was no

statistical difference in duodenal VDR expression between the 24 healthy dogs and 34 dogs with CE when quantified by either qPCR

(P 5 0.87) or IHC (P 5 0.099).

Conclusions and Clinical Importance: The lack of down regulation of VDR expression in inflamed intestine contrasts with previous

studies in humans. Our findings support future studies to investigate whether vitamin D and its analogues can be used to modulate

intestinal inflammation in the dog.
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V itamin D exerts its metabolic effects largely through

signaling via the vitamin D receptor (VDR). Numerous

cell types express the VDR,1–3 a ligand activated transcrip-

tion factor, which is specific for and activated by binding 1,

25 dihydroxyvitamin D (1,25(OH)2D) and other vitamin D

metabolites. The cytoplasmic VDR then translocates to the

nucleus before heterodimerization with a retinoid X receptor

(RXR), after which the heterodimer binds to vitamin D

response elements. Finally, this binding results in recruit-

ment of various other nuclear proteins into a transcriptional

complex.4 This complex initiates and regulates the rate

of transcription of target genes by Ribonucleic acid

(RNA)-polymerase II.5 There are also several recognized

non-genomic actions of 1,25(OH)2D that are reported to be

facilitated by a different receptor,6 such as elevation of

cyclic guanosine monophosphate levels, activation of pro-

tein kinase C and increases in intracellular calcium levels.7

The binding of 1,25(OH)2D to the VDR can influence a

wide range of biological effects including cellular differen-

tiation, proliferation, and phenotypic changes.8,9 While the
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Abbreviations:

25(OH)D 25 hydroxyvitamin D

1,25(OH)2D 1, 25 dihydroxyvitamin D

ACTB actin beta

cDNA complementary deoxyribonucleic acid

CE chronic enteropathy

CIBDAI canine inflammatory bowel disease activity index

CLD2 claudin 2

CYP24A1 1,25-dihydroxyvitamin D3 24-hydroxylase

CYP27B1 25-hydroxyvitamin D3 1-alpha-hydroxylase

ECAD E-cadherin

GAPDH glyceraldehyde 3-phosphate dehydrogenase

IBD inflammatory bowel disease

IgG immunoglobulin G

IHC immunohistochemistry

Log2RQ log2 transformed relative quantification data

OS overall score

PLE protein losing enteropathy

PTH parathyroid hormone

QPCR quantitative real-time polymerase chain reaction

REST relative expression software tool

RNA ribonucleic acid

RXR retinoid X receptor

SDHA succinate dehydrogenase complex subunit A

TBST tris buffered saline tween

VDR vitamin D receptor

WSAVA World Small Animal Veterinary Association
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traditional roles of vitamin D have focused on its role in the
maintenance of skeletal health, the non-skeletal roles of
vitamin D have been intensively investigated over the last
30 years since the discovery that VDR was expressed by a
wide range of cell types. For example, many studies have
found an association between low serum concentrations of
25 hydroxyvitamin D (25(OH)D) and the development
and progression of various diseases in humans.10–12 These
include hypertension, diabetes, cancer, cardiovascular dis-
eases, autoimmune conditions, and infectious diseases, as
well as Crohn’s disease and ulcerative colitis,13,14 which are
both forms of inflammatory bowel disease (IBD).

The non-skeletal effects of vitamin D have only recently
been investigated in companion animals.15 Serum 25(OH)D
concentrations are lower in dogs with several chronic and
inflammatory diseases including spirocercosis,16 congestive
heart failure,17 renal disease,18 cancer,19 and dogs with a
chronic enteropathy (CE) and a protein losing enteropathy
(PLE).20–22 Despite the associations between vitamin D
status and numerous health outcomes in dogs, knowledge
about the non-skeletal effects of vitamin D remain poorly
explored in companion animals. Specifically, it remains
unclear which canine cell types express VDR and which
factors influence the expression of VDR. The aim of this
study was therefore to establish which non-skeletal tissues
express the VDR in dogs. We also aimed to investigate how
the expression of VDR changes in response to inflamma-
tion, using the canine duodenum as our study organ.

Method

Healthy Control Dog Population and Sample
Procurement

This study was approved by the University of Edinburgh Veterinary

Ethical Review Committee. Client consent was obtained for any clinical

material to be stored for future research or teaching purposes. Client

consent was also obtained for post euthanasia body donation when

applicable. Material for non-skeletal tissue expression of the VDR was

collected from 6 healthy dogs that were euthanized for non-health

related reasons. Thirteen non-skeletal tissues were collected from these

6 dogs; stomach, duodenum, ileum, colon, skin, kidney, spleen, liver,

mesenteric lymph node, heart, lung, and either ovary or testicle. All

samples from cadavers were collected within 30 minutes of euthanasia

to reduce the impact of autolysis. These samples were formalin fixed

and paraffin wax-embedded blocks were made using standard methods.

Immunohistochemistry

Four micron thick sections were cut and dried overnight at 378C on

Superfrost Ultra Plus slides,a and then at 608C for 25 minutes. After rehy-

dration with xylene and absolute ethanol the slides were rinsed with tris

buffered saline tween (TBST). Antigen retrieval was performed by

immersion in 0.01 M citrate acid, pH 6.0, or high pH bufferb (H-3300) at

1108C for 5 minutes (12 minutes total heat time). Slides were then cooled

for 5 minutes in running water. This was followed by rising in TBST.

Sections were incubated overnight at 48C with and without the primary

antibody (Table 1), and negative controls were made with an isotype con-

trol primary antibody (Table 1). Validation and evaluation of the optimal

concentration of each primary antibody was performed using serial anti-

body dilutions on the respective positive controls. Following incubation

with the primary antibody, endogenous peroxidases were blocked with

Dako REAL blocking solution (Agilent S2023)h for 10 minutes. The fol-

lowing secondary reagents and times were used: ImmPRESS anti rat

HRP mouse (MP-7444),b 15 minutes at room temperature, Envision anti

rabbit HRP (Agilent K4011)h or Envision anti mouse HRP (Agilent

K4007),h 40 minutes at room temperature depending on the primary anti-

body. After each incubation step, the sections were rinsed in TBST 3

times. Visualization was performed using DAB and Chromogen (Agilent

K3468)h for 10 minutes. The sections were counterstained with Harris

hematoxylin for 20 seconds, dehydrated and mounted using ClearVue

mountant.a Immunohistochemistry (IHC) for each antibody was per-

formed in batches of between 15 and 20 and a known positive tissue sec-

tion was incorporated into each staining run.

Chronic Enteropathy and Control Dog Population and
Sample Procurement

For the second aspect of the study, a comparison of dogs with CE and

control dogs, 2 populations were enrolled for assessment of duodenum,

as this was previously shown to express VDR.23 Control dogs for this

aspect of the study, were prospectively enrolled between 2013 and 2016

if they were being euthanized for non-gastrointestinal related reasons and

owners had given consent for body donation for research and teaching.

Inclusion criteria were as follows: no recent history of gastrointestinal

clinical signs, a negative fecal parasite analysis, and no recent medica-

tions. Full thickness samples from the duodenum were collected for his-

tology (formalin fixed) and endoscopic biopsy forceps were used to

collect samples from the duodenum for gene expression (RNALater).i

Client owned dogs with CE were enrolled prospectively over the same

period. For inclusion into the study dogs were required to have clinical

signs for at least 4 weeks, with all other causes of intestinal inflammation

excluded through standard examinations (hematology, biochemistry,

fecal analysis, abdominal ultrasound, endoscopy, and histology). For

each dog, details were also recorded to determine the canine inflamma-

tory bowel disease activity index (CIBDAI) score.24 Dogs were excluded

if they had been treated with glucocorticoids within 4 weeks of the proce-

dure. Gastrointestinal endoscopy was performed as standard and biopsy

samples were fixed in formalin and submitted for histopathological

assessment for diagnostic purposes. At the time of endoscopy, a biopsy

sample was also stored in RNALater.i These samples were agitated at

48C for up to 24 hours and then stored at 2808C until batch RNA extrac-

tion. Histopathology of all samples, control, and affected, was reviewed

by a single pathologist. Classification and scoring were performed based

on criteria previously published by the World Small Animal Veterinary

Association (WSAVA).25,26 This score consisted of a standard

Table 1. The primary antibodies and isotype controls used in this study.

Antibody Antibody Name Antibody Type Dilution

VDR Purified Rat IgG2b (9A7)c Monoclonal Rat 1:8000

VDR Isotype Purified Rat IgG2b Isotype Control (RTK4530)d Isotype Control 1:100

ECAD Purified Mouse Anti-E-Cadherine Monoclonal Mouse 1:4000

ECAD Isotype Purified Mouse IgG2a j Isotype Controlf Isotype Control 1:100

CLD2 Rabbit anti-Claudin-2g Polyclonal Mouse 1:2000

CLD2 Isotype Rabbit IgG Isotype Controlh Isotype Control 1:100
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assessment of 4 types of infiltrating leukocytes (intraepithelial lympho-

cytes, lamina propria lymphocytes, neutrophils, and eosinophils) and 5

morphological features (crypt distention, lacteal dilatation, mucosal fibro-

sis, villous stunting, and epithelial injury), all scored from 0 to 3. This

numerical score was cumulated and a total score allocated to each dog,

alongside a categorical morphological diagnosis (normal, mild, moderate,

and marked inflammation).

Quantification of Immunoreactive Cells

All sections were analyzed by the same clinical pathologist (EM),

who was blinded to case details. Quantification of VDR immunolabel-

ing was performed by a semi-quantitive method similar to previously

described.27

Evaluating the entire section, the overall stain intensity was scored

from 0 to 3, with 0 5 no stain/weak, 1 5 moderate, 2 5 strong, and

3 5 very strong. The percentage of cells stained was also then evaluated

with 0 5 none to< 5%, 1 5< 25% of cells, 2 5 25–50% of cells,

3 5 51–75% of cells, 4 5>75% of cells stained. The total score per

sample was then calculated by intensity 3 percentage of cells, giving a

maximum range of the overall score (OS) of 0–12.

Duodenal samples from dogs with CE and control dogs were also

analyzed by IHC for 2 tight junction elements claudin 2 (CLD2) and E-

Cadherin (ECAD), as outlined in Table 1, which have been reported to

change with inflammation.28,29

The IHC for each antibody was scored according to the protocol

above. To ensure consistency, example images of each intensity score

for each antibody were used as a guide throughout the scoring process

and all slides were scored twice on different days. To also factor for

sample depth, the intestinal samples were allocated an additional sepa-

rate score for the villous tips, mid-villous region, and crypts. For forcep

biopsy samples, all biopsies on the sample slide were examined and

scores assigned for the slide as a whole. For the whole tissue samples

from healthy dogs, each tissue was scored for the tissue as a whole and

where staining was present in a particular cell type, nuclear, and cyto-

plasmic staining were recorded as present or absent.

Total Ribonucleic Acid Extraction and Reverse
Transcription

Total RNA for quantitative real-time polymerase chain reaction

(qPCR) analysis was isolated from the duodenal tissue by first homoge-

nizing the tissue with TRIzol.j A single biopsy was added with TRIzol

to a lyzing matrix D tubei and agitated at 4 m/s for 20 seconds with a

Precellys 24.j The mixture was incubated for 3 minutes with 1-Bromo-

3-chloropropane,k followed by centrifugation to elute the RNA. The

RNA from the homogenate was then extracted with a QIAGEN RNeasy

mini kitl per the manufacturer’s protocols. RNA concentrations from all

samples were measured on the NanoDrop ND-1000.m RNA purity was

assessed with the (A260/A280) value from the NanoDrop and by an

Agilent Tapestation 2100.n Synthesis of complementary deoxyribonu-

cleic acid (cDNA) was performed using the QIAGEN Omniscript

Reverse Transcription kitl per the manufacturer’s protocols. Briefly, a

master mix of deoxynucleotide (dNTP), RNase inhibitor, Omniscript

Reverse Transcriptase, RNAse-free water, a buffer solution and Oligo-

dT primero was added to each 1,000 lg of template RNA. These solu-

tions were then incubated at 378C. The product cDNA was stored at

2808C until qPCR reactions were performed in batches.

Quantitative Real-Time Polymerase Chain Reaction

Real-time qPCR experiments were performed in a Roche Light

Cycler 480p with a 12 mL reaction volume containing 4.5 mL cDNA,

1.25 mL primers, and 6.25 mL SYBR Green qPCR Master Mix. Reac-

tions were also performed without reverse transcriptase and without

template, using distilled deionized H2O to maintain volume to monitor

for contamination. A standard cycling program was used. Samples were

run at 508C for 2 minutes, 958C for 2 minutes, and then 40 cycles of

958C for 15 seconds followed by 608C for 30 seconds.

Primers for the VDR, 25-hydroxyvitamin D3 1-alpha-hydroxylase

(CYP27B1), ECAD, and CLD2 (Table 2) were designed by the Roche

primer design software based on canine sequences from the Ensembl

database as previously described,30 so that the predicted amplicon

would span exon-exon boundaries. The primers were assessed by Basic

Local Alignment Search Tool analysis (National Center for Biotechnol-

ogy Information). Sequences were tested with nucleic acid folding soft-

ware (OligoAnalyser 3.1) in concordance with MIQE guidelines.31

Primer sequences used for glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), actin beta (ACTB), and Succinate dehydrogenase complex

subunit A (SDHA) were previously described (Table 2).32,33

Specificity of the products was verified for each target and refer-

enced with gel electrophoresis showing a single product of the desired

length. In addition, a melting curve analysis was performed for each

reference and target.

Multiple reference genes were selected in line with available guide-

lines.34 Reference genes (Table 2) were selected based on previous evi-

dence of high expression within the canine duodenum.33 Analysis of the

reference genes’ relative expression levels by the relative expression soft-

ware tool (REST) (M. Pfaffl [Technical University Munich] and QIAGEN

http://www.gene-quantification.de/rest-2009.html) identified no significant

Table 2. Reference and target gene primer sequences and reaction efficiency.

Reference or Target Gene

Forward Primer (5030)
Reverse Primer (50-30) Product Length (bp) Tm (8C) Reaction Efficiency R2

Reference ACTB CCAGCAAGGATGAAGATCAAG 100 57.9 110 0.98

TCTGCTGGAAGGTGGACAG 58.8

Reference SDHA GCCTTGGATCTCTTGATGGA 92 56.9 97 0.98

TTCTTGGCTCTTATGCGATG 55.9

Reference GAPDH TGAAGGGGTCATTGATGGCG 90 60.3 95 0.99

TCAACGGATTTGGCCGTATTGG 59.4

Target VDR ACTTGCATGAGGAGGAGCA 114 59 98 0.97

TGTTGGACAGGCGGTCTT 60

Target CYP27B1 CTGTATGAACTCGCTCGGCA 159 60 94 0.97

AGGGTACAGTCTCAGCACCT 59

Target CLD2 CAGCCCCTTGCAACTAGAGG 105 60.4 107 0.99

GCCCCTGGTTCTTCACACAT 60.3

Target ECAD TCAACCCAACCACGTACCAG 87 59.9 98 0.99

GGACATCAGCATCCGTCACT 59.8
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differences among groups (control, CE, and PLE). Reference gene expres-

sion was also shown to be stable using Best Keeper software.35

To minimize any technical, run-to-run variation between different sam-

ples for the comparison of gene expression, the maximum number of sam-

ples (in triplicate) were analyzed in each run.34 As not all samples could

be analyzed for 1 gene in the same run, control, and affected cases were

spread across 2 runs equally and inter-run calibrators were included. A

correction factor was then generated to control for inter-run differences.

Statistical Analysis

Relative expression software tool (REST), which has been previ-

ously validated,31 was used to analyze the qPCR results. This software

incorporates PCR efficiency correction and reference gene normaliza-

tion. It integrates a statistical analysis randomization algorithm to calcu-

late the statistical difference of variation between 2 groups and a

bootstrapping technique which provides 95% confidence interval for

expression ratios. The REST software uses a P(H1) test for the statisti-

cal analysis that involves a robust random sample reallocation to assess

for significance.36 qPCR data analysis was also performed using the

relative quantification method, delta delta CT (DDCT) method.37 The

relative quantification data generated were log2 transformed (Log2RQ)

for normalization.38 These Log2RQ values, IHC scores and signalment

details were assessed with a statistical program,q which was also used

for graphical representation of data.

Normality of data was tested by a D’argestine Pearson Omnibus nor-

mality test. Nonparametric analysis of ordinal categorical data was per-

formed with a Mann–Whitney test or for multiple subsets with a

Kruskal–Wallis. For continuous numerical data, a Spearman rank correla-

tion was performed. Several different factors were assessed for a relation-

ship to VDR and CYP27B1 expression; control versus dogs with CE,

type of disease (control, CE, and PLE), CIBDAI score, overall patholo-

gist morphological diagnosis category, WSAVA score, ECAD, and

CLD2 expression. P values and P(H1) values< 0.05 were considered sig-

nificant. For REST analysis, a CIBDAI cut off value of 9 was used as

this is consistent with severe clinical signs24 and the median WSAVA

score of 5 was used. Paired scatter plots and univariate analysis were per-

formed from all Log2RQ data before deciding on any additional analysis.

Images were captured with a BX41 light microscope with DP72

camera attachment and Cell^ D
VR

imaging software.r

For graphical representation of continuous data, to ensure all data

points could be appreciated, minimal randomized jitter was applied to

whole data sets.

Results

Vitamin D Receptor Expression in Non-Skeletal
Tissue

The 6 dogs collected for non-skeletal tissue expression

were 2 Staffordshire Bull terriers, a Mastiff, Border Collie,

Pitbull terrier, and Jack Russell terrier, with a median age of

4 years (range 2–8 years). Four of the 13 sampled organs

were overall moderate to strongly positive for the VDR:

duodenum, ileum, kidney, and skin (Fig 1). There was no

positive staining in the stomach or testicle samples.
Of the intestinal sections, duodenum had the highest aver-

age IHC OS of 1.67, while ileum was lower at 0.5 OS (Figs

1, 2). In the duodenum, there was strong nuclear labeling of

mucosal enterocytes, with weaker cytoplasmic labeling. In

both the duodenum and ileum the overall VDR immunolab-

elling score was higher in the crypt enterocytes compared to

the villous tips; goblet cells within the epithelial monolayer

were completely negative for VDR. There was minimal

labeling in the colon and typically only within the entero-

cyte nuclei.
In all renal samples, high numbers of cells stained with

moderate intensity (average IHC OS 2.33). Vitamin D

receptor labeling in the skin was of moderate intensity,

mainly concentrating within the hair bulb, outer root sheath,

and shaft (0.5 OS) and the non-keratinized layer of the epi-

dermis (stratum basale). Immunolabelling of the spleen was

weak to moderate (average IHC OS of 0.17). There were

several organs that labeled weakly and only within a low

number of cells, including lymph nodes, heart, liver, ovary,

and lung (Figs 1, 2).

Signalment and Pathological Scores of Control Dogs

and Dogs with Chronic Enteropathy

The 34 dogs with CE included 25 different breeds and 2

cross breed dogs. The 24 dogs without clinical signs of CE

included 10 different breeds and 4 cross breed dogs (Table

3). Median age was 5 years for both groups (range 2–17

years). Age and sex were not significantly different between

the populations, though there was a nonsignificantly higher

proportion of male dogs in the CE group.
The median CIBDAI of CE dogs was 9 (range 3–16) and

the duration of clinical signs before presentation was a

median of 7 weeks (range 4 weeks to 3 years). Inflammatory

changes were present in all dogs with CE and the median

WSAVA score was 5 (range 1–14). The WSAVA score was

significantly higher in dogs with CE compared to controls

(P 5 0.0001). Of the 34 dogs with CE, 10 had a low serum

albumin and were classified as a PLE.
Of these, 1 control dog was excluded from the IHC analy-

sis because of lack of sufficient sample. One control dog

was removed from qPCR analysis because of low RNA

quality and finally, 2 CE dogs were removed because of

consistently high threshold cycle values indicating sample

degradation during the final stages of sample preparation.

Duodenal Vitamin D Receptor Expression in Control

Dogs and Dogs with Chronic Enteropathy

VDR mRNA expression was identified in the duodenum

of both control dogs and those with CE. REST analysis

identified no significant difference between controls and

dogs with CE or PLE. Mann–Whitney statistical testing

identified no significant difference in VDR qPCR expres-

sion (Log2RQ values) between control dogs and dogs with

CE, P 5 0.87. There was also no significant difference

between these populations in protein expression (IHC OS),

P 5 0.099 (Figs 3, 4). RNA expression of CYP27B1 was

low for both control dogs and those with CE. REST analysis

and Log2RQ value analysis of CYP27B1 identified no sig-

nificant differences in RNA expression, P 5 0.22.

Duodenal Vitamin D Receptor Expression from Dogs
with Chronic Enteropathy with Increasing

Inflammation

REST analysis showed no significant difference in VDR

or CYP27B1 expression between dogs with mild

767Vitamin D Receptor Expression in Dogs



inflammation and dogs with moderate to marked inflamma-
tion. There was no significant difference in expression when
a high WSAVA score (ie> 5) was compared to a score of 2
or less and no difference in expression when a high CIBDAI
score (ie> 9) was compared to a score of <3.

Spearman rank correlation showed no association
between VDR RNA expression (Log2RQ), the WSAVA
score (r 5 0.2288, P 5 0.11) and the CIBDAI (r 5 20.1488,
P 5 0.39). There was also no correlation between the VDR
IHC OS and the WSAVA score (r 5 0.2204, P 5 0.099) and

Fig 1. Overall vitamin D receptor immunohistochemistry expression score in the 13 non-skeletal tissues and an isotype control. Heart (A), kid-

ney (B), liver (C), lymph node (D), lung (E), ovary (F), skin (G), spleen (H), testicle (I), stomach (J), duodenum (K), ileum (L) colon (M) nega-

tive control duodenum, as this organ was shown as it had the highest staining intensity (N). Scale Bar is equal to 200 lm.
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CIBDAI, (r 5 0.05171, P 5 0.7) (Fig 5). Spearman rank cor-

relation showed no association between CYP27B1 RNA

expression (Log2RQ), the WSAVA score (r 5 0.2165,

P 5 0.3) and the CIBDAI (r 5 20.1538, P 5 0.47).

Comparison of Duodenal Vitamin D Receptor

Expression and Related Proteins in Dogs with

Chronic Enteropathy

Spearman rank correlation showed no association

between VDR RNA expression (Log2RQ) and RNA expres-

sion of two of the tight junction components CLD2 and

ECAD. There was also no correlation between the

respective overall IHC scores for VDR, and RNA expres-

sion of CLD2 and ECAD.

Discussion

This study establishes which non-skeletal tissues express

VDR in the dog. The tissues expressing VDR at the highest

level; kidney, duodenum, and ileum were an expected find-

ing based on a previous study in dogs23 and the known

classical calcium homeostasis roles of these tissues. The

moderate expression within the skin has not previously been

reported in the dog. There were multiple tissues with weak

positive expression of VDR, with only the stomach and tes-

ticle being negative. The second major finding of this study

was that duodenal VDR expression, both RNA and protein,

did not decrease with inflammation. This contrasts with the

changes reported in both human and rodent colonic

inflammation.39,40

Our study is the first to establish that canine skin expresses

high levels of VDR, a finding that is similar to those observed

in other species.41 This finding is noteworthy, given the fact

that the dog does not produce significant levels of cutaneous

vitamin D from ultraviolet light.42,43 In cats, there is also a

lack of cutaneous vitamin D production, caused by increased

activity of the enzyme 7-dehydrocholesterol reductase,44 but

the cause is unknown in the dog. Active vitamin D

Fig 3. Vitamin D receptor (VDR) immunohistochemistry overall

score (left) and VDR Log2RQ value (right) for control and CE dogs.

Fig 2. Overall vitamin D receptor immunohistochemistry expression

score in the 13 non-skeletal tissues from 6 dogs.

Table 3. Breeds composing the two groups, chronic
enteropathy, and control dogs.

CE breeds Control Breeds

Greyhound Border Collie 3 3

Airedale Terrier Bull terrier

Alaskan Malamute Canadian Mastiff 3 2

Border Collie 3 3 Cross breed 3 4

Boxer Labrador

Cross breed 3 2 Pitbull 3 2

Cavachon Rottweiler

Cocker Spaniel Samoyed

English Springer Spaniel SBT 3 7

Flat Coat Retreiver Yorkshire Terrier

French Bulldog WHWT

German Short Haired Pointer

Golden Retriever

Gos D’Atura Catalan

Irish Setter

Japanese Akita

JRT 3 2

Labrador 3 3

Lakeland Terrier 3 2

Lhasa Apso

Lurcher

Maltese Terrier

Nova Scotia Duck Tolling

Pekinese

Rottweiler

WHWT 3 3
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metabolites stimulate differentiation and inhibit proliferation
of human keratinocytes via the VDR.45 The expression, par-
ticularly within the hair bulb, has also been documented in
people and in mouse models. VDR mouse knockout models
develop alopecia, indicating that the VDR is important for
follicular growth.41,46 It is intriguing to speculate whether
there are breed differences with regards to VDR receptors in
the skin; especially with reference to the hairless Chinese
Crested dog.

Weakly positive VDR expression in the lymph node and
spleen is consistent with findings in people1,41 and
mice.47,48 Specifically, VDR has been identified in activated
human inflammatory cells2 and 1,25(OH)2D has been
shown to inhibit T cell proliferation.49 VDR has also been
immunohistochemically identified in neoplastic canine mast
cells.50 Some of the positive cells in the lungs, lymph nodes,
spleen, and liver could be mast cells or other inflammatory
cells. There was only weak VDR expression in the colon in
healthy dogs, a finding which is different to people and

other species.39,51 In human ulcerative colitis and in mouse
models of colitis, VDR expression is negatively correlated
with colonic inflammation.

In contrast to findings in humans with IBD, which have
significantly decreased intestinal VDR expression,39,52 we
found no difference in VDR expression in the duodenum of
dogs with gastrointestinal inflammation. Assessments of
inflammation by several criteria and by multiple methods
showed no significant decline in VDR (Fig 4). There was
also no correlation identified with ECAD, a tight junction
element, which has been shown to decrease with ulcerative
colitis and Crohn’s disaese53,54 and IBD in dogs.28 Last,
there was no correlation with CLD2, another tight junctional
element that increases with intestinal inflammation in peo-
ple,55–57 and in dogs with CE.29

There are numerous studies which indicate a role for the
VDR in the protection against inflammation. For example,
VDR null mice develop more severe colitis, and clinical
signs can be attenuated by reconstitution of the intestinal

Fig 4. Duodenum of control dogs (A, C, E) and dogs with chronic enteropathy (B, D, F) illustrating immunolabelling of Vitamin D receptor.

Scale Bar is equal to 200, 100, and 50 lm, respectively.
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epithelial VDR.58 Vitamin D and the VDR have been shown

to be important regulators of the immune system in IBD.59

It has also been clearly demonstrated that serum vitamin D

is reduced in dogs with CE20 and is negatively correlated

with inflammation.22 In several cases of canine CE there is
a documented decrease in calcium21 and increased parathy-
roid hormone (PTH).20 The VDR and 1,25(OH)2D are both
required for calcium absorption, so in this species, despite
high expression of the VDR, there is evidence that calcium
becomes low enough to result in an increase in PTH,
because of lack of 1,25(OH)2D.

A functional local vitamin D synthesizing system has
been indicated as important for the prevention of IBD.60

The fact that the VDR is highly expressed in dogs regardless
of inflammation could indicate that a lack of the binding
substrate, 1,25(OH)2D is more important in the pathogenesis
of the inflammation than the receptor itself. This could be
caused by systemically low serum 25(OH)D, as has been
measured,20 or because of low local activity levels of
CYP27B1 or, finally, because of increased 1,25-dihydroxy-
vitamin D3 24-hydroxylase, (CYP24A1) levels, which nor-
mally reduce 1,25(OH)2D levels in a negative feed-back
manner. It is likely that low serum 25(OH)D occurs in CE
because of intestinal loss of Vitamin D and its metabolites,
which are bound to plasma vitamin D binding protein, as
previously suggested.61 It would therefore be plausible to
investigate the effects of supplementation of calcitriol
(1,25(OH)2D) in dogs with CE that have low serum
25(OH)D. This concept is further supported by previous
studies showing that 1,25(OH)2D or a vitamin D analogue,
TX527, ameliorated inflammation, and clinical signs in
spontaneous murine models of IBD.62,63 A protective effect
of 1,25(OH)2D has also been reported in mouse models of
hepatitis64 and there are several studies indicating improved
immune tolerance,65 decreased proinflammatory cyto-
kines66 and increased anti-inflammatory cytokine responses
with 1,25(OH)2D.67,68

A lack of significant change in qPCR expression of
CYP27B1 would indicate that this is not an enzyme that
is affected in dogs with CE, as has been observed by
some studies of human IBD69 and intestinal neoplasia.70

This would further support a potential beneficial outcome
of the addition of calcitriol in the treatment of canine
CE, with less requirement to consider the hydroxylation
steps, as some authors have sought to do.71 The expres-
sion of CYP27B1, however, in this study was overall
very low.

Our study confirms the expression of VDR in a large

number of non-skeletal tissues in the dog. We also showed

that intestinal VDR expression does not decrease in the

presence of inflammation, in contrast to humans and

rodents. The mechanism for this difference is unknown, but

it could reflect a more profound effect of systemically low

serum 25(OH)D on the development of CE. One potential

clinical implication is consideration of 1,25(OH)2D or its

analogues to ameliorate clinical signs. In this species, as the

VDR is still expressed at high levels in the duodenum, there

is higher available binding potential for ligand, which is

more likely to translate to a beneficial effect. Alongside

this, as vitamin D concentrations are less affected by sun-

light in the dog, there are fewer external environmental fac-

tors to consider, which may increase the dog’s value as a

naturally occurring model of the interplay between vitamin

D and chronic inflammatory conditions.

Fig 5. Vitamin D receptor (VDR) immunohistochemistry overall

score and VDR Log2RQ value for dogs with chronic enteropathy

plotted against histological inflammation (World Small Animal Vet-

erinary Association score) (A and C) or severity of clinical signs

(canine inflammatory bowel disease activity index) (B and D).
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Footnotes

a Thermo Fisher Scientific, Saarbruckener, Braushweig, Germany
b Vector Labs, Burlingame, CA
c Thermo Fischer Scientific, Rockford, IL
d BioLegend, London, UK
e BD Biosciences Transduction Laboratories, Oxford, United Kingdom
f BD Biosciences Pharmingen, Oxford, United Kingdom
g Invitrogen Corporation, Camarillo, CA
h Dako North America Inc, Carpnteria, CA
i Ambion life technologies, Carlsbad, CA
j Bertin Technologies, Montigny-le-Bretonneur, France
k Sigma-Aldrich, St Louis, MO
l QIAGEN GmbH, Hilden, Germany
m Spectrophotometer, Version 3.7.1, Thermofisher Scientific,

Wilmington, DE
n Agilent Technologies Inc, Santa Clara, CA
o PROMEGA, Madison, WI
p Roche-Applied-Science, 05015243001, Manheim, Germany
q Graph Pad Prism Version 6.05, GraphPad Software, San Diego, CA
r Olympus Ltd, Southend-on-Sea, United Kingdom

Acknowledgments

The study was not supported by a grant.
Conflict of Interest Declaration: Authors declare no con-

flict of interest.
Off-label Antimicrobial Declaration: Authors declare no

off-label use of antimicrobials.
Institutional Animal Care and Use Committee (IACUC)

or Other Approval Declaration: Authors declare no IACUC

or other approval was needed.

References

1. Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin

D receptor (VDR)-mediated actions of 1a,25(OH) 2vitamin D 3:

Genomic and non-genomic mechanisms. Best Pract Res Clin Endocri-

nol Metab 2011;25:543–559.

2. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-

dihydroxyvitamin D3 receptors in human leukocytes. Science 1983;

221:1181–1183.

3. Veldman CM, Cantorna MT, Deluca HF. Expression of 1,25-

dihydroxyvitamin D3 receptor in the immune system. Arch Biochem

Biophys 2000;374:334–338.

4. Glass CK, Rose DW, Rosenfeld MG. Nuclear receptor coacti-

vators. Curr Opin Cell Biol 1997;9:222–232.

5. Brown AJ, Dusso AS, Slatopolsky E. Vitamin D. Am J Physiol

Renal Physiol 2005;289:F157–F175.

6. Baran D, Quail J, Ray R, et al. Identification of the membrane

protein that binds la,25-dihydroxyvitamin D3, and is involved in the

rapid actions of the hormone. Bone 1998;23:S176.

7. Sugimoto T, Ritter C, Ried I, et al. Effect of 1,25-dihydroxyvi-

tamin D3 on cytosolic calcium in dispersed parathyroid cells. Kidney

Int 1988;33:850–854.

8. K€uhne H, Schutkowski A, Weinholz S, et al. Vitamin D recep-

tor regulates intestinal proteins involved in cell proliferation, migra-

tion and stress response. Lipids Health Dis 2014;13:9.

9. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the

immune system: Vitamins A and D take centre stage. Nat Rev Immu-

nol 2008;8:685–698.

10. Autier P, Boniol M, Pizot C, Mullie P. Vitamin D status and

ill health: A systematic review. Lancet Diabetes Endocrinol 2014;2:

76–89.

11. Holick MF. Vitamin D and health: Evolution, biologic func-

tions, and recommended dietary intakes for vitamin D. Clinic Rev

Bone Miner Metab 2009;7:4–18.

12. Schottker B, Jorde R, Peasey A, et al. Vitamin D and mortal-

ity: Meta-analysis of individual participant data from a large consor-

tium of cohort studies from Europe and the United States. Br Med J

2014;348:g3656.

13. Dumitrescu G, Mihai C, Dranga M, et al. Serum 25-

hydroxyvitamin D concentration and inflammatory bowel disease

characteristics in Romania. World J Gastroenterol 2014;20:2392–

2396.

14. Ulitsky A, Ananthakrishnan AN, Naik A, et al. Vitamin D

deficiency in patients with inflammatory bowel disease: Association

with disease activity and quality of life. JPEN J Parenter Enteral Nutr

2011;35:308–316.

15. Mellanby RJ. Beyond the skeleton: The role of vitamin D

in companion animal health. J Small Anim Pract 2016;57:

175–180.

16. Rosa CT, Schoeman JP, Berry JL, et al. Hypovitaminosis D in

dogs with spirocercosis. J Vet Intern Med 2013;27:1159–1164.

17. Kraus MS, Rassnick KM, Wakshlag JJ, et al. Relation of vita-

min D status to congestive heart failure and cardiovascular events in

dogs. J Vet Intern Med 2014;28:109–115.

18. Gerber B, H€assig M, Reusch CE. Serum concentrations of

1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol in clini-

cally normal dogs and dogs with acute and chronic renal failure. Am

J Vet Res 2003;64:1161–1166.

19. Selting KA, Sharp CR, Ringold R, et al. Serum 25-

hydroxyvitamin D concentrations in dogs – Correlation with health

and cancer risk. Vet Comp Oncol 2016;14:295–305.

20. Gow AG, Else R, Evans H, et al. Hypovitaminosis D in dogs

with inflammatory bowel disease and hypoalbuminaemia. J Small

Anim Pract 2011;52:411–418.

21. Mellanby RJ, Mellor PJ, Roulois A, et al. Hypocalcaemia

associated with low serum vitamin D metabolite concentrations in

two dogs with protein-losing enteropathies. J Small Anim Pract 2005;

46:345–351.

22. Titmarsh HF, Gow AG, Kilpatrick S, et al. Low Vitamin D

status is associated with systemic and gastrointestinal inflammation in

dogs with a chronic enteropathy. PLoS One 2015;10:1–13.

23. Palm C, Hartmann K, Weber K. Expression and immunolocal-

ization of calcium transport proteins in the canine duodenum, kidney,

and pancreas. Anat Rec (Hoboken) 2010;293:770–774.

24. Jergens AE, Schreiner CA, Frank DE, et al. A scoring index

for disease activity in canine inflammatory bowel disease. J Vet

Intern Med 2003;17:291–297.

25. Day MJ, Bilzer T, Mansell J, et al. Histopathological stand-

ards for the diagnosis of gastrointestinal inflammation in endoscopic

biopsy samples from the dog and cat: A report from the World Small

Animal Veterinary Association Gastrointestinal Standardization

Group. J Comp Pathol 2008;138:S1–S43.

26. Washabau RJ, Day MJ, Willard MD, et al. Endoscopic,

biopsy, and histopathologic guidelines for the evaluation of gastroin-

testinal inflammation in companion animals. J Vet Intern Med 2010;

24:10–26.

27. Ditsch N, Toth B, Mayr D, et al. The association between

Vitamin D receptor expression and prolonged overall survival in

breast cancer. J Histochem Cytochem 2012;60:121–129.

28. Ohta H, Sunden Y, Yokoyama N, et al. Expression of apical

junction complex proteins in duodenal mucosa of dogs with inflam-

matory bowel disease. Am J Vet Res 2014;75:4–9.

29. Ridyard AE, Brown JK, Rhind SM, et al. Apical junction

complex protein expression in the canine colon: Differential

772 Cartwright et al



expression of claudin-2 in the colonic mucosa in dogs with idiopathic

colitis. J Histochem Cytochem 2007;55:1049–1058.

30. Beekman L, Tohver T, Dardari R, L�eguillette R. Evaluation of

suitable reference genes for gene expression studies in bronchoalveo-

lar lavage cells from horses with inflammatory airway disease. BMC

Mol Biol 2011;12:5.

31. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines:

Minimum information for publication of quantitative real-time PCR

experiments. Clin Chem 2009;55:611–622.

32. Peters IR, Helps CR, Batt RM, et al. Quantitative real-time

RT-PCR measurement of mRNA encoding aplha-chain, pIgR and

J-chain from canine duodenal mucosa. J Immunol Methods 2003;275:

213–222.

33. Peters IR, Peeters D, Helps CR, Day MJ. Development and

application of multiple internal reference (housekeeper) gene assays

for accurate normalisation of canine gene expression studies. Vet

Immunol Immunopathol 2007;117:55–66.

34. Bustin SA, Beaulieu J-F, Huggett J, et al. MIQE pr�ecis: Prac-

tical implementation of minimum standard guidelines for

fluorescence-based quantitative real-time PCR experiments. BMC

Mol Biol 2010;11:74.

35. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determina-

tion of stable housekeeping genes, differentially regulated target genes

and sample integrity: BestKeeper–Excel-based tool using pair-wise

correlations. Biotechnol Lett 2004;26:509–515.

36. Pfaffl MW, Horgan GW, Dempfle L. Relative expression soft-

ware tool (REST) for group-wise comparison and statistical analysis

of relative expression results in real-time PCR. Nucleic Acids Res

2002;30:e36.

37. Pfaffl MW. A new mathematical model for relative quantifica-

tion in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.

38. Edmunds RC, McIntyre JK, Adam Luckenbach J, et al. Toward

enhanced MIQE compliance: Reference residual normalization of

qPCR gene expression data. J Biomol Tech 2014;25:54–60.

39. Abreu-Delgado Y, Isidro RA, Torres EA, et al. Serum vitamin

D and colonic vitamin D receptor in inflammatory bowel disease.

World J Gastroenterol 2016;22:3581–3591.

40. Lu R, Wu S, Xia Y, Sun J. The vitamin D receptor, Inflamma-

tory bowel diseases, and colon cancer. Curr Colorectal Cancer Rep

2012;8:57–65.

41. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol

Metab 2009;94:26–34.

42. How KL, Hazewinkel HAW, Mol JA. Dietary vitamin D

dependence of cat and dog due to inadequate cutaneous synthesis of

vitamin D. Gen Comp Endocrinol 1994;96:12–18.

43. How KL, Hazewinkel HAW, Mol JA. Photosynthesis of vita-

min d in the skin of dogs, cats, and rats. Vet Q 1995;17:29.

44. Morris JG. Ineffective vitamin D synthesis in cats is reversed

by an inhibitor of 7-dehydrocholestrol-D7-reductase. J Nutr 1999;129:

903–908.

45. Hawker NP, Pennypacker SD, Chang SM, Bikle DD. Regula-

tion of human epidermal keratinocyte differentiation by the vitamin D

receptor and its coactivators DRIP205, SRC2, and SRC3. J Invest

Dermatol 2007;127:874–880.

46. Sakai Y, Kishimoto J, Demay MB. Metabolic and cellular

analysis of alopecia in vitamin D receptor knockout mice. J Clin

Invest 2001;107:961–966.

47. Dimitrov V, White JH. Species-specific regulation of innate

immunity by vitamin D signaling. J Steroid Biochem Mol Biol 2016;

164:246–253.

48. Van Etten E, Mathieu C. Immunoregulation by 1,25-dihydrox-

yvitamin D3: Basic concepts. J Steroid Biochem Mol Biol 2005;97:

93–101.

49. Rigby WFC, Stacy T, Fanger MW. Inhibition of T lymphocyte

mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest

1984;74:1451–1455.

50. Russell DS, Rassnick KM, Erb HN, et al. An immunohisto-

chemical study of vitamin D receptor expression in canine cutaneous

mast cell tumours. J Comp Pathol 2010;143:223–226.

51. Boos A, Riner K, H€assig M, Liesegang A. Immunohistochemi-

cal demonstration of vitamin D receptor distribution in goat intestines.

Cells Tissues Organs 2007;186:121–128.

52. Abreu MT. Measurement of vitamin D levels in inflammatory

bowel disease patients reveals a subset of Crohn’s disease patients

with elevated 1,25-dihydroxyvitamin D and low bone mineral density.

Gut 2004;53:1129–1136.

53. Berkes J. Intestinal epithelial responses to enteric pathogens:

Effects on the tight junction barrier, ion transport, and inflammation.

Gut 2003;52:439–451.

54. Bruewer M, Samarin S, Nusrat A. Inflammatory bowel disease

and the apical junctional complex. Ann N Y Acad Sci 2006;1072:

242–252.

55. Schmitz H, Barmeyer C, Fromm M, et al. Altered tight junc-

tion structure contributes to the impaired epithelial barrier function in

ulcerative colitis. Gastroenterology 1999;116:301–309.

56. Toedter G, Li K, Sague S, et al. Genes associated with intesti-

nal permeability in ulcerative colitis: Changes in expression following

infliximab therapy. Inflamm Bowel Dis 2012;18:1399–1410.

57. Zeissig S, B€urgel N, G€unzel D, et al. Changes in expression

and distribution of claudin 2, 5 and 8 lead to discontinuous tight junc-

tions and barrier dysfunction in active Crohn’s disease. Gut 2007;56:

61–72.

58. Liu W, Chen Y, Golan MA, et al. Intestinal epithelial vitamin

D receptor signaling inhibits experimental colitis. J Clin Invest 2013;

123:3983–3996.

59. Yu S, Bruce D, Froicu M, et al. Failure of T cell homing,

reduced CD4/CD8aa intraepithelial lymphocytes, and inflammation

in the gut of vitamin D receptor KO mice. Proc Natl Acad Sci USA

2008;105:20834–20839.

60. Cross HS, Nittke T, Kallay E. Colonic vitamin D metabolism:

Implications for the pathogenesis of inflammatory bowel disease and

colorectal cancer. Mol Cell Endocrinol 2011;347:70–79.

61. Pappa HM, Grand RJ, Gordon CM. Report on the Vitamin D

status of adult and pediatric patients with inflammatory bowel disease

and its significance for bone health and disease. Inflamm Bowel Dis

2006;12:1162–1174.

62. Cantorna MT, Munsick C, Bemiss C, Mahon BD. 1,25-Dihy-

droxycholecalciferol prevents and ameliorates symptoms of experimen-

tal murine inflammatory bowel disease. J Nutr 2000;130:2648–2652.

63. Verlinden L, Leyssens C, Beullens I, et al. The vitamin D ana-

log TX527 ameliorates disease symptoms in a chemically induced

model of inflammatory bowel disease. J Steroid Biochem Mol Biol

2013;136:107–111.

64. Hu X, Jiang S, Liu C, et al. Preventive effects of 1,25-

(OH)2VD3 against ConA-induced mouse hepatitis through promoting

vitamin D receptor gene expression. Acta Pharmacol Sin 2010;31:

703–708.

65. Chambers ES, Suwannasaen D, Mann EH, et al. 1a,25-dihy-

droxyvitamin D3 in combination with transforming growth factor-b

increases the frequency of Foxp31 regulatory T cells through prefer-

ential expansion and usage of interleukin-2. Immunology 2014;143:

52–60.

66. D’Ambrosio D, Cippitelli M, Cocciolo MG, et al. Inhibition

of IL-12 production by 1, 25-dihydroxyvitamin D3. Involvement of

NF-kappaB downregulation in transcriptional repression of the p40

gene. J Clin Invest 1998;101:252–262.

67. Nissou MF, Guttin A, Zenga C, et al. Additional clues for a

protective role of vitamin D in neurodegenerative diseases: 1,25-dihy-

droxyvitamin D3 triggers an anti-inflammatory response in brain peri-

cytes. J Alzheimers Dis 2014;42:789–799.

68. Korf H, Wenes M, Stijlemans B, et al. 1,25-Dihydroxyvitamin

D3 curtails the inflammatory and T cell stimulatory capacity of

773Vitamin D Receptor Expression in Dogs



macrophages through an IL-10-dependent mechanism. Immunobiol-

ogy 2012;217:1292–1300.

69. Liu N, Nguyen L, Chun RF, et al. Altered endocrine and auto-

crine metabolism of vitamin D in a mouse model of gastrointestinal

inflammation. Endocrinology 2008;149:4799–4808.

70. Matusiak D, Murillo G, Carroll RE, et al. Expression of vita-

min D receptor and 25-hydroxyvitamin D3-1{alpha}-hydroxylase in

normal and malignant human colon. Cancer Epidemiol Biomarkers

Prev 2005;14:2370–2376.

71. Rhieu SY, Annalora AJ, Laporta E, et al. Potent antiprolifera-

tive effects of 25-hydroxy-16-ene-23-yne-vitamin D 3 that resists the

catalytic activity of both CYP27B1 and CYP24A1. J Cell Biochem

2014;115:1382–1402.

774 Cartwright et al


