
ORIGINAL RESEARCH
published: 10 May 2016

doi: 10.3389/fnbeh.2016.00088

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 May 2016 | Volume 10 | Article 88

Edited by:

Gal Richter-Levin,

University of Haifa, Israel

Reviewed by:

Emma Robinson,

Bristol University, UK

Femke Buisman-Pijlman,

The University of Adelaide, Australia

*Correspondence:

Maree T. Smith

maree.smith@uq.edu.au

Received: 15 December 2015

Accepted: 22 April 2016

Published: 10 May 2016

Citation:

Muralidharan A, Kuo A, Jacob M,

Lourdesamy JS, Carvalho LMSP,

Nicholson JR, Corradini L and Smith

MT (2016) Comparison of Burrowing

and Stimuli-Evoked Pain Behaviors as

End-Points in Rat Models of

Inflammatory Pain and Peripheral

Neuropathic Pain.

Front. Behav. Neurosci. 10:88.

doi: 10.3389/fnbeh.2016.00088

Comparison of Burrowing and
Stimuli-Evoked Pain Behaviors as
End-Points in Rat Models of
Inflammatory Pain and Peripheral
Neuropathic Pain
Arjun Muralidharan 1, Andy Kuo 1, Meera Jacob 1, Jacintha S. Lourdesamy 1,

Lara Melo Soares Pinho De Carvalho 1, Janet R. Nicholson 2, Laura Corradini 2 and

Maree T. Smith 1, 3*

1Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD, Australia, 2Department

of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany, 3 School of Pharmacy, The

University of Queensland, St Lucia Campus, Brisbane, QLD, Australia

Establishment and validation of ethologically-relevant, non-evoked behavioral end-points

as surrogate measures of spontaneous pain in rodent pain models has been proposed as

a means to improve preclinical to clinical research translation in the pain field. Here, we

compared the utility of burrowing behavior with hypersensitivity to applied mechanical

stimuli for pain assessment in rat models of chronic inflammatory and peripheral

neuropathic pain. Briefly, groups of male Sprague-Dawley rats were habituated to the

burrowing environment and trained over a 5-day period. Rats that burrowed ≤450 g

of gravel on any 2 days of the individual training phase were excluded from the

study. The remaining rats received either a unilateral intraplantar injection of Freund’s

complete adjuvant (FCA) or saline, or underwent unilateral chronic constriction injury

(CCI) of the sciatic nerve- or sham-surgery. Baseline burrowing behavior and evoked

pain behaviors were assessed prior to model induction, and twice-weekly until study

completion on day 14. For FCA- and CCI-rats, but not the corresponding groups of

sham-rats, evoked mechanical hypersensitivity developed in a temporal manner in the

ipsilateral hindpaws. Although burrowing behavior also decreased in a temporal manner

for both FCA-and CCI- rats, there was considerable inter-animal variability. By contrast,

mechanical hyperalgesia andmechanical allodynia in the ipsilateral hindpaws of FCA- and

CCI-rats respectively, exhibited minimal inter-animal variability. Our data collectively show

that burrowing behavior is altered in rodent models of chronic inflammatory pain and

peripheral neuropathic pain. However, large group sizes are needed to ensure studies

are adequately powered due to considerable inter-animal variability.

Keywords: burrowing, CCI, FCA, inflammatory pain, mechanical allodynia, mechanical hyperalgesia, paw volume,
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INTRODUCTION

Chronic pain, that affects ∼15–20% of the adult population
globally (van Hecke et al., 2013), is underpinned by complex
cellular and molecular pathophysiological mechanisms
(Basbaum et al., 2009). Poorly relieved chronic pain not
only affects the quality of life of patients and their care-givers, it
also imposes a significant socioeconomic cost (Woolf, 2010).

Rodent models of individual chronic pain conditions are
crucial to improving our collective understanding of the specific
pathobiological mechanisms and for screening new molecules as
potential analgesic or adjuvant agents (Mogil et al., 2010). Over
the past two decades, numerous novel ‘pain targets’ including
receptors, ion-channels and enzymes have been identified and
implicated in the pathobiology of chronic pain. However,
most compounds that modulate these targets failed to show
analgesic efficacy in proof-of-concept human clinical trials,
despite promising preclinical data (Smith and Muralidharan,
2015). This perceived failure of drug candidates in clinical trials,
has led to calls for the replacement of rodent pain models with
studies in human volunteers (Langley et al., 2008).

Pain, a subjective phenomenon, is inferred based upon
behavioral responses in rodents and self-reported pain severity
ratings, that encompasses intensity of the nociceptive stimulus
and its resultant affective/emotional response, in humans
(Muralidharan and Smith, 2011; Tappe-Theodor and Kuner,
2014). In the preclinical setting, multiple reflex-withdrawal based
behaviors have been established as pain behavioral end-points in
rodents (Percie du Sert and Rice, 2014). However, the validity of
solely using stimuli-evoked methods for assessing pain behaviors
in rodents has been questioned critically regarding their ability
to mimic spontaneous ongoing pain, numbness and dysesthesia
reported by many patients with various chronic pain states
(Maier et al., 2010; Bennett, 2012; Percie du Sert and Rice, 2014;
Tappe-Theodor and Kuner, 2014). Hence, ethologically-relevant
rodent behaviors such as burrowing, that are altered by pain and
reinstated by analgesics, have been proposed as a potential means
to mimic spontaneous pain in humans (Percie du Sert and Rice,
2014).

Rats and mice (Mus musculus), the most commonly used
laboratory species for experimental pain models, are well-known
burrowers as this behavior is innate and highly conserved due
to its importance in defense against predators (Deacon, 2006).
Burrowing behavior is regarded as a measure of “global well-
being” in rodents since it is affected by a range of diverse
perturbations such as brain lesions (Jirkof, 2014), inflammation
(Jirkof et al., 2013), and activation of the immune system (Teeling
et al., 2007). A simple experimental setup for assessing burrowing
behavior of rats or mice has been described (Deacon, 2006).
In this experiment, a rodent moves a substrate (e.g., gravel or
sand) out of a container via coordinated hind and fore-limb
movements, and the amount of substrate displaced is measured
(Deacon, 2006). Previous work by others has shown this behavior
to be altered by various pain states and reinstated by clinically
proven analgesics, thereby confirming the predictive validity of
this assay (Jirkof et al., 2010; Andrews et al., 2012; Lau et al.,
2013; Rutten et al., 2014a,b). Importantly, it is also suggested

that burrowing measures spontaneous ongoing pain, rather than
evoked pain, as the amount of substrate burrowed was not
correlated with evoked paw withdrawal measures (Andrews
et al., 2012). Since chronic pain can have a profound impact
on a patient’s well-being, measuring the effect of chronic pain
in rodents on burrowing behavior that is thought to be an
indicator of spontaneous ongoing pain as well as well-being
in these animals, may offer a significant advantage regarding
assessment of the global impact of pain in the preclinical
setting (Andrews et al., 2011). However, it is also important
to carefully assess the validity of this innate behavioral assay
between laboratories located in different countries around the
world before considering it as a replacement for reflex-based
limb/tail withdrawal assays in response to applied stimuli, or as
a surrogate measure of pain.

Hence, the aim of our present investigation was to compare
the utility of burrowing behavior relative to that of mechanical
stimuli-evoked behavioral pain measures, in rat models of
Freund’s complete adjuvant (FCA)-induced inflammatory pain
and chronic constriction injury (CCI) of the sciatic nerve induced
peripheral neuropathic pain.

MATERIALS AND METHODS

Animals
This study was conducted in accordance with the guidelines
set out in the Australian Code of Practice for the Care and
Use of Animals for Scientific Purposes (NHMRC, 2013).
Animal ethics approval was obtained from the Animal
Ethics Committee of The University of Queensland for the
studies described herein and our experiments adhered to
the guidelines of the Committee for Research and Ethical
Issues of the International Association for the Study of
Pain.

Groups of male Sprague-Dawley (SD) (180–200 g) rats were
purchased from the Animal Resources Centre (Perth, WA,
Australia). Upon arrival at our facility, rats were housed in groups
of two to three in a temperature-controlled room (21◦C±2◦C)
with a 12 h/12 h light-dark cycle. Environmental enrichment
comprised placement of rodent hutches and rat chew sticks in
all home cages. Standard rodent chow and water were available
ad libitum. Rats were acclimatized for at least 3 days prior to
initiation of any experiments.

Induction of Inflammatory Pain
Inflammatory pain was induced in rats by unilateral intraplantar
(i.pl.) injection of FCA, as previously described (Edwards et al.,
2007). Briefly, whilst anesthetized with 3% isoflurane delivered in
oxygen, SD rats (200–250 g) received an i.pl. injection of 150µl
of FCA (Sigma Aldrich, MO, USA) into their left hindpaws.
The corresponding groups of sham-rats received 150µl i.pl.
injections of saline. Following i.pl. injection, rats were returned
to their home cages and were monitored for general health and
body weight changes twice-weekly until study completion at day
14 post-FCA or saline injection.
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Induction of Peripheral Neuropathic Pain
Chronic constriction injury of the sciatic nerve was used to
induce peripheral neuropathy in rats, according to a published
method (Bennett and Xie, 1988). Briefly, male SD rats (200–
250 g) were anesthetized with 3% isoflurane delivered in oxygen.
After shaving the left thigh, the skin was cleaned using 70%
ethanol. Next, a small incision was made through the biceps
femoris to expose the sciatic nerve. Subsequently, four loose
ligatures (∼1mm apart) were tied proximal to the trifurcation
of the sciatic nerve using silk sutures. The muscle and skin
were closed, and the animals were monitored closely during
surgical recovery. For rats that underwent sham surgery, the
sciatic nerve was exposed but not ligated. Following surgery, the
rats were returned to their home cages and were monitored for
general health and body weight changes twice weekly until study
completion at day 14 post-CCI or -sham surgery.

Behavioral Studies
All behavioral experiments described herein, except burrowing,
were conducted between 09:00 and 14:00 h. Burrowing
experiments were carried between 15:30 and 17:00 h (12 h
light (06:00–18:00 h)/dark cycle (18:00–06:00 h).

Assessment of Hindpaw Volumes

For rats administered an i.pl. injection of either FCA or saline,
ipsilateral (injected side) and contralateral (non-injected side)
hindpaw volumes (PV) were measured using a Plethysmometer
(Ugo Basile, Italy). Measurements were done just prior to FCA
or saline injection (day 0) and twice-weekly thereafter until study
completion on day 14.

Assessment of Mechanical Hyperalgesia

Baseline paw pressure thresholds (PPTs) for each of the
ipsilateral and contralateral hindpaws of FCA- and sham-rats
were measured using the Randall-Selitto apparatus (Ugo Basile,
Italy) as previously described (Randall and Selitto, 1957). Briefly,
a noxious mechanical stimulus of increasing force was applied to
the medial portion of the hindpaw until a withdrawal response
was elicited. The maximum force applied was 250 g to prevent
tissue damage. Baseline PPT values for each of the ipsilateral
and contralateral hindpaws are the mean of three readings
for the corresponding hindpaw, with a 5-min interval between
consecutive measurements. The baseline PPTs were determined
in both hindpaws prior to i.pl. FCA or saline injection (day 0)
and thereafter twice-weekly until study completion at day 14.

Assessment of Mechanical Allodynia

Baseline paw withdrawal thresholds (PWTs) for each of the
ipsilateral and contralateral hindpaws of CCI- or sham-rats
were measured using calibrated von Frey filaments (Stoelting),
as previously described (Ren, 1999; Muralidharan et al., 2013).
Baseline PWTs were determined in both hindpaws prior to
CCI- or sham-surgery and twice-weekly thereafter until study
completion at day 14 post-surgery.

Assessment of Burrowing Behavior

Burrowing behavior is known to be altered by factors such as
anxiety and distress (Jirkof et al., 2010). Hence, there were no

humans present in the room during the burrowing experiment.
The gravel used in the study was washed and dried prior to
initiation of experiments in each cohort. For example, prior to
initiation of burrowing experiments in Cohort 1, the gravel to be
used in the study was washed and dried. The same set of gravel
was used for on all experimental days until study completion
at day 13/14. The gravel was not washed between different
experimental days of Cohort 1. On completion of studies for
Cohort 1 (i.e., on day 13/14), the gravel was washed and dried,
and then used for studies in Cohort 2 in a similar fashion.

The burrowing apparatus comprised a normal rat cage (49.8
(L) × 38 (W) × 21.5 (H) cm) containing a hollow plastic
burrowing tube (32 (L)× 10 (D) cm) sealed at one end and open
at the other. The burrowing tube was filled with 2 kg of gravel
(smooth; 3–5mm diameter) and the open entrance was raised
approximately 6 cm above the floor in the cage.

The burrowing assay was performed as described previously
(Deacon, 2006; Andrews et al., 2012), with slight modifications.
Briefly, all animals were habituated and trained to the burrowing
conditions for 5 days prior to measurement of their baseline
burrowing behavior. The training phase comprised social
facilitation (Days −5 and −4) and individual training (Days −3,
−2, and −1). All experiments were conducted toward the end
of the light cycle (15:30 h). On the first day of social facilitation
(Day −5), rats were placed in pairs into the testing cage with a
burrowing tube filled with 2 kg of gravel for a period of 1 h. After
1 h, the amount of gravel displaced from the tube was weighed. At
the end of experimentation, all rats were returned to their home
cages. The same procedure was repeated on the second day of
social facilitation (Day −4). If any rat pairs did not burrow at all
on Day −5, then one rat from this pair was swapped with a rat
from a burrowing pair (i.e., a rat that burrowed on Day −5) for
social facilitation on Day−4.

On each day of individual training (Days −3, −2, and
−1), rats were placed individually in a test cage containing a
burrowing tube filled with 2 kg of gravel. The amount of gravel
displaced from the tube after 1 h was weighed. At the end of 3
days of individual training, rats that burrowed ≤ 450 g of gravel
were excluded from further participation in the study. Baseline
burrowing data were collected from the remaining rats that
burrowed≥450 g on at least 2 out of 3 days of individual training.
The baseline burrowing behavior was assessed prior to unilateral
CCI/sham surgery or unilateral i.pl. FCA/saline injections, and
then twice-weekly thereafter until study completion at day 14
post pain model induction.

Statistical Analyses
Statistical analyses were performed using repeated measures two-
way analysis of variance (ANOVA) followed by the Bonferroni
test to assess between-group differences in pain hypersensitivity
behaviors (mechanical hyperalgesia and mechanical allodynia
in FCA- and CCI-rats respectively), hindpaw volume (FCA-
rats only), burrowing behavior and body weight data. Pearson’s
correlation analysis was used to compare burrowing performance
with mechanical allodynia and mechanical hyperalgesia in
individual rats. The F-values together with their associated
degrees of freedom (treatment, time, interaction and residual)
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are reported as F (df of treatment, time, interaction/residual). Statistical
analyses were performed using GraphPad PrismTM v6.04
(GraphPad software Inc., San Diego, CA, USA) and the statistical
significance criterion was P ≤ 0.05.

RESULTS

The timelines for assessments of burrowing behavior, mechanical
hyperalgesia, hindpaw edema and/or mechanical allodynia in
the FCA- and CCI-rat models used in the present study, are
summarized in Figures 1A,B, respectively. The number of rats
used per cohort and the number of animals excluded because
they did not meet the burrowing criterion, are shown in Table 1.
The general animal health (body weights), pain hypersensitivity
behaviors (mechanical allodynia and mechanical hyperalgesia for
CCI- and FCA-rats respectively), hindpaw volumes (FCA-rats
only) and burrowing data from all rat cohorts are described in
the following sections.

General Animal Health
The mean (± SEM) body weights of FCA-rats from Cohorts
1–3 (Figure 2A) did not differ (P > 0.05) throughout the
experimental period from the corresponding groups of sham-rats
administered a unilateral i.pl. injection of saline.

For CCI- and sham-rats, there were no between-group
differences (P > 0.05) in mean (± SEM) body weights during the
study period (Figure 2B).

Development of Ipsilateral Hindpaw Edema
in FCA-Rats
The mean (±SEM) ipsilateral PV vs. time curve data (Figure 3A)
show that it was significantly increased between days 2 and
14 post i.pl. FCA injection [F(3, 5, 15/170) = 582.8, 63.3,
64.4; P ≤ 0.05] compared with the corresponding data for
rats administered unilateral i.pl. injections of saline or the
contralateral hindpaw of FCA-rats for the 14-day period
following i.pl. injection (Figure 3A).

TABLE 1 | Details of cohort sizes used for each rodent pain model

described in the present study.

Cohort Number of

animals used

Number of animals excluded from

the study*

RAT MODEL OF CHRONIC INFLAMMATORY PAIN

1 10 3

2 10 5

3 10 3

RAT MODEL OF NEUROPATHIC PAIN

1 16 3

2 10 4

3 10 0

4 10 2

*Number of animals excluded because they did not meet the burrowing criterion.

Development of Mechanical Hyperalgesia
in the Ipsilateral Hindpaws of FCA-Rats
The mean (±SEM) PPT vs. time curve data for FCA- and
sham-rats in Cohorts 1–3 are shown cohort by cohort, in
Supplementary Figures 1A–C, respectively. The mean (±SEM)
PPT data (Figure 3B) for FCA-rats show that mechanical
hyperalgesia was fully developed in the ipsilateral hindpaws from
day 2 until study completion on day 14 [F(3, 5, 15/170) = 586.6,
31.6, 64.7; P ≤ 0.05]. By contrast, mechanical hyperalgesia did
not develop in the ipsilateral hindpaws of sham-rats or the
contralateral hindpaws of FCA-rats (Figure 3B).

Development of Mechanical Allodynia in
the Ipsilateral Hindpaws of CCI-Rats
The mean (±SEM) PWT vs. time curve data for CCI-
and sham-rats in Cohorts 1–4 are shown cohort by cohort,
in Supplementary Figures 2A–D, respectively. For the mean
(±SEM) PWT data, there was significant [F(3, 4,12/280) = 165.6,
55.2, 24.7; P ≤ 0.05] temporal development of mechanical
allodynia in the ipsilateral hindpaws of CCI-rats (Figure 4),
between days 3 and 14 post-surgery, in contrast to the lack
of change in the corresponding mean (±SEM) PWTs for the
ipsilateral hindpaws of sham-control rats (Figure 4).

Temporal Changes in Burrowing Behavior
in Rodent Models of Chronic Inflammatory
Pain and Neuropathic Pain
For rats in Cohorts 1–3 that received a unilateral i.pl.
injection of FCA, there was a significant temporal decrease
in the cumulative mean (±SEM) weight of gravel burrowed
[F(1, 8, 8/136) = 9.15, 6.03, 4.36; P ≤ 0.05] between days 2
and 10 in contrast to the insignificant change in the weight of
gavel burrowed by sham-rats across the 14-day experimental
period (Figure 5A). Likewise, between days 3 and 14 post-
surgery, there was a significant [F(1, 7, 7/245) = 7.9, 10.4, 6.8;
P ≤ 0.05] temporal decrease in the burrowing behavior of rats
with a unilateral CCI of the sciatic nerve relative to that of
sham-control rats (Figure 5B). However, there was significant
between-cohort variability in the burrowing behavior of both
FCA- and CCI-rats relative to that of their respective sham-
controls (Supplementary Figures 3A–C, 4A–D, respectively; see
the respective supplementary figure legends for individual cohort
statistical analyses). Specifically, comparison of the burrowing
behavior of FCA-rats between the different cohorts showed
significant [F(2, 5, 10/40 = 3.2, 9.3, 2.2; P ≤ 0.05] between-
cohort variability in burrowing behavior on days 2 and 4/5
post-i.pl. FCA injection (Supplementary Figure 5A). Likewise,
For CCI-rats, there was significant [F(3, 4, 12/68 = 2.4, 7.3, 2.3;
P ≤ 0.05] between cohort variability in burrowing behavior
on day 14 post-CCI surgery (Supplementary Figure 5B). In
contrast, there were no between-cohort differences in the
burrowing behavior of saline-injected rats [F(2, 5, 10/25 =

2.3, 1.4, 0.6; Supplementary Figure 5C] or sham surgery
animals [F(3, 4, 12/48 = 1.4, 0.8, 1.2; Supplementary Figure 5D].
Although different cohorts had different experimenters, the
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FIGURE 1 | Experimental design and chronological order of experimental procedures and/or behavioral testing used in the rat models of (A)

FCA-induced inflammatory pain and (B) CCI of the sciatic nerve model of neuropathic pain. PV, paw volume; PPT, Paw Pressure Threshold; VF, von Frey.

FIGURE 2 | Cumulative mean (±SEM) body weight vs. time curves for (A) Cohorts 1–3 rats administered a unilateral i.pl. injection of FCA (n = 11) or

saline (n = 8), and (B) Cohort 1–4 rats that underwent CCI (n = 21) or sham (n = 16) surgery. For FCA- and CCI-rats, there were no significant (P > 0.05)

differences in the mean (±SEM) body weights throughout the experimental period when compared with that of their respective sham-control rats.

between-experimenter differences are mitigated as testers are not
present in the room during the burrowing sessions.

Importantly, there was a significant correlation (P ≤ 0.05)
between burrowing performance and the extent of development
of mechanical hyperalgesia in the ipsilateral hindpaws on
day 4/5 post-i.pl. FCA injection in FCA-rats (Figure 5C).
By contrast, for CCI-rats, burrowing performance was not
correlated significantly (P > 0.05) with von Frey PWT
values in the hindpaws throughout the experimental period
(Figure 5D).

DISCUSSION

Our present findings show a significant decrease in ethologically-
relevant burrowing behavior as well as development of

mechanical hyperalgesia and mechanical allodynia in the
ipsilateral hindpaws of FCA-rats and CCI-rats, respectively.
Although the sensitivity of the burrowing test was comparable
with that of noxious mechanical stimulus-evoked pain behavior
in the same animals, inter-cohort variability was much greater
for burrowing behavior (Supplementary Figures 3A–C , 4A–D)
compared with mechanical hypersensitivity in the hindpaws
(Supplementary Figures 1A–C,2A–D). In practical terms, this
means that for experiments that utilize burrowing behavior
as the primary pain behavioral endpoint in rodent models of
inflammatory and neuropathic pain, larger group sizes will
be needed to ensure they are adequately powered compared
with similar experiments where mechanical allodynia or
hyperalgesia in the ipsilateral hindpaws, is used as the primary
endpoint.
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FIGURE 3 | The cumulative (A) mean (±SEM) PV and (B) mean (±SEM) PPT vs. time curves for Cohorts 1–3 rats administered a unilateral ip.l. injection

of FCA (n = 11), relative to that of rats that received a unilateral ip.l. injection of saline (n = 8). Between days 2 and 14 post-ip.l. injection, there was

significant (P ≤ 0.05) temporal development of edema and mechanical hyperalgesia in the ipsilateral hindpaws of FCA-rats c.f. the corresponding values for the

ipsilateral hindpaws of sham-rats. Ipsi, Ipsilateral hindpaw; Contra, Contralateral hindpaw. *P ≤ 0.05 (Two-way ANOVA, post-hoc: Bonferroni) relative to saline-injected

sham-rats.

FIGURE 4 | The cumulative mean (±SEM) PWT vs. time curves for

Cohorts 1–4 CCI- (n = 21) and sham (n = 16)-control rats. For CCI-rats,

there was a significant (P > 0.05) temporal reduction in the mean (±SEM)

PWTs of the ipsilateral hindpaw between days 2 and 14 post-CCI surgery,

relative to that of the mean (±SEM) PWT values of the ipsilateral hindpaw of

sham-control rats or the contralateral hindpaw of CCI-rats. *P ≤ 0.05

(Two-way ANOVA, post-hoc: Bonferroni) relative to sham-group rats.

Our afore-mentioned findings are aligned with previous work
by others that showed reduced burrowing behavior in rats with
FCA-induced inflammatory pain of the hindpaw (Andrews et al.,
2012; Gould et al., 2016). The utility of assessing changes in
burrowing behavior as a measure of spontaneous pain in rat
models of peripheral neuropathy (Huang et al., 2013; Lau et al.,
2013; Percie du Sert and Rice, 2014) and post-surgical pain
(Jirkof et al., 2010) has also been demonstrated. Importantly,
these studies collectively show considerable inter-rat variability in

burrowing behavior (Andrews et al., 2012; Rutten et al., 2014a,b)
in a manner similar to that reported herein.

The recognition and/or assessment of pain behavior in
laboratory rodents have historically been done using reflex-
withdrawal based behavioral paradigms (Mogil et al., 2010;
Percie du Sert and Rice, 2014). Apart from the potential for
methodological problems with these subjective stimuli-evoked
pain behavioral outcomes (Berge, 2014), they fail to measure
cognitive appraisal or the global impact of pain (Andrews
et al., 2012). Hence, evaluation of ethologically relevant rodent
behavioral endpoints, that may capture elements of ongoing pain
and/or disability, has gained considerable momentum (Percie
du Sert and Rice, 2014; Tappe-Theodor and Kuner, 2014).
This is being driven by the on-going large translational gap
between promising analgesic efficacy data generated in rodent
chronic pain models and the ability of promising compounds
so identified, to produce analgesia in early phase clinical trials
conducted in patients with chronic pain of various etiologies
(Percie du Sert and Rice, 2014; Tappe-Theodor and Kuner, 2014).

In the past 5 years, multiple measurable surrogate pain

behavioral endpoints have been shown to be altered in rodent

models of pathological pain. These include voluntary wheel

running, burrowing, place preference and facial expression

analysis (King et al., 2009; Langford et al., 2010; Andrews et al.,
2012; Cobos et al., 2012; Rutten et al., 2014a). However, as

burrowing is thought to be indicative of global well-being in

rodents, and pain affects both well-being and contact-induced

activity, altered burrowing behavior in particular, appears to

have good face validity as a surrogate pain behavioral end-point

(Andrews et al., 2012).
In the present study and subsequent work in our laboratory,

it is apparent that the normal range for baseline burrowing
of gravel in young adult male Sprague Dawley rats is in the
range 1400–1700 g over a 1 h burrowing period. Whilst there
were significant reductions (30–50%) in burrowing performance
following a unilateral i.pl. injection of FCA or unilateral CCI of
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FIGURE 5 | Cumulative mean (±SEM) weight of gravel burrowed vs. time curves for (A) Cohorts 1–3 rats administered a unilateral ip.l. injection of FCA

(n = 11) or saline (n = 8), and (B) Cohorts 1–4 rats that underwent CCI (n = 21) or sham (n = 16) surgery. (C,D) Correlation between the degree of burrowing

performance and mechanical hyperalgesia or mechanical allodynia for individual (C) FCA- and (D) CCI-rats tested. At days 2–10 following a unilateral i.pl. injection of

FCA, there was a significant (P ≤ 0.05) temporal reduction in burrowing behavior compared with insignificant changes in the burrowing behavior of sham-rats. For

CCI-rats, there was a significant (P ≤ 0.05) reduction in the mean (±SEM) weight of gravel burrowed between days 2 and 14 post-CCI surgery c.f. the corresponding

values for the sham-control rats. Significant correlation between burrowing performance and mechanical hyperalgesia was observed only on day 4/5 in FCA-rats, in

contrast to the lack of significant correlation between burrowing behavior and the extent of mechanical allodynia in the ipsilateral hindpaws of CCI-rats. *P ≤ 0.05

(Two-way ANOVA, post-hoc: Bonferroni) relative to that observed in the corresponding groups of sham-control rats.

the sciatic nerve, marked inter-cohort variability was observed in
both experimental groups. It is also possible that the observed
reduction in burrowing performance may be associated with
the presence of persistent pain in the hindpaws, resulting in
reduced locomotor activity. However, absence of a significant
correlation between the extent of burrowing performance and
hindpaw hypersensitivity in individual CCI-rats and FCA-rats,
in agreement with previous studies (Andrews et al., 2011),
suggests that the impaired burrowing observed was not due to
avoidance of pain in the hindpaws or to pain caused by the
burrowing process itself. Instead, it may result from chronic pain
that affects the motivation to burrow. This notion is supported
by previous work by others that showed reduced burrowing
behavior in rats with stavudine-induced neuropathy (Huang
et al., 2013) and in mice with post-laparotomy pain (Jirkof et al.,
2010), a model where the hind limbs are not directly affected.
Although other indices of burrowing performance, viz. latency
to onset of burrowing or duration of burrowing could have
been measured in the present study, previous research by others
showed negligible impact on such indices in rodent models of
pathological pain (Jirkof et al., 2010).

In contrast to burrowing, mechanical hyperalgesia and
mechanical allodynia were robust pain behavioral measures
that showed insignificant inter-cohort variability. Our present
data demonstrating reproducibility of these noxious mechanical

stimulus-evoked pain behavioral assays in the ipsilateral
hindpaws recapitulate historical data from our laboratory (Smith
et al., 2002, 2013) as well a large body of previous work by
others (Berge, 2011). Importantly, neither of these mechanical
hypersensitivity behaviors developed in the contralateral
hindpaws of FCA- or CCI-rats, or in either hindpaw of
sham-rats.

Most of the evoked pain behavioral assays require that
animals be restrained in the testing environments, thereby
potentially resulting in false positives/negatives due to stress-
induced analgesia, especially if the animals are not adequately
habituated to the testing environment prior to experimentation
(Mogil, 2009). However, the incidence of false positives/negatives
can be minimized by evaluation of innate burrowing behaviors
in an environment to which animals have been acclimatized.
Importantly, as burrowing is assessed in a room with the
experimenter outside, between-experimenter differences as well
as subjective experimenter bias is avoided. The burrowing assay
may also have potential for identification of drug doses that evoke
pain relief but without potentially confounding sedative side-
effects that would otherwise impair motor function (Andrews
et al., 2012; Rutten et al., 2014a).

In conclusion, the construct validity of burrowing as a
surrogate measure of spontaneous pain in rodent models of
chronic inflammatory and neuropathic pain appears to be good.
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Importantly, it is a paradigm that is ethologically relevant
to rodents and a behavioral assay that is not confounded
by experimenter bias. Due to the considerable inter-animal
variability observed in burrowing behavior, larger animal group
sizes will be needed to ensure that studies are adequately
powered. The higher costs associated with increasing group sizes
to adequately power burrowing as a pain behavioral endpoint is
well-justified if it improves translation of promising preclinical
data into positive proof-of-concept clinical trial outcomes in the
novel pain therapeutics field.
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Supplementary Figure 1 | The mean (±SEM) PPT vs. time curves for

Cohorts (A) one, (B) two, and (C) three rats administered a unilateral ip.l.

injection of FCA (n = 3–4 per cohort) or saline (n = 2–3 per cohort). For

FCA-rats, there was insignificant between-cohort variability (P > 0.05) in the

temporal development of mechanical hyperalgesia in the ipsilateral hindpaws.

Importantly, mechanical hyperalgesia did not develop in the ipsilateral hindpaws of

the corresponding groups of sham-rats.

Supplementary Figure 2 | The mean (±SEM) PWT vs. time curves for

Cohorts (A) one, (B) two, (C), three and (D) four rats that underwent CCI-

(n = 3–9 per cohort) or sham (n = 3–5 per cohort)-surgery. For CCI-rats,

there was insignificant between-cohort variability (P > 0.05) in the temporal

development of mechanical allodynia in the ipsilateral hindpaws. Mechanical

allodynia did not develop in the ipsilateral hindpaws of the corresponding groups

of sham-rats.

Supplementary Figure 3 | The mean (±SEM) weight of gravel burrowed vs.

time curves for FCA (n = 3–4 per cohort) and saline-rats (n = 2–3 per

cohort) in Cohorts (A) one [F(1, 8, 8/40) = 13.4, 7.01, 7.9], (B) two

[F(1, 8, 8/24) = 0.9, 1.5, 1.1], and (C) three [F(1, 8, 8/40) = 5.7, 1.7, 0.5], show

considerable between-cohort variability in burrowing behavior.

Supplementary Figure 4 | The mean (±SEM) weight of gravel burrowed vs.

time curves for CCI- (n = 3–9 per cohort) and sham-rats (n = 3–5 per

cohort) in Cohorts (A) one [F(1, 7, 7/77) = 1.5, 6.8, 3.7], (B) two

[F(1, 7, 7/28) = 5.7, 5.2, 1.5], (C) three [F(1, 7, 7/56) = 2.2, 1.2, 2.4], and (D)

four [F(1, 7, 7/42) = 1.9, 2.6, 1.8], show considerable between-cohort

variability in burrowing behavior.

Supplementary Figure 5 | The mean (±SEM) weight of gravel burrowed vs.

time curves for various cohorts of (A) FCA- (n = 3–4 per cohort), (B) CCI-

(n = 3–9 per cohort), (C) saline- (n = 2–3 per cohort), and (D) sham

surgery-group (n = 3–5 per cohort) rats. There was significant between-cohort

variability in the burrowing behavior of FCA- (day 2 and 4/5) and CCI-rats (day 14).

By contrast and importantly, there was no between-cohort variability for

saline-injected rats in the inflammatory pain model experiments, or for sham-rats

in the CCI-model experiments.
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