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Objective: Modern medicine needs to shift from a wait and react, curative discipline

to a preventative, interdisciplinary science aiming at providing personalized, systemic,

and precise treatment plans to patients. To this purpose, we propose a “digital twin”

of patients modeling the human body as a whole and providing a panoramic view over

individuals’ conditions.

Methods: We propose a general framework that composes advanced artificial

intelligence (AI) approaches and integrates mathematical modeling in order to provide

a panoramic view over current and future pathophysiological conditions. Our modular

architecture is based on a graph neural network (GNN) forecasting clinically relevant

endpoints (such as blood pressure) and a generative adversarial network (GAN) providing

a proof of concept of transcriptomic integrability.

Results: We tested our digital twin model on two simulated clinical case studies

combining information at organ, tissue, and cellular level. We provided a panoramic

overview over current and future patient’s conditions by monitoring and forecasting

clinically relevant endpoints representing the evolution of patient’s vital parameters using

the GNN model. We showed how to use the GAN to generate multi-tissue expression

data for blood and lung to find associations between cytokines conditioned on the

expression of genes in the renin–angiotensin pathway. Our approach was to detect

inflammatory cytokines, which are known to have effects on blood pressure and have

previously been associated with SARS-CoV-2 infection (e.g., CXCR6, XCL1, and others).

Significance: The graph representation of a computational patient has potential to solve

important technological challenges in integrating multiscale computational modeling with

AI. We believe that this work represents a step forward toward next-generation devices

for precision and predictive medicine.

Keywords: digital twin, generative adversarial networks, monitoring, graph representation learning, precision

medicine

1. INTRODUCTION

Modern medicine is shifting from a wait and react, curative discipline to a preventative,
interdisciplinary science aiming at providing personalized, systemic, and precise treatment plans
to patients. Systems and network medicine are rapidly emerging in medical research providing
new paradigms to address.
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In the next decades, precision and predictive medicine will
have a pivotal role in revolutionizing the healthcare system
making it more flexible and efficient. Precision and predictive
medicine are challenging research fields as they need to deal
with the complexity of the human body (Ginsburg and Willard,
2009; Naylor and Chen, 2010). Precision requires integrating
large amount of observations at individual and population levels
simultaneously. These measures need to be taken at different
scales, from genome to clinical and family history and at systemic
levels, i.e., considering multiple tissues and organs. In the last
years, systems and network medicine have introduced a variety
of novel approaches with the aim of integrating and gaining
knowledge on the human body. We have no capacity to integrate
such disparate information into equation-based models but we
can use machine learning and, in particular, deep learning
methods to achieve this integration goal.

The primary objective of this work is exploring challenges
and opportunities in modeling the human body as a whole,
providing a panoramic view over individuals’ conditions. To
this aim, we propose a proof of concept of a “digital twin,”
i.e., a virtual prototype of patients mirroring the underlying
biological system (Gelernter, 1993; Laubenbacher et al., 2021)
combining information at organ, tissue, and cellular level.
Existing prominent examples of digital twins in healthcare
include “the artificial pancreas” (Brown et al., 2019; Kovatchev,
2019), pediatric cardiac digital twins (Gutierrez et al., 2019; Shang
et al., 2019), and diabetes models (Eddy and Schlessinger, 2003).
However, all these examples focus on just one single aspect of
the human body due to its extreme complexity. As a result,
they are not suitable to provide a holistic overview over the
whole human body. We believe that recent graph representation
approaches could overcome digital twin’s limitations scaling
across all the variety of body signals at different levels, making
possible a revolution in healthcare. This work provides a first
proof of concept providing the first elements for a novel class
of machine-learning-assisted tools that scale to medical device
deployment and run time monitoring and verification. By fusing
ideas from systems medicine with scientific computing and
machine learning, our software integrates and automates the
analysis of vital parameters models under large uncertainty. A
high degree of automation could transform how we use models
in the scientific and medical discovery cycle and open up for
a next-generation of powerful medical devices for probing the
inner workings of full body in well-being and disease conditions.

The proposed architecture combines the qualities of
generative and (Goodfellow et al., 2014) graph-based models
(Scarselli et al., 2008) (see Figure 1). On the one hand, the
generative model can be used to produce synthetic data under
different biological states that might not be observed in reality.
By augmenting the set of explorable states of the underlying
biological system, the generative model may be employed for
the simulation of extremely rare clinical scenarios representing
precarious conditions, which might be difficult to analyze
otherwise (Yi et al., 2019). In clinical contexts, this means that
physicians will be able to set up personalized experiments in
a virtual environment representing their patients in a very
detailed and realistic way. On the other hand, the graph model

represents the actual digital twin, providing a general and flexible
framework to run probabilistic simulations. A panoramic view
of individuals’ conditions is provided by the final network
configuration that combines information at organ, tissue, and
cellular level. Cross-modal signals are also supported by the
most recent graph learning frameworks, thus allowing the
combination of different data sources, both structured and
unstructured, real or simulated by generative methods. Finally,
by relying upon flexible and modular architectures, our “digital
twin” model can be conveniently deployed in dedicated hardware
modules paving the way for a next-generation of medical devices.

2. DESIGN OF A BIOMEDICAL DIGITAL
TWIN

The birth of the term “digital twin” could be the NASA’s
Apollo program where one spacecraft was launched into the
outer space, while a “twin” spacecraft remained on earth to
mirror flight conditions. Digital twin has been defined as “an
integrated multiphysics, multiscale, probabilistic simulation of a
vehicle or system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its
flying twin” (Shafto et al., 2010; Grieves, 2015). The digita l
twin is a virtual prototype; the analysis of its digital life cycle
provides information to understand a product’s functionality,
manufacturing, behavior, and usage prior to building it. Here,
the meaning of digital twin is slightly different: there is no
product to be built, instead experimenting therapies on a digital
twin will be cost-effective and will provide us with a rigorous
testbed to conductmedical interventions.Within this framework,
the artificial intelligence model could enable the prediction of
disease trajectories before the insurgence of symptoms. The
personal medical digital twin could also represent a pragmatic
way for the cyber-physical fusion, as a new approach to support
biomedical engineering design. In our vision, a composable AI
architecture could enable the development of automatic analysis
and verification techniques that are key to translational medicine.

Our digital twin consists of a modular AI-aided system
that can be used to model the human body as a whole and
to forecast the evolution of pathophysiological conditions (see
Figure 2). The first module is based on a graph neural network
(GNN) forecasting clinically relevant endpoints (such as blood
pressure), while the second one is represented by a generative
adversarial network (GAN) providing a proof of concept of
multi-omic integrability.

2.1. The Effectiveness of GNNs and GANs
in Biomedical Signal Analysis
The lack of interpretability of deep learning models has been one
of the most significant barriers preventing their application in
healthcare. Such models exhibit great capacity (Hornik, 1991)
but understanding their behavior and following their decision-
making process is not trivial (Castelvecchi, 2016). There is a
growing body of literature focusing on interpretable artificial
intelligence and interpretable deep learning aiming at developing
white box models or at explaining black box ones (Das and Rad,

Frontiers in Genetics | www.frontiersin.org 2 September 2021 | Volume 12 | Article 652907

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Barbiero et al. Toward a Digital Twin

FIGURE 1 | Architecture of the digital twin model. The generator receives a noise vector z, and categorical (e.g. tissue type; q) and numerical (e.g. age; r) covariates,

and outputs a vector of synthetic data (x̂). The critic receives data from two input streams (real, blue; and synthetic, red), a mask m indicating which components of

the input vector are missing, and the numerical r and categorical q covariates. The critic produces an unbounded scalar y that quantifies the degree of realism of the

input samples from the two input streams. The handcrafted ODE system proposed in Barbiero and Lió (2020) is used to determine a graph representation of patient’s

physiology. The message passing neural network updates latent node features to estimate global attributes describing the evolution of the underlying physiological

system.
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FIGURE 2 | The digital twin model. Ordinary differential equations, graph neural networks, and generative adversarial networks are used synergically to model

patient’s conditions.

2020). Among such techniques, GNNs have started drawing the
attention of both research and industry communities (Bronstein
et al., 2017; Zhou et al., 2018). Such models are much more
interpretable with respect to other neural approaches thanks to
their graph structure, which is quite easy to understand from
a human standpoint, and a few studies have already shown
how graph networks can be effectively employed in biology and
healthcare (Zitnik et al., 2018; Gysi et al., 2020).

Several properties of graph and generative adversarial neural
networks make them suitable for medical data analysis. (1) Non-
linearity: Both GNNs and GANs are able to detect non-linear
patterns, which is of key interest as most systems are inherently
non-linear in nature. Examples in medicine include heart rate
dynamics, pulmonary functions, vascular structure, and gait
dynamics. There is often a loss of non-linearity and multiscale
fractal in aging and disease conditions (Goldberger et al., 2002).
(2) Interpretability: Graph-based models are much easier to
interpret with respect to other neural approaches thanks to their
structure. The possibility of interpreting the behavior of models
and the reason for their predictions is pivotal if not critical
in many fields including clinical practice. (3) Non-Euclidean
geometry: As a unique non-Euclidean data structure for machine
learning, graphs can be used to model a variety of biological
systems at different scales. Tissue and organ distributions
could be modeled as graph models where each node or the
graph contain time-dependent signals, similarly for pressure
and electric sensors positioned at various parts of the body.

Lymphatic vessels can also be modeled as a network where lymph
nodes are vertices. At lower scale, cell arrangements in tissues
form particular manifolds; proteins and genes are organized
in regulatory networks; other examples are cytoskeleton and
organelles (mitochondria networks). Additionally, diseases could
be seen as nodes in a graph where edges represent comorbidity
or underlying polygenic causes. (4) Modularity: A key property
of GNNs is modularity, which allows to learn independent
mechanisms that can be reused in several parts of the graph.
Modularity facilitates scalability and allows to model dynamic
properties of graphs. (5) Cross-modality: Both GNNs and GANs
can learn how to combine structured and unstructured data
sources, spanning different levels of biological complexity. This
is particularly relevant when integrating signals at different levels
of biological scale such as DNA methylation and functional
magnetic resonance imaging (fMRI) data. (6) Generative: Both
GNNs and GANs can learn how to generate new data preserving
the statistical properties of the training set. This could be used to
compare statistics at individual level with those at specific groups
identified with stratification analysis or at general population
levels. (7) Multiscale: The graph representation has the capability
of integrating granular information organized as networks at
different layers of biological complexity. This allows to recognize
patterns in higher-order structures such as motifs, pathways,
tissues (as compositions of cells), organs (as composition of
tissues), processes and apparatus (as composition of organs),
and stratification (as composition of individuals). (8) Spectral
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density: Together with spatial properties, GNN are amenable to
frequency domain analysis. This allows to investigate network
motifs, substructures, and periodical patterns at network levels.

2.2. Graph Neural Model
Graphs aremathematical structures that are used tomodel a set of
objects (nodes) and their mutual relationships (edges) (Bollobás,
2013). Graphs are employed in a variety of research areas as
they provide a general and flexible data structure for modeling
real-world systems (Lieberman et al., 2005; Zhou et al., 2018;
Rakocevic et al., 2019; Bica et al., 2020). GNNs are deep learning-
based models working on the graph domain (Scarselli et al., 2008;
Battaglia et al., 2018; Wu et al., 2020). Their properties have
been recently drawn the attention of the artificial intelligence
research community given their high interpretability (Lecue,
2019; Huang et al., 2020). The combination of graph theory
and neural network elements have made GNNs one of the
most promising tools to analyze complex systems in the graph
domain. From neural networks, GNNs inherit a data-driven
approach associated with a multi-layer architecture, which is the
key to extract hierarchical patterns from data. However, unlike
other deep-learning models, GNNs exploit additional features
from graph theory and other mathematical disciplines. The
main advantage with respect to other machine learning models
relies in their extremely flexible and interpretable architecture.
Once defined, the main endpoints of a system together with
their mutual relationships directly induce a corresponding
graph representation, which can be easily interpreted from a
human standpoint. The abstract graph representation can be
handcrafted, when the complexity of the underlying system
allows it, or even automatically induced from data using
generative approaches (Li et al., 2018). Hybrid techniques may
also be explored taking advantage of generative algorithms for
handling system complexity and human modeling to customize
the most relevant endpoints. The design of GNNs is based on two
basic principles, flexibility, and composability. GNNs support
different graph structures as well as flexible representations of
global, node, and edge attributes, customizable according to
specific demands of tasks.

2.2.1. Stratification of Human Body Layers in a GNN
GNNs natively allow the design of complex systems using a
modular approach. First, the complexity of the human body is
broken up by developing independent subsystems representing
genomic alterations, biological pathways, and organ physiology.
Each subsystem can be represented as a different node or a
network of nodes in a GNN, while inter-process signals can be
reframed as message passing operations supporting multiscale
ripple effects. Homogeneous subsystems can be aggregated into
layers according to their characteristics. Our digital patientmodel
is composed of four biological layers: the transcriptomic layer,
the cellular layer, the organ layer, and the exposomic layer. Other
layers can be easily implemented.

2.2.1.1. Transcriptomic Layer
The transcriptomic layer operates on the set of RNA transcripts
produced by the genome at a particular time. Currently, RNA

sequencing (RNA-seq) can measure RNA abundance across
the entire genome with high resolution. The resulting high-
throughput gene expression data can be used to uncover
disease mechanisms (Emilsson et al., 2008; Cookson et al., 2009;
Gamazon et al., 2018), propose novel drug targets (Evans and
Relling, 2004; Sirota et al., 2011), provide a basis for comparative
genomics (Colbran et al., 2019), and address a wide range of
fundamental biological problems.

In this work, we study the crosstalk between tissues in
the organ layer (see Figure 1) through the communicome,
e.g., communication factors in blood (Ray et al., 2007).
Specifically, we analyze to what extent the expression of
genes involved in the renin–angiotensin system (RAS) can
be explained by genes from signaling and receptor pathways,
including the chemokine, TNF, and TGF-β pathways. We
further develop a transcriptomics generative model based
on a generative adversarial network (Goodfellow et al.,
2014) and simulate the effects of SARS-CoV-2 infection by
conditioning on high expression of ACE2 in the lung, kidney,
and pancreas.

2.2.1.2. Cellular Layer
The cellular layer involves biological processes affecting
individual cells from metabolism and protein synthesis to
replication and motility. In this study, we focus on modeling
the RAS, one of the main biological pathways regulating blood
pressure and closely related to SARS-CoV-2 infectivity. Hence,
it represents a suitable case study to demonstrate the flexibility
and expressiveness of our GNN-based approach. The RAS is a
hormone system regulating vasoconstriction and inflammatory
response (Fountain and Lappin, 2019). The key hormone of the
system is the peptide angiotensin II (ANG-II) generated from the
decapeptide angiotensin I by the angiotensin-converting enzyme
(ACE). ANG II promotes vasoconstriction, hypertension,
inflammation, and fibrosis by activating the ANG-II type 1
receptor (AT1R) (Kuba et al., 2010; Gironacci et al., 2011).
Glucose concentration, ACE inhibitor treatments, and viral
infections binding to ACE2, such as SARS-CoV-2, can all have
a significant impact on the RAS. A high glucose concentration
may determine chronic hypertensive conditions. Reducing ANG
II production with ACE inhibitors increases vasodilation and
vasoprotection effects stimulated by the overproduction of AT2R
and ANG-(1-7) (Zaman et al., 2002). Viral infections such as
SARS-CoV-2 may also have an impact on RAS, as the virus binds
to ACE2 in order to gain entry into the host cell. This results in
an altered ACE2 activity and concentration, possibly leading to
hypertension and inflammatory response (South et al., 2020).

2.2.1.3. Organ Layer
The organ layer comprises group of tissues with similar
functions (organs) and complex networks of cooperating organs.
Given the nature of the multi-factorial disease under study,
we limited the organ layer to the circulatory system and a
physiological representation of a few organs (Barbiero and Lió,
2020): heart, lungs, and kidneys. The heart model includes four
compartments known as chambers (Neal and Bassingthwaighte,
2007). Deoxygenated blood collected from the superior and
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inferior venae cavae flows into the right atrium. When the right
atrium contracts, the blood is pumped through the tricuspid
valve into the right ventricle. From the right ventricle, the blood is
pumped into the pulmonary trunk through the pulmonary valve
flowing toward the lungs where carbon dioxide is exchanged for
oxygen. The pulmonary circulation is composed of five vascular
segments: proximal and distal pulmonary artery, small arteries,
capillaries, and veins. Oxygenated blood collects into the left
atrium via the pulmonary veins. From there, it flows into the
left ventricle through the mitral valve and it is pumped into the
aorta through the aortic valve for systemic circulation, providing
oxygen and nutrients to body cells for metabolism in exchange
for carbon dioxide and waste products. The mean arterial
blood pressure is controlled by baroreceptors, special sensory
neurons excited by a stretch in the carotid sinus and aortic arch
vessels. They relay sensory information regarding blood pressure
changes to the central nervous system where it is processed and
utilized primarily in autonomic reflexes, regulating short-term
blood pressure.

2.2.1.4. Exposomic Layer
The exposome refers to the totality of exposure individuals
experience from conception until death and its impact on chronic
and acute diseases (Wild, 2005). Toxicants, dietary regimens,
treatments, physical exercise, posture, and lifestyle habits are
possible exposures taking part to individual’s well-being or
disease condition. All such environmental factors are deeply
coupled among themselves but also with individuals influencing
the effects of new or present exposures. The exposome is
intrinsically co-dependent on a person’s genetics, epigenetics,
health status, and physiology. For instance, regular exposure
to pollution may lead to the outbreak of a lung carcinoma,
which in turn may call for clinical intervention. In this work, we
consider four types of exposures: dietary habits, physical activity,
therapeutic treatments, and viral infections.

2.2.2. Inter-process Signals and Clinical Endpoints
One of the main advantages of using GNN-based models
relies in that inter-process and multiscale communications
can be natively implemented using message passing. In a
GNN, each biological entity can be represented as a node,
while the relationship between two entities can be modeled
using directional edges. Signals exchanged between nodes are
implemented using message functions φh (see Equation 1),
which are used to update the hidden states of nodes. Such
state transition will then have an impact on messages exchanged
at the following time steps. Another strength of GNN models
consists of the possibility of supervising the evolution of the
underlying system by using the readout functions φu. Hence, the
endpoints of multi-factorial diseases can be directly controlled by
checking the output of readout functions in critical nodes. The
resulting GNNmodel will combine a simple and modular design
with a versatile structure accommodating for complex multiscale
systems where clinical endpoints can be easily monitored and
forecast in real time.

2.3. Generative Adversarial Model
One way of studying probability distributions is by means of
generative models, which describe the random phenomenon
in terms of the joint probability distribution of observed and
target variables (Jebara, 2012). Generative adversarial networks
(GANs) are a framework for estimating generative models
via an adversarial process (Goodfellow et al., 2014). They are
often described as a two-player game in which both players
are encouraged to improve. One player, the generator, creates
samples that are intended to be indistinguishable from the
ones coming from a given data distribution. The other player,
the discriminator, learns to determine whether samples come
from the fake distribution (fake samples) or the real data
distribution (real samples). Figure 3 shows the basic idea of
generative adversarial networks. With respect to other generative
models, they provide a general and flexible framework for the
analysis of joint probability distributions. The architecture itself
allows a fine control of the data generation process and a high
level of customization, making them suitable for a variety of
experimental scenarios.

2.3.1. Crosstalk Between Tissue Types
The activity of biological systems is determined by internal
factors, determined by intrinsic and functional properties, and by
external factors shaping the interconnections between different
systems. Chemical and molecular events, like oxygenation or
protein phosphorylation, are often the vehicles of biological
signals’ transduction. A chain of biochemical events forms
a signaling pathway whose activation may give rise to a
biochemical cascade of events affecting the organism at different
levels. In complex organisms, several signal transduction
pathways communicate and react reciprocally generating
biological crosstalks. Crosstalks have been widely characterized
and observed in a variety of biological processes from micro- to
macroscale from genomics (Poyton andMcEwen, 1996; Du et al.,
2015), to internal and external cell activity (Geiger et al., 2001; Li
et al., 2016), and even between tissues (Lengyel et al., 2018). In
particular, receptors and signaling factors from the chemokine,
TNF, and TGF−β pathways are known to take an active role
in tissue communication as well as inflammatory-associated
diseases (e.g., cardiovascular diseases affecting that the heart
and the stiffness of blood vessels). Here, we develop a generative
model based on a generative adversarial network to produce
synthetic transcriptomics data describing the ripple effects of
a viral infection on crosstalks between different tissues. The
aim is to demonstrate how generative approaches can be used
both to reproduce and enhance the set of observable states
of a patient allowing for a deeper understanding of complex
biological processes.

3. RESULTS

3.1. Clinical Case Studies
In Barbiero and Lió (2020), the authors proposed a
computational tool for running simulations integrating a
variety of mechanistic and phenomenological models describing
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FIGURE 3 | Generative Adversarial Network framework. The generator G(z)

receives a vector z sampled from a noise prior distribution pz, and generates a

synthetic sample xfake. The discriminator D(x) tries to distinguish real samples

from fake samples, producing the probability of x coming from the real data

distribution. The competition between the two players drives the game and

makes both players increasingly better.

the human body with ordinary differential equations (ODEs).
This computational framework is hereby used to generate
two clinical case studies. The main difference of the proposed
approach with respect to the computational tool proposed
in Barbiero and Lió (2020) consists of a different modeling
approach based on state-of-the-art AI models instead of ODEs.

The first scenario consists of an elderly patient experiencing
hypertension and type 2 diabetes with diabetic nephropathy. Her
lifestyle is mainly sedentary and her diet is rich in carbohydrates.
The patient needs a therapeutic plan for the treatment of her
hypertension. The task for the clinician is to personalize the
therapy assigning a proper daily dosage of benazepril. This
case study is used to show how the digital patient model can
be employed to simulate the evolution over time of clinical
endpoints under a set of possible therapeutic plans and to choose
the best option.

In the second scenario, the same patient is seeking medical
help for a mild flu caused by a SARS-CoV infection. For this
case study, the model can be used to constantly monitor and
forecast clinical endpoints to prevent complications threatening
patient’s life. The decreased oxygenation caused by flu may have
detrimental effects on both heart and brain activities indeed.
Studies have reported that SARS-CoV infections can activate
the blood clotting pathway by impairing left heart pumping
performance, which results in a blood back up in the lungs
and in a increased blood pressure. High blood pressure can
reduce blood vessel’s compliance decreasing blood and oxygen
flows and leading to a higher risk of developing systemic
conditions. For this reason, heparin-based therapies have been
recommended to prevent clot formation or tissue plasminogen
activator (tPA) (Sardu et al., 2020; Tang et al., 2020). Although
some variation in blood pressure throughout the day is normal,

a high blood pressure variability is associated with a higher risk
of cardiovascular disease (O’Rourke and Nichols, 2005; Mitchell
et al., 2010; Wen et al., 2015; Clark et al., 2019; Bangalore
et al., 2020) and all-cause mortality (Tao et al., 2017; Kim et al.,
2018). Clogged arteries, fibrosis, and strokes caused by blood
pressure spikes are among the main complications threatening
patient’s life and calling for the foremost necessity for treatment.
Hence, blood pressure is one of the most relevant clinical
endpoints that need to be constantly monitored in real time and
accurately forecast.

3.2. Forecasting Clinical Scenarios
3.2.1. Dataset
Our digital twin model is hereby used to actively monitor and
forecast the endpoints highlighted in the two clinical case studies.
First, the computational system described in Barbiero and Lió
(2020) based on ordinary differential equations (ODEs) is used
to generate a time series of clinical endpoints for each differential
equation with a window size of τ = 500 time steps (Barbiero
and Lio, 2020). Time series are collected, randomly shuffled, and
stacked in a dataset. Each item of the collection is randomly
assigned either to a training (ntrain = 3, 200), validation (nval =
800), or test set (ntest = 1, 000).

3.2.2. Training
The graph model is derived from the structure of the ODE
system, thus leveraging human knowledge (an example is shown
in Figure 4). Nodes correspond to variables represented by
the differential equations in Barbiero and Lió (2020) while
edges follow the underlying relationships. In a GNN-based
model, each node learns a latent representation of the state
using the messages received from its neighborhood. Hence,
the rigid mathematical structure of the ODE system is relaxed
in our model as such structure can be learned directly from
data. The learning process lasts for η = 50 epochs with a
learning rate of ǫ = 0.01. Once trained and validated, the
model is used to generate a bundle of possible trajectories for
the elements of the test set. As a result, the model estimates
a 95% confidence interval of the evolution of each variable
over time.

3.2.3. Results
Providing a complete overview of the clinical state of a patient is
not trivial. Focusing just on one endpoint might be misleading.
On the contrary, a global vision comprising pathophysiological
conditions is required in order to provide a clear and effective
overview where organs and physiological systems can be
monitored as a whole. One of the most effective approaches
consists of applying a dimensionality reduction technique (Van
Der Maaten et al., 2009) condensing the information of each
organ and projecting forecasts in a lower-dimensional space.

Figure 5 shows an overview of the clinical state of the
heart in a two-dimensional projected phase space. For each
clinical case study, a GNN-based model is used to simulate
a therapeutic intervention and its impact on blood pressure
in heart chambers (right and left atrium and ventricle).
In order to provide an overview of heart conditions, we
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FIGURE 4 | Example of how a biological system can be modeled in a graph neural network through differential equations. First, an ordinary differential equation (ODE)

system is derived from a biochemical reaction network. Then, the ODE system is solved for different initial conditions generating a set of trajectories for each variable.

Finally, a graph neural network aggregates the information coming from neighbor nodes to update the current state of the variable.

projected the predicted trajectories using principle component
analysis (PCA) (Pearson, 1901). The interpretation of both
pictures is straightforward. The first one shows the effect
of a therapeutic intervention comprising an increased
physical exercise, a reduced amount of calorie intake, and
the subscription of a daily dosage of benazepril (5 mg).
The predicted result of the prescription (green density
reporting the 95% CI of the trajectories) reveals an overall
reduction of blood pressure mean and variability in heart
chambers. This results in a reduced risk of developing severe
cardiovascular conditions with detrimental ripple effects for the
whole system.

The second figure reports the simulation corresponding to the
second case study. The same patient is seeking medical help to
treat the first symptoms of a SARS-CoV-2 infection. The first
simulation (red density) shows the long-term impact on heart
blood pressure of an untreated viral infection. In this case, blood
pressure spikes may cause irreparable damages to blood vessel
walls, reducing their compliance, and impairing their capacity
for adaptation to different environmental conditions. A synergic
therapy including both benazepril (5 mg/day) and intravenous
injection of heparin (5,000 U/ml) may have a beneficial effect on
blood pressure mean and variability (orange density). On the one
hand, benazapril lowers blood pressure by inhibiting ACE activity
in cleaving ANG-I and producing ANG-II, which is the key RAS
regulator of blood pressure. On the other hand, heparin is used
to prevent and dissolve blood clots (Sardu et al., 2020; Tang et al.,
2020). The treatment has an indirect impact on blood pressure
by making blood less dense, reducing clotting formation, and
lowering inflammation.

A lower-dimensional representation of an organ or system as
a whole could be interesting to get a rapid and clear overview of
the long-term impact of a disease or a therapeutic intervention.
Nonetheless, bundle of predicted trajectories can be visualized

and monitored individually in real time when needed in order
to investigate patterns in the time domain. Figure 5 shows an
example where blood pressure trajectories in heart chambers are
predicted in real time starting from a healthy state condition
(green density). In some cases, this representation in the time
domain might be closer to common clinical approaches, thus
providing a more conventional visualization tool for monitoring
clinical endpoints in real time.

3.3. Transcriptomics Analysis of the
Crosstalk Between Tissue Types
We hypothesize that the communication factors in blood might
be playing an important role in the development of the SARS-
CoV-2 infection by facilitating the spread of the virus in the
human body. Here, we study whether the expression of genes
involved in the RAS can be explained by genes that take part of
the communicome in blood. This analysis might shed light on
whether it is sensible to model the crosstalk between tissue types
with a GNN where tissue nodes communicate with each other
through whole blood.

3.3.1. Dataset
We leverage data from the Genotype-Tissue Expression (GTEx)
project (v8), a resource that has generated a comprehensive
collection of human transcriptome data in a diverse set of
tissues (Aguet et al., 2019). The dataset contains 15,201 RNA-
Seq samples collected from 49 tissues of 838 unique donors. We
select genes based on expression thresholds of ≥ 0.1 TPM in
≥ 20% of samples and ≥ 6 reads in ≥ 20% of samples. We
normalize the read counts between samples using the trimmed
mean of M-values (TMM) normalization method (Robinson and
Oshlack, 2010) and we inverse normal transform the expression
values for each gene. From all the donors, we select those that
have gene expression measurements for whole blood, yielding
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FIGURE 5 | Two clinical case studies represented in a projected heart phase-space. The first case study (left) shows the effect of a therapeutic intervention comprising

an increased physical exercise, a reduced amount of calorie intake, and the subscription of a daily dosage of Benazepril (5 mg). The second simulation (right) shows

the long-term impact on blood pressure of an untreated SARS-CoV-2 infection (red density) and the effects of a therapy including both Benazepril (5 mg/day) and intra

venous injection of heparin (5000 µ/ml) (orange density). (Top) Bundle of predicted trajectories can be visualized and monitored in real time in order to investigate

patterns in the time domain. The simulation shows blood pressure in heart chambers starting from healthy state conditions. Error bands represent 95% CI (Bottom).

670 unique individuals. We then match the patients’ whole blood
samples with the corresponding measurements in lung (418),
cortex of kidney (62), pancreas (257), and left ventricle of heart
(324). Finally, we use the KEGG pathway database (Kanehisa
et al., 2010) to select genes from the RAS (hsa04614), chemokine
(hsa04062), TNF (hsa04668), and TGF-β (hsa04350) pathways.

3.3.2. Results
Figure 6 shows the bootstrapped R2 scores for each gene in
the RAS pathway in different tissue types. To compute the
bootstrapped scores, we sampled donors with replacement
(sample size: 75% of the total observations), trained the ridge
regression model (Equation 5.3) on the sampled data, and
evaluated the performance on the remaining out of bag (OOB)
observations. Appendix 3 in Supplementary Material shows the
held-out performances for different regularization strengths. We

repeated this process 1,000 times to obtain a distribution of R2

scores for each gene. Our results show that the expression of
some genes in the ACE2 pathway can be partially explained
by signaling genes from whole blood. Notably, the associations
for the kidney (cortex) are weaker or non-existent, potentially
because the data are limited for this tissue (62 samples) or
because the biological associations are indeed small. Overall,
these results suggest that signaling pathways such as TNF, TGF-
β , and chemokine might be playing an important role in the
development of the SARS-CoV-2 infection.

We next model the expression of cytokines and receptors
from whole blood (TNF, TGF-β , and chemokine pathways) as
a function of cytokines from other tissue types (lung, kidney,
heart, and pancreas) (Lijnen et al., 2003; Elmarakby et al., 2007;
Rudemiller and Crowley, 2017). Figure 7 shows the bootstrapped
R2 scores for the top 20 cytokines (chemokine pathway) for each
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FIGURE 6 | Bootstrapped R2 scores for genes involved in the renin-angiotensin system for lung, heart (left ventricle), kidney (cortex), and pancreas. The input

variables are the expressions of genes in whole blood belonging to the chemokine, TNF, and TGF-β pathways.

target tissue type. These results illustrate the associations between
cytokines in blood and other tissue types, which facilitate tissue
communication and crosstalks.

3.4. Generative Model for Transcriptomics
Data
The generative model is here used to produce synthetic
transcriptomics data. By conditioning on high expression of
ACE2 in the lung, kidney, and pancreas, we aim to simulate
the effects of SARS-CoV-2 infection in the expression of
genes involved in communicome and signaling pathways
such as TNF, TGF-β , and chemokines. These pathways
are implicated in many physiological and pathological
processes including the regulation of blood pressure and
inflammatory processes, and have been hypothesized to
play a central role in SARS-CoV-2 infection (Garvin
et al., 2020). For this analysis, we use data from the
GTEx project previously described. In Appendix 2 in
Supplementary Material, we analyze the held-out performance
for different architectures of the generator and critic and describe
all the training details.

Real datasets often lack transcriptomic measurements that
account for multiple tissue types jointly. For example, out of
838 GTEx donors, only 257 of them present joint observations

for pancreas and whole blood (Figure 8 shows the distribution
of missing tissues per patient). Importantly, our model allows
to sample gene expression data for synthetic patients in every
modeled tissue type and without any missing values, facilitating
the cross-tissue analysis of gene expression.

3.4.1. Results
Figure 9 shows that the pairwise correlations between genes in
the ACE2 pathway (lung) are well-preserved in the synthetic
data. We observe that some genes in the RAS pathway (CTSA,
AGTR2, NLN, and PREP) that can be relatively well-explained
as a function of blood signaling factors (see Figure 6) are
simultaneously correlated with ACE2. This suggests that these
genes could be playing an important role in the spread of
SARS-CoV-2 in our body through blood. Next, we use the
GAN to generate multi-tissue expression data for blood and
lung, and fit a linear model to predict the expression of 170
chemokines in blood as a function of the expression of 21
genes in the renin–angiotensin pathway from lung. Figure 10
shows the R2 scores for the top 20 chemokines. We find that
some of the top predicted chemokines (e.g., CXCR6 and XCL1)
have previously been associated with SARS-CoV-2 infection
(Kusnadi et al., 2020; Liao et al., 2020). Additionally, our GAN
captures associations between inflammatory cytokines, which are
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FIGURE 7 | Bootstrapped R2 scores for several cytokines and receptors for lung, heart (left ventricle), kidney (cortex), and pancreas. For each tissue type, we show

the top 20 predicted cytokines. The input variables are the expressions of genes in whole blood belonging to the chemokine, TNF, and TGF-β pathways.

FIGURE 8 | Distribution of missing tissues per GTEx patient. This plot only considers 4 tissue types (whole blood, lung, kidney (cortex), and pancreas).
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FIGURE 9 | Pairwise Pearson correlations between genes in the renin-angiotensin system pathway in lung for real (left) and synthetic (right) data. The correlations in

the lower and upper matrices are computed from samples with low (61 samples) and high (60 samples) ACE2 expression, respectively. We use dots to label

statistically significant correlations (two-sided p-value < 0.05).

FIGURE 10 | Bootstrapped R2 scores for chemokines in blood. The input variables are the expressions of 21 genes belonging to the renin-angiotensin system

pathway in lung. This plot shows the top 20 predicted chemokines (out of 170). The transcriptomics data was generated by our GAN. Importantly, some of the top

predicted chemokines (e.g., CXCR6) have been previously associated with SARS-CoV-2 (Liao et al., 2020).
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FIGURE 11 | Pairwise correlations between inflammatory cytokines in the 4 modeled tissue types. We use dots to label statistically significant correlations (two-sided

p-value < 0.05).

known to have effects on blood pressure (Groth et al., 2014).
Figure 11 illustrates the real and synthetic pairwise correlations
for 6 inflammatory cytokines in the 4 modeled tissue types.
Finally, Figure 12 shows that it is also possible to sample data
for synthetic patients conditioned on different levels of ACE2
expression in lung.

4. DISCUSSION

In this work, we presented an interpretable digital twin
model providing an holistic view over patients’ conditions.
We tested our proof of concept on two clinical case studies
combining information at organ, tissue, and cellular level
showing the potential of our framework in clinical practice.
We demonstrate the feasibility of representing and integrating
physiological models and molecular information using GNNs
and generative adversarial networks. This composite approach
provides modularity and scalability across layers of biomedical
data, it is amenable of a battery of modeling approaches,
and generates integrated predictions that translate into patients
trajectories. We have assimilated our product to a digital twin of
the patient.

4.1. Technological Perspectives
4.1.1. Digital Twin Deployment
Mechanistic computational modeling and machine learning
should be considered together when building innovative
healthcare solutions. Building a puzzle is often an example
of participatory activity. Clinicians, mechanistic computational
modeling and machine learning researchers, data policy makers,
and public and private sectors could build a puzzle (i.e., the
healthcare) together and they should first develop a shared
vision about what is the puzzle. Our vision is to consider
a co-simulation (say doctor checkup visits vs. computational
experiments) of the two twins to allow co-verification. From a
theoretical computer science perspective, this could open the
direction of an interplay between AI and verification/synthesis
and the use of reachability analysis to identify constraints over
the well-being and disease system state space. Although different
architectures seem suitable (e.g., only GNNs, only GANs, VAEs,
etc.), our design has important advantages: the GNN could
provide a physical mapping of the human body (in the same
way a tube map or bus route is a map of a city); GANs
could be specialized on processing molecular information or
they could operate cross-modal operations such as omic–omic,
omic–clinical, and clinical–clinical.
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FIGURE 12 | Principal component analysis of the multi-tissue expression of 100 synthetic patients for different levels of ACE2 expression. Each line corresponds to a

unique patient. For each patient, we fix all the latent covariates and modify the levels of ACE2 in lung. Overexpressing ACE2 leads to changes in the expression of

other genes and these changes follow a well-defined trajectory.

4.1.2. A Modular Approach
The models presented in this work (GAN and GNN) are
independent of each other. On the one hand, the main goal
of the GNN model is to forecast various patient’s conditions
based on real or synthetic data, integrating information that
spans multiple layers of the human body. On the other hand,
the GAN model is able to generate data under different
states, effectively enriching the space of pathophysiological
conditions and endowing the digital twin with the ability to
simulate the effects of counterfactual events. The independence
of these two models enables a modular framework wherein
each module can be trained separately on a distinct data
modality. Importantly, these modules can be composed and
reused through transfer learning. In this work, we have shown
how computational models can be used to generate synthetic
training data representing physiological conditions. Following
the same principles, each module of a complex architecture
could be pre-trained on synthetic simulations, refined using
data obtained from horizontal population studies, and finally
personalized according to clinical health records.

4.1.3. Next-Generation Datasets
The GAN and the GNN models can be interconnected in a
synergistic way. In order to train the GNN effectively, it is

necessary to have access to heterogeneous, paired data modalities
(from different layers: genomic, transcriptomic, cellular, organ,
exposomic, etc.) collected from a comprehensive collection
of patients and encompassing a wide variety of conditions.
However, to the best of our knowledge, to this date no such
dataset exists. This is mainly because collecting paired, multilayer
data from patients is expensive and entails important ethical
and privacy concerns (Jobin et al., 2019; Mittelstadt, 2019). To
address this issue, our GAN framework can synthesize data
at multiple layers conditioned on the patient’s conditions (e.g.,
diabetic, hypertension, etc.) and clinical information (e.g., heart
rate, blood pressure, age, sex, ethnicity, exercise, nutrition, etc.).
This synthetic data can be used to train the GNN and impute
missing data modalities of real patients. Yet, the lack of real data
from patients remains the key limitation for the introduction of
our framework in clinical practice.

4.1.4. Explainable AI
The lack of interpretability of deep learning models has been one
of the most significant barriers preventing their application in
healthcare. Such models exhibit great capacity (Hornik, 1991)
but understanding their behavior and following their decision-
making process is not trivial (Castelvecchi, 2016). There is a
growing body of literature focusing on interpretable artificial
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intelligence and interpretable deep learning aiming at developing
white box models or at explaining black box ones (Das and Rad,
2020). Among such techniques, GNNs have started drawing the
attention of both research and industry communities (Bronstein
et al., 2017; Zhou et al., 2018). Such models are much more
interpretable with respect to other neural approaches thanks to
their graph structure, which is quite easy to understand from
a human standpoint and a few studies have already shown
how graph networks can be effectively employed in biology and
healthcare (Zitnik et al., 2018; Gysi et al., 2020).

4.2. Advantages, Limitations, and Visions
4.2.1. Toward Precision and Predictive Medicine
The future of medicine is already bound to AI (Topol, 2019).
Technological innovations are completely changing medicine
perspectives expanding its horizons and moving toward an
holistic view of human beings. The destiny of the whole
healthcare system depends on this radical paradigm shift.
Embracing AI innovations is just a technological prerequisite,
and the first step toward a total transformation of how medicine
currently works is delivered and perceived by patients. Thinking
that AI will just and mainly improve clinical decision making
is wrong. AI may actually open the doors to completely
new ways of investigating the human body as a whole.
The core and ultimate purpose of health will be developing
preventative and personalized pathways to well-being rather
than delivering treatments. The future foreseen is that AI
will assist medicine in improving diagnosis and devising
novel therapeutic strategies to deliver more effective solutions.
The current healthcare revolution will not take back all the
past technological advances, but it will show them under a
new light.

4.2.2. Patient’s Benefit
A meaningful quote about twins is the following: being a twin is
like being born with a best friend. The data integration will make
a better portrait of patient’s condition trajectories but will require
data inter-operability and data security. Technology is often not
neutral, but transformed to be biased in one way or another
(Ellul et al., 1954). Individuals can have different unforeseen
readings and usage of new technologies. It may increase both
user vulnerability and user empowerment. The vulnerability is
the combination of exposure to the variety of personal medical
data and the coping capabilities of users that could be different
between young and mature people, as young are usually quicker
in incorporating a new technology into everyday life. The user is
empowered if he/she acquires awareness and control of his/her
condition and context. A common example are online (website
and blogs) initiatives such as patientslikeme that allow the user to
search and make up his/her mind about a disease (Wicks et al.,
2010). Instead, the user disempowerment depends on the lack
of technical knowledge of how mechanisms work; this is even
enhanced in black box techniques such as deep learning.

4.2.3. Training Clinicians
We believe that improving both data integration and
predictability will provide physicians with improved medical

decisions support systems and a decrease in both costs, through
the evaluation of best therapies, and errors. A limitations is
the poor interpretability and explainability in deep learning
architectures. This limitation will also greatly affect the training
of the new clinicians on AI technologies. There are growing
efforts to make neural networks more interpretable in order
to keep the human (doctors and patients) in the loop. The
interpretability could be improved by using parallel mechanistic
computational modeling and simulations (Milanesi et al.,
2009; Bartocci and Lió, 2016), model extraction libraries (see,
for instance, Kazhdan et al., 2020), and visual inference tools
(Bodnar et al., 2020). This tool could also be complemented by
clinical decision support systems such as Müller and Lio (2020).
The complexly structured and multilevel comorbidity and frailty
patterns of most diseases describe a highly dynamical system and
are, therefore, challenging current medical therapies.

4.2.4. AI for Evidence-Based Medicine
From a clinical standpoint, AI will support a plethora of different
tasks from medical check up to personalized intervention
strategies to contrast ripple effects or to promote healthy
habits. In non-acute states, predictive inference will propose
prevention plans for comorbidity management, particularly in
presence of multiple therapies (Rivera, 2020). Increasingly large
amount of personal data will be collected to feed modular
machine learning (ML) models organized to address specific and
personalized medical issues. Clinical endpoints will be constantly
monitored, shared, and compared in order to answer relevant
research questions and to deliver the best possible service. A
deeper understanding and practice of modeling in medicine will
produce better investigation of complex biological processes, and
even new ideas and better feedback into medicine. Modeling-
based approaches combined with data-driven ML techniques
will progressively provide models with higher degree of
interpretability and generalization ability (Barbiero et al., 2020a),
which will make evidence-based medicine even more accessible
intensifying the involvement of patients in the decision-making
process. AI simulations forecasting the evolution of clinical
endpoints over time will also reshape clinical guidelines (Rivera,
2020), which will no longer be based just on horizontal
population studies. Cross-modality data will be collected for each
patient and machine learning models will be used to predict
a bundle of possible trajectories representing the future states
of the patient allowing for personalized prescriptions, surgical
planning, and medical interventions.

4.2.5. Social Impact
Ethical repercussions will also be huge (Jobin et al., 2019;
Mittelstadt, 2019). The transition will call for deeper trans-
disciplinary research and a substantial technological innovation
in a variety of research and social areas. Here, education will
play a key role in changing lifestyle habits and the way health
is perceived, communicated, and delivered (Yu et al., 2017). For
each individual, both healthcare systems and private companies
will collect, save, and eventually exploit an enormous amount of
personal data. Providing an effective, stable, and unified juridical
overview is critical on this matter (Panch et al., 2019).
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4.2.6. Next-Generation Medical Devices
AI will change the leading vehicle of medicine. The demand for
AI-powered and internet of things (IoT) devices is increasing
worldwide. The future equipment for precision medicine will
likely required to be cheap and extremely modular, but more
importantly it needs to be deployable in dedicated hardware to
be distributed in larger markets. Our digital twin model aims at
providing the first example of a novel class of AI-assisted tools for
precision and predictive medicine. Our framework is designed
to scale to medical device deployment and run time monitoring
and verification combining ideas from systems medicine with
scientific computing and machine learning. The integration of
interpretable AI models in clinical devices may lead to a deep
transformation in healthcare paving the way for a next generation
of tools for precision medicine probing the inner workings of full
body in well-being and disease conditions.

5. METHODS

5.1. Graph Neural Network
5.1.1. Graph Network Blocks
The GNN framework proposed by Battaglia et al. (2018) is
based on modules called graph network blocks (GN blocks)
representing the core computation units of a GNN. Multiple
GN blocks can be composed of or even combined with other
neural networks to generate complex architectures. A GNN can
be defined as a 3-tuple G = (u,H,E). H = {hi}i=1 :Nv is the
node set where the feature of each node is denoted by hi. E =

{(ek, rk, sk)} is the edge set where each node is represented by its
features ek, the receiver node rk, and the sender node sk. u denotes
a set of global attributes representing the state of the underlying
system. Each GN block consists of three update functions, φ, and
three aggregation functions, ρ:

e′
k
= φe(ek, hrk , hsk , u) ē′i = ρe→h(E′i)

h′i = φh(ēk, hi, u) ē′ = ρe→u(E′) (1)

u′ = φu(e′, h′, u) h̄
′
= ρh→u(H′)

where E′i = {(e′
k
, rk, sk)}, H′ = {(h′i)}i=1 :Nv , and E′ =⋃

i E
′
i = {(e′

k
, rk, sk)}k=1 :Ne . In order to train a GN block in full,

six computation steps are required, alternating the update and
aggregation functions. For each edge, E′i is computed through
the update function φe. The result is then aggregated by means
of the function ρe→v. The output ē′i corresponds to an edge
update and it is employed to update node representations h′i
by means of φh. ρe→u and ρh→u perform aggregation steps

generating ē′ and h̄
′
from edge and node updates, respectively.

Global attributes represented by u′ are computed leveraging the

information from ē′, h̄
′
, and u via the function φu. The learning

process of each GN block may be independent or co-dependent
with other blocks. Constraints may apply on edges, information
flows, or global attributes, depending on the application. In this
work, we are just interested in the evaluation of global attributes
to monitor clinical endpoints and we did not apply any learning
constraint, even if in clinical practice may still be of great interest.
Given a set of labels for global attributes t = {ti}i=1 :Nv and

the corresponding predictions provided by the GN block û′ =

{̂u′i}i=1 :Nv representing the evolution of the underlying biological
system, we aim at minimizing the following objective function:

min
θ

1

Nv

Nv∑

i=1

(
ti − û′i

)2
(2)

where θ is the set of model’s parameters.

5.1.2. Assessing Prediction Uncertainty
The aim of developing a digital patient model is to provide an
accurate estimation of the trajectory of a patient by forecasting
clinically relevant endpoints. In such a context, quantifying
model uncertainty is critical. One of the most established
techniques relies upon the use of dropout (Srivastava et al., 2014)
at test time, as a Bayesian approximation, without sacrificing
either computational complexity or test performance (Gal and
Ghahramani, 2016b). In this framework, the first two moments
of the predictive distribution q performing T stochastic forward
passes for a sample x∗ with label y∗ can be estimated as (Gal and
Ghahramani, 2016a):

Eq(y∗ ,x∗)(y
∗) ≈

1

T

T∑

i=1

ŷ∗(x∗,Wt
1, . . . ,W

t
L) (3)

Varq(y∗ ,x∗)(y
∗) ≈ τ−1ID

+
1

T

T∑

i=1

ŷ∗(x∗,Wt
1, . . . ,W

t
L)

T ŷ∗(x∗,Wt
1, . . . ,W

t
L)

− Eq(y∗ ,x∗)(y
∗)TEq(y∗ ,x∗)(y

∗) (4)

where ŷ∗ is the predicted label, {Wi}
L
i=1 is a set of random

variables representing the weights of a neural network with L
layers, ID is an identity matrix, D is the number of output units
of the neural network, and τ is a precision hyper-parameter.
The method has also been generalized to convolutional (Gal
and Ghahramani, 2015) and recurrent networks (Gal and
Ghahramani, 2016c).

Here, we show how such technique can be used to quantify
the uncertainty of a GNN by generating a predictive distribution
of the trajectories representing the future states of the patient.
Let x∗1 , . . . , x

∗
k
be a sequence of real values representing a clinical

endpoint measured at 1, . . . , k time steps. Let f t be a stochastic
model that takes a sequence x∗1 , . . . , x

∗
k
as input and it outputs a

prediction ŷ∗ ∈ R. We are interested in estimating a predictive
distribution of the trajectories of the variable x over the next
k + 1, . . . , k + h time steps. To this aim, we can use an iterative
algorithm by generating one trajectory at a time. The first
prediction ŷ∗

k+1 can be generated as:

ŷ∗,t
k+1 = f t(x∗1 , . . . , x

∗
k) (5)

By using the obtained prediction and sliding the time window
one time step further, we can generate the first prediction for the
second time step k+ 2:
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ŷ∗,t
k+2 = f t(x∗2 , . . . , x

∗
k , ŷ

∗,t
k+1) (6)

The procedure can be repeated for k + h time steps to generate
a single trajectory. Model uncertainty can be assessed building
multiple trajectories by performing T stochastic forward passes.
The resulting algorithm is equivalent to a Monte Carlo sampling
as proven by Gal and Ghahramani (2016b). In our GNN model,
the approach we just described can be easily applied for each node
in order to assess the uncertainty of clinical endpoints.

5.2. Generative Adversarial Network
Consider a dataset D = {(x,m, r, q)} of samples from an
unknown distribution Px,m,r,q, where x ∈ R

t×n represents a
matrix of n gene expression values in t tissues; m ∈ {0, 1}t is
a mask vector indicating whether the expression of each tissue
has been measured for the given patient; and r ∈ R

k and
q ∈ N

c are vectors of k quantitative covariates (e.g., age) and
c categorical (e.g., gender), respectively. Our goal is to produce
realistic gene expression samples by modeling the conditional
probability distribution P(X = x|M = m,R = r,Q = q), where
r includes the expression of ACE2 in different tissues (e.g., lung,
kidney, and pancreas). By modeling this distribution, we can
sample data for different conditions and quantify the uncertainty
of the generated expression values.

To address this problem, we extend the model proposed in
Viñas et al. (2021) to simultaneously account for t tissue types
from the same donor. In particular, our method builds on a
Wasserstein GAN with gradient penalty (WGAN-GP) (Arjovsky
et al., 2017; Gulrajani et al., 2017). Similar to Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014), WGAN-
GPs estimate a generative model via an adversarial process
driven by the competition between two players, the generator
and the critic.

The generator aims at producing samples from the conditional
P(X|M,R,Q). Formally, we define the generator as a function
Gθ :R

u × R
k × N

c → R
t×n parameterized by θ that generates

gene expression values x̂ as follows:

x̂ = m⊙ Gθ (z, r, q) (7)

where z ∈ R
u is a vector sampled from a fixed noise distribution

Pz and u is a user-definable hyperparameter. We apply the mask
m element-wise to match the distribution of missing tissues of
the training dataset.

The critic takes gene expression samples x from two input
streams (the generator and the data distribution) and attempts to
distinguish the true input source. Formally, the critic is a function
Dω :R

t×n × {0, 1}t × R
k × N

c → R parameterized by ω that we
define as follows:

ȳ = Dω(x̄,m, r, q)

where the output ȳ is an unbounded scalar that quantifies the
degree of realism of an input sample x̄ given the covariates r and
q (e.g., high values correspond to real samples and low values
correspond to fake samples). When the expression of a certain
tissue t is unavailable for a given patient, we set the unobserved

values of tissue t in x̄ to 0 and the t-th component of the maskm
to 0.

We optimize the generator and the critic adversarially.
Following (Arjovsky et al., 2017), we train the generator Gθ and
the critic Dω to solve the following minimax game based on the
Wasserstein distance:

min
θ

max
ω

E
x,m,r,q∼Px,m,r,q

[
Dω(x,m, r, q)− E

z∼Pz

[Dω(x̂,m, r, q)]
]

subject to ||Dω(xi,m, r, q)− Dω(xj,m, r, q)|| ≤ ||xi − xj||

∀xi, xj ∈ R
t×n,m ∈ {0, 1}t , r ∈ R

k, q ∈ N
c

(8)

where x̂ is defined as in Equation (7) and the constraint enforces
a soft version of the 1-Lipschitz constraint (e.g., the norm of the
critic’s gradient with respect to xmust be at most 1 everywhere).

Let {(xi,mi, ri, qi)}bi=1 be a mini-batch of b independent
samples from the training dataset D. Let {z1, z2, ..., zk} be a set
of k vectors sampled independently from the noise distribution
Pz and let us define the synthetic samples corresponding to the
mini-batch as x̂i = mi ⊙ Gθ (zi, ri, qi) for each i in [1, 2, ..., k].
We solve the minimax problem described in Equation (8) by
interleaving mini-batch gradient updates for the generator and
the critic, optimizing the following problems:

Generator: min
θ

−
1

k

k∑

i=1

Dω

(
x̂i,mi, ri, qi

)

Critic: min
ω

1

k

k∑

i=1

Dω

(
x̂i,mi, ri, qi

)
− Dω(xi,mi, ri, qi)

+
λ

k

k∑

i=1

(
||∇x̃iDω(x̃i,mi, ri, qi)||2 − 1

)2

(9)

where λ is a user-definable hyperparameter and each x̃i is a
random point along the straight line that connects xi and x̂i, that
is, x̃i = αixi + (1 − αi)x̂i with αi ∼ U(0, 1). Intuitively, since
enforcing the 1-Lipschitz constraint everywhere is intractable
(see Equation 8), the second term of the critic problem is a relaxed
version of the constraint that penalizes the gradient norm along
points in the straight lines that connect real and synthetic samples
(Gulrajani et al., 2017).

5.2.1. Architecture
Figure 1 shows the architecture of both players. The generator G
receives a noise vector z as input (green box) as well as sample
covariates r and q (orange boxes) and produces a vector x̂ of
synthetic expression values (red box). The critic D takes either a
real gene expression sample x (blue box) or a synthetic sample x̂
(red box), in addition to sample covariates r and q, and attempts
to distinguish whether the input sample is real or fake. For both
players, we use word embeddings (Mikolov et al., 2013) to model
the sample covariates (light green boxes), a distinctive feature
that allows to learn distributed, dense representations for the
different tissue types and, more generally, for all the categorical
covariates q ∈ N

c.
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Formally, let qj be a categorical covariate (e.g., tissue type) with
vocabulary size vj, that is, qj ∈ {1, 2, ..., vj}, where each value in
the vocabulary {1, 2, ..., vj} represents a different category (e.g.,
whole blood or kidney). Let q̄j ∈ {0, 1}vj be a one-hot vector
such that q̄jk = 1 if qj = k and q̄jk = 0 otherwise. Let dj be
the dimensionality of the embeddings for covariate j. We obtain
a vector of embeddings ej ∈ R

dj as follows:

ej = Wjq̄j

where each Wj ∈ R
dj×vj is a matrix of learnable weights.

Essentially, this operation describes a lookup search in a
dictionary with vj entries, where each entry contains a learnable
dj-dimensional vector of embeddings that characterizes each of
the possible values that qj can take. To obtain a global collection
of embeddings e, we concatenate all the vectors ej for each
categorical covariate j:

e =
∥∥∥
c

j=1
ej

where c is the number of categorical covariates and ‖

represents the concatenation operator. We then use the learnable
embeddings e in downstream tasks.

In terms of the player’s architecture, we model both the
generator Gθ and critic Dω as neural networks that leverage
independent instances eG and eD of the categorical embeddings
for their corresponding downstream tasks. Specifically, we model
the two players as follows:

Gθ (z, r, q) = MLP(z‖r‖eG) Dω(x̄,m, r, q) = MLP(x̄‖m‖r‖eD)

where MLP denotes a multilayer perceptron.

5.3. Ridge Regression
We model the expression of genes from the renin-angiotensin
system in lung, kidney, pancreas, and heart as a function of
genes in the chemokine, TNF, and TGF-β pathways in blood. Let
Y = (Y1, ...,Yn)⊤ and X = (X1, ...,Xm)⊤ be multivariate random
variables representing the expression of the n genes in the renin-
angiotensin system and the m genes in the signaling pathways,
respectively. Our model is based on ridge regression (Hoerl and
Kennard, 1970):

Y = XW+ ǫ

whereW ∈ R
m×n is a matrix of learnable weights and ǫ ∈ R

n are
the residuals. We optimize the following objective:

min
W

||Y− XW||22 + α||W||22

where α is a hyperparameter that controls the regularization
strength. Alternative non-linear models such as support vector
machines, Gaussian processes, and random forests did not
improve our cross-validation scores.
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