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ABSTRACT

We present a structure-based method for finding
and evaluating structural similarities in protein re-
gions relevant to ligand binding. PDBspheres com-
prises an exhaustive library of protein structure re-
gions (‘spheres’) adjacent to complexed ligands de-
rived from the Protein Data Bank (PDB), along with
methods to find and evaluate structural matches be-
tween a protein of interest and spheres in the library.
PDBspheres uses the LGA (Local–Global Alignment)
structure alignment algorithm as the main engine
for detecting structural similarities between the pro-
tein of interest and template spheres from the li-
brary, which currently contains >2 million spheres.
To assess confidence in structural matches, an all-
atom-based similarity metric takes side chain place-
ment into account. Here, we describe the PDB-
spheres method, demonstrate its ability to detect
and characterize binding sites in protein structures,
show how PDBspheres––a strictly structure-based
method––performs on a curated dataset of 2528
ligand-bound and ligand-free crystal structures, and
use PDBspheres to cluster pockets and assess struc-
tural similarities among protein binding sites of 4876
structures in the ‘refined set’ of the PDBbind 2019
dataset.

INTRODUCTION

Interactions between proteins and small-molecule ligands
are a cornerstone of biochemical function. Modern drug
discovery often relies on structural information about the
target of interest (typically a protein). However, when a
new structure is obtained, it may be the case that little
is known with regard to potential binding sites on that
structure. Numerous studies have focused on understand-
ing protein–ligand interactions [e.g. (1,2)] to further the de-
velopment of binding site prediction methods [e.g. (3–6)]

as well as benchmark datasets [e.g. (7–11)] used to com-
pare and evaluate their performance. In general, the binding
site prediction methods can be categorized into three broad
sets: (i) template-based methods that use known protein in-
formation; (ii) physics-based methods that rely on geome-
try (e.g. cavity detection) and/or physicochemical proper-
ties (e.g. surface energy interactions with probe molecules);
and (iii) machine learning (ML)––rapidly developing in re-
cent years––methods capable of efficiently processing infor-
mation collected in their training datasets. For ML meth-
ods, data can come from both experiments and in silico
data processing, as described, for example, in (12–15). Our
method, PDBspheres, is template based; however, it re-
lies solely on local structure conformation similarities with
templates extracted from structures from the Protein Data
Bank (PDB)––i.e. PDBspheres does not use any prior in-
formation from libraries of sequences, motifs or residues
forming binding sites that are collected separately to en-
hance the method performance. In general, template-based
methods can be categorized as (i) those that rely on only
protein sequence, e.g. Firestar (16), (ii) those that rely on
only protein structure, e.g. SP-ALIGN (17), or (iii) those
that rely on both sequence and structure, e.g. Concavity
(18). Some methods, e.g. SURFNET (19), are classified
as structure-based methods, but since they use geomet-
ric characteristics, they are grouped within geometry-based
methods (20).

One of the strengths of the developed PDBspheres
method is that in the binding site searches we use only
those template models of cavities (PDBspheres library) that
are already observed as protein–ligand binding sites in
other proteins (experimentally solved protein–ligand com-
plexes deposited in the PDB). This approach ensures that
any structural shape that might resemble a cavity in eval-
uated protein models––e.g. holes within interchain inter-
faces, missing fragments in coordinates or other structural
imperfections in geometry––will not be reported by PDB-
spheres searches as cavity candidates, simply because they
are not evidenced as ligand-binding cavities in reality, i.e.
in confirmed-by-experiment PDB structures. To resolve the
problem with this kind of false-positive pocket assignments,
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some template-based methods may need additional infor-
mation about proteins collected from calculated sequence
alignments, patterns in residues forming binding sites, etc. A
natural strength of structure template-based methods such
as PDBspheres lies in their ability to detect similar bind-
ing sites and help determine the biochemical function even
if the sequence identity is very low, i.e. when similarity be-
tween pockets cannot be detected with confidence based
on the sequence. A limitation, however, of the PDBspheres
method is that its library depends on structural information
derived from the PDB database, so identification of a new
pocket or function relies on data availability in the PDB, i.e.
pockets having shapes not represented in the PDB will not
be found.

In the PDBspheres method, binding sites are identified
exclusively based on the structure similarity between re-
gions from the query protein and pocket spheres from the
PDBspheres library. Ligand placement within a predicted
pocket is calculated based on a protein–sphere superposi-
tion, i.e. an agreement in structure conformation between
atoms from the query protein and protein atom coordi-
nates from the template sphere. The main premise of struc-
ture template-based binding site prediction methods is that
the number of pockets is limited (2); therefore, each one of
them may serve as a binding site for a large diversity of
ligands (17). However, possible conformations of ligands
bound in the pocket are also limited. Indeed, when we pre-
dict a ligand–protein conformation, we focus on what parts
of the ligand (e.g. its core region) need to be in a correct
conformation, i.e. a conformation that can be confirmed by
experiment and from which the binding affinities can be es-
timated. Usually such ‘correct’ conformations are shared
between ligands that bind a given pocket (at least shared
by their ‘core’ regions). The evaluation of the correctness of
the ligand placement within a pocket is not an easy task.
For example, when for a given protein two pocket predic-
tions with different ligands inserted need to be evaluated, a
simple calculation and comparison of the ligand centroids
(the center of mass of the bound ligands) can be mislead-
ing. This is because the two predictions may differ in as-
signed placements of the ligands within a pocket (especially
when the pocket size is large allowing the ligands to fit in
different areas within the cavity), or the ligand sizes and
their shapes are different [e.g. some parts of the ligands can
be exposed outside the pocket with different orientations
(21); see Figure 1]. These difficulties in the assessment of
the accuracy of binding site predictions and ligand place-
ments within predicted pockets could be overcome when
we focus on the evaluation of residues interacting with the
bound ligands. In Figure 1, we present an example of the
b1 domain from the human neuropilin-1 (PDB 2qqi) where
two different poses of the same ligand EG01377 (PDB ID:
DUE) are possible (21). Superposition of two experimen-
tally solved structures of neuropilin-1 b1 domain in com-
plex with EG01377 shows almost identical protein structure
conformations, while poses of bound ligands differ signifi-
cantly outside the ‘core’. The distance between centroids of
the ligand’s two orientations placed in the pocket is >4.6 Å
when the centroid is calculated on all ligand’s atoms, and
only 0.7 Å when it is calculated on the buried parts of the
ligand––‘core’.

Knowing the correct ‘core’ conformation of the ligand
within the pocket (i.e. the pose of the conserved part) can
significantly improve ‘in silico’ drug discovery; it can be
used in compound screening/docking efforts as a pre-filter
for selection of most promising compounds for a more de-
tailed and expensive computational evaluation. Currently,
there are millions of compounds screened using docking
or molecular mechanics-generalized Born surface area ap-
proaches. These methods are widely used to estimate ligand-
binding affinities in identified binding sites of targeted pro-
teins to find good candidates for a further (experimental)
analysis of potential inhibitors.

Assessment of the performance of binding site predic-
tion methods is not an easy task because they may per-
form differently on different benchmarks. In Critical As-
sessment of Protein Structure Prediction (CASP) experi-
ments (rounds 8, 9 and 10) (22–24), an attempt was made to
compare different ligand binding residue prediction meth-
ods, but it was found that the assessment might be biased
(not enough targets, targets not diverse enough to repre-
sent different families, folds, ligand type and ligand bind-
ing sites) and this category was subsequently dropped from
CASP. A comprehensive benchmark dataset was recently
designed by Clark et al. (25,26). It covers 304 unique pro-
tein families with 2528 structures in 1456 ‘holo’ and 1082
‘apo’ conformations. A detailed comparison analysis us-
ing this benchmark dataset was performed on seven bind-
ing site prediction methods (25). The authors decided to
exclude template-based methods from their evaluation to
avoid unfair comparison with non-template-based meth-
ods. As stated in (25), template-based methods use ‘libraries
of sequence-based template information’, which ‘would in-
evitably lead to the use of holo structure knowledge to solve
the binding site locations in apo structures’. So, it was ex-
pected that template-based methods would easily outper-
form non-template-based methods on the benchmark. The
accuracy of pocket prediction methods in Clark et al.’s (25)
analysis and during CASP was measured mainly by the
Matthew’s correlation coefficient (MCC). This metric as-
signs high scores not just when at least one residue in a given
binding site is identified correctly, but rather rewards meth-
ods with more correct and less false predictions of contact
residues implying which of the algorithm pocket predictions
are close to the ‘correct’ location on the binding surface of
the protein. In this paper, we use the same metric to evalu-
ate the performance of our method with varying datasets of
structural templates used by PDBspheres to make predic-
tions. Our reported results were merged with results from
the assessment of non-template-based methods performed
by Clark et al. (25) in Table 1 and also a discussion of the
performance of template-based methods from CASP (22–
24) is included to illustrate how PDBspheres places within
these methods and what the limits of structure-based pocket
prediction methods may be.

MATERIALS AND METHODS

The PDBspheres system is designed to help assess the sim-
ilarity between proteins based on their structure similarity
in selected local regions (e.g. binding sites, protein interfaces
or any other local regions that might be structurally charac-
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Figure 1. (A) Example of the b1 domain from the human neuropilin-1 (PDB 2qqi) where a single pocket can serve as a binding site for many different ligands.
(B) Zoom-in to the pocket that can accommodate ligands of different sizes. A list of ligands includes 6JY.20 (Arg-7), 6K8.24 (Arg-6), 8DR.32 (EG00229),
AAG.15 (M45), AR5.19 (Arg-5), BCN.23 (bicine), DUE.40 (EG01377), HRG.13 (Arg-1) and R40.22 (Arg-4), where ligand information ‘PDBid.size’ is
provided with a size representing a number of heavy atoms. (C) Two different poses of the ligand DUE.40 (EG01377) are reported in (21) and identified
by PDBspheres based on two templates: 6fmc and 6fmf. (D) Superposition of two experimentally solved structures of neuropilin-1 b1 domain in complex
with EG01377 (in green: PDB 6fmc at resolution of 0.9 Å; in red: PDB 6fmf at resolution of 2.8 Å) shows almost identical protein structure conformations,
while poses of bound ligands differ significantly outside the core. The distance between centroids of the ligand’s two orientations when placed in the pocket
is >4.6 Å.

teristic of a particular group of proteins). The PDBspheres
system has three main components: (i) the PDBspheres li-
brary of binding site templates; (ii) a structure similarity
search algorithm to detect similarity between evaluated lo-
cal structural regions (e.g. binding sites); and (iii) numerical
metrics to assess confidence in detected similar regions.

Currently, the PDBspheres library (ver. 2021/10/13) con-
tains 2 002 354 compound binding site models (template
spheres) and 67 445 short-peptide binding site models de-
rived from protein structures deposited in the PDB database
(27).

The Local–Global Alignment (LGA) program (28) is
used to perform all structure similarity searches. While
comparing two structures, the LGA algorithm generates
many different local superpositions to detect regions where
proteins are similar, and calculated similarity scores are
not affected by some perturbations in small parts of com-
pared proteins. In essence, LGA assesses structure similar-
ity based on detected conserved parts between two proteins
or protein fragments while removing small deviating regions
from calculated scores. This capability of LGA allows accu-
rate detection of similar pocket shapes. The main metrics to
assess confidence in detected pockets are a scoring function
LGA S [a combination of global distance test and longest
continuous segment measures (28)], which evaluates struc-
ture similarities on C-alpha and/or C-beta levels, and GDC

[global distance calculations (29)], which allows evaluation
on an all-atom level, i.e. extending structure similarity eval-
uation to the conformation of side chain atoms.

When applied to predict protein binding sites in a given
protein structure, PDBspheres detects ligand–protein bind-
ing regions using the pocket/sphere templates from the
PDBspheres library constructed from all available struc-
tures deposited in the PDB database. After a binding pocket
is detected, the ligand(s) from matching template(s) is/are
inserted into the identified pocket in a query protein to il-
lustrate an approximate location of the ligand. The loca-
tion is approximate because it is based on the alignment of
the query protein with the template protein spheres, and no
docking or any energy minimization or structure relaxation
is undertaken. Thus, it should be noted that PDBspheres is
not a docking system to predict de novo ligand poses within
a binding site. However, further relaxation of the predicted
protein–ligand complex can be considered as the next step
to improve a ligand placement within a pocket (which is a
subject of continuing PDBspheres system development).

In the process of detecting pocket candidates within pro-
tein structures, similarity searches can be performed us-
ing all templates in the PDBspheres library (i.e. exhaustive
search, testing all 2.0 M pockets from the library), or if time
is prohibitive, searches can be performed on a preselected
subset of the sphere templates. For example, the preselec-
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Table 1. Median of family median F scores and MCCs for apo and holo datasets for all seven ‘non-template-based’ LBS prediction methods described in
(25) and PDBspheres (for which mean values are also given, the second line in the rows for PDBspheres)

Method Apo Holo Apo Holo

F F IQR F F IQR MCC MCC IQR MCC MCC IQR

SURFNET 0.23 0.23 0.23 0.24 0.22 0.26 0.23 0.28
Ghecom 0.48 0.5 0.54 0.55 0.5 0.54 0.53 0.62
LIGSITE 0.48 0.46 0.52 0.48 0.46 0.52 0.5 0.56
Fpocket 0.42 0.57 0.53 0.56 0.43 0.61 0.51 0.62
Depth 0.4 0.29 0.42 0.27 0.38 0.29 0.4 0.27
AutoSite 0.35 0.59 0.45 0.6 0.34 0.67 0.42 0.67
Kalasanty 0.49 0.51 0.51 0.43 0.48 0.56 0.54 0.48
PDBspheres(100) 0.81 0.14 0.82 0.15 0.80 0.15 0.82 0.15

0.80 0.82 0.79 0.81
PDBspheres(90) 0.77 0.18 0.79 0.16 0.76 0.18 0.77 0.17

0.73 0.74 0.72 0.73
PDBspheres(80) 0.76 0.17 0.78 0.18 0.75 0.18 0.77 0.18

0.72 0.73 0.71 0.72
PDBspheres(70) 0.76 0.19 0.78 0.17 0.75 0.19 0.77 0.17

0.71 0.73 0.70 0.72
PDBspheres(60) 0.76 0.19 0.78 0.17 0.75 0.19 0.77 0.17

0.71 0.72 0.70 0.72
PDBspheres(50) 0.75 0.20 0.77 0.17 0.74 0.20 0.75 0.19

0.70 0.71 0.69 0.70

Interquartile range (IQR) describes the difference between maximum and minimum scores within the middle 50% of values when ordered from lowest
to highest. IQR indicates how close the middle 50% of family F and MCC values are to their respective medians. F and MCC scores are described in the
‘Benchmark dataset and evaluation metrics’ section.

tion process can be based on specific targeted ligands (e.g.
their names or sizes) or can be limited to those template
spheres from the PDBspheres library that come from ho-
mologous proteins. The computational time of the struc-
ture processing can vary depending on the size of the protein
or the number of template spheres from the PDBspheres li-
brary preselected by the system for the pocket detection and
similarity evaluation. An exhaustive search (against the en-
tire PDBspheres library) can take >1 day on a single pro-
cessor machine; however, with the above-mentioned pres-
election procedures, the calculations can be completed in
<1 h for medium size proteins. For example, the process-
ing of three protein structures discussed in the manuscript
and illustrated in Figure 1 (neuropilin-1, 158aa), Figure 2
(PL2pro, 318aa) and Figure 6 (tryptase, 248aa) took 7, 52
and 50 min, respectively, on a single processor with a 16-
core machine.

The clustering of identified pocket–sphere matches and
their corresponding ligands characterizes distinct pocket re-
gions within the protein by the sets of residues interacting
with inserted ligands. The clustering of interacting residues
allows identification of overlapping parts of ligands that ap-
proximate the ligand’s ‘core’ conformation within detected
pockets and for each cluster defines a representative set
of residues forming a consensus pocket. An example of
an identified cluster of pocket spheres is shown in Figure
2. Each protein may have more than one such consensus
pocket.

PDBspheres library

Each protein–ligand template sphere in the PDBspheres li-
brary is a subset of the records from a corresponding PDB
entry, consisting of the coordinates of all atoms belonging
to a given ligand and coordinates of all protein atoms be-
longing to residues near that ligand (water atoms are ex-

cluded). The protein residue is part of the sphere if at least
one of its atoms is within 12.0 Å of any atom of the lig-
and. Previous research indicated that distances of 7.5 Å are
sufficient to capture informative functional properties for
clustering purposes (30); however, based on our experimen-
tation using the LGA program for detecting local struc-
ture similarities, we expanded the distance to 12.0 Å. This
size of the ‘template sphere’ is sufficient to capture local
structural environment of the ligand for protein structure
comparative needs. Our tests indicated that >12 Å spheres
would affect accuracy in calculated structure conformation-
based local residue–residue correspondences between tem-
plate spheres and the query protein within detected pockets’
regions. On the other hand, the <12 Å distance criteria may
not provide sufficient fold constraints to capture the unique-
ness of searched pockets. To assist in identification of func-
tional residues, PDBspheres also collects and reports infor-
mation on protein–ligand interface residues. These residues
are identified as those of which at least one atom is within
4.5 Å of any ligand atom.

In the PDBspheres library, the 12.0 Å ‘sphere’ entries
have been constructed for each ligand in the PDB, includ-
ing peptides, metals and ions, although the library includes
only peptides containing 25 or fewer residues. The library
is updated weekly in coordination with new PDB releases.
As of 13 October 2021, the library consisted of 2 069 796
spheres (binding site templates).

The primary use of the PDBspheres library is to identify
‘sphere’ protein structures that are structurally similar to re-
gions of a query protein structure. The query protein struc-
ture may be a complete, multimeric assembly, or it may be
a single subunit of such an assembly, or even a fragment
of a protein as long as it carries enough structural infor-
mation (local structure conformation formed by atom co-
ordinates) to reflect a structural shape of a putative binding
site.
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Figure 2. Identified in PL2pro pocket cluster #1. A list of identified ligands includes three important inhibitors: GRL0617, Jun9-72-2 and VIR250. Agree-
ment in sets of contact residues is also observed (see Figure 4).

PDBspheres similarity searches

The fundamental identification method used by PDB-
spheres is structural alignment of a sphere with the query
protein structure and the assessment of the structural
match. For a general use, a comprehensive search––i.e.
a structural alignment-based search of the entire PDB-
spheres library (over 2 million sphere templates)––would
be computationally expensive. One means to address this
issue is to conduct an initial search for matches to a
query protein structure on a subset of sphere templates.
Then, if needed, the search can be expanded to addi-
tional templates from the library. In its current implemen-
tation for possibly faster processing, the PDBspheres li-
brary searches can be restricted to a subset of template
spheres selected based on (i) ligand specificity, e.g. lig-
and names, their sizes or similarities, or (ii) sequence sim-
ilarity between the query protein and PDB proteins from
which the PDBspheres library entries were derived. In
the latter approach, the sequence similarity searches are
conducted using the Smith–Waterman algorithm against
FASTA-format sequences of all proteins contributing to the
PDBspheres library entries. In the current version of PDB-
spheres, the Smith–Waterman algorithm ‘ssearch36’ (31) is
used.

In the PDBspheres library, each sphere template entry in-
cludes a number of characteristics such as the ligand name
(PDB ligand ID), the number of heavy atoms in the ligand
and the number of residues in the protein fragment forming
the protein–ligand ‘sphere’ (i.e. the size of the pocket tem-
plate). Thus, the list of matching spheres can be screened
using specific criteria related to the expected pocket size, ex-
act ligand name or ligand similarity. A selection of the tem-
plate spheres based on the estimated similarity between the
expected ligand and the PDB ligands from the PDBspheres

system can be quantified by the Tanimoto or Tversky simi-
larity indexes (32).

After a selection of template spheres is completed, each
member of this set is evaluated by assessing its structure
similarity with a query protein. The evaluation is performed
in two steps: (i) detection of the region resembling the bind-
ing site shape and (ii) assessment of the similarity in residue
conformations including a conformation in their side chain
atoms. The primary search involves a calculation of struc-
tural alignment between template spheres and a query pro-
tein. The structural alignment is conducted using the LGA
program and is calculated using a single point represen-
tation of aligning residues (C-alpha atoms, C-beta atoms
or any other point that can represent a residue position).
The structural similarity search returns similarity scores
(LGA S) and alignments between template spheres of var-
ious pockets and the query protein. The final evaluation
of identified pockets is done by assessing similarities in the
conformation of all atoms (including side chain atoms) us-
ing the GDC metric.

The PDB ligand from the sphere template is translated
and rotated according to the transformation that results
from aligning the sphere template atoms to the query pro-
tein atoms. The ligand atoms are not considered in this
alignment, and their conformation is not altered. It means
that potential steric clashes between protein residues and
atoms of ‘inserted’ ligands can be observed. The number of
possible clashes is reported.

PDBspheres reports the following set of characteristics
for all pockets detected within a given protein:

1. PDB identifier of the protein structure from which a
template sphere matching the query protein pocket was
derived.
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2. PDB identifier of the ligand from the template sphere
matching the query protein pocket.

3. List of residues in the query protein in direct contact
with the inserted ligand (residues within the distance
≤4.5 Å).

4. Coordinates of the centroid of the ligand inserted into
the detected pocket in the query protein.

Because the pocket searches can match template spheres
to different regions of the query protein, all identified
pocket candidates are organized into clusters. Within the
PDBspheres approach, the merging and clustering of indi-
vidually detected pockets (i.e. pockets detected based on in-
dividual template spheres) is performed to satisfy the fol-
lowing two criteria:

1. Within each cluster, the pockets are grouped together
based on sets of query protein residues interacting
with inserted ligands. When >80% of predicted contact
residues are the same, then these sets are merged to de-
fine residues forming the pocket.

2. Pockets and the sets of residues identified as in contact
with ligands are merged when the inserted ligands over-
lap (the distances between ligand centroids are not larger
than 2.0 Å).

This grouping of pockets and their corresponding in-
serted ligands allows to define sets of residues interacting
with similar ligands and also helps identify overlapping
parts of different ligands. Such overlapping parts can ap-
proximate the ligand’s ‘core’ conformation, whose protein
contact residues can be used to define representative (con-
sensus) pockets within the protein.

For a given protein, the following set of measurements
and scorings are provided to help assess the confidence level
of the pocket prediction (see examples provided in Figure 4
and Supplementary File S1):

• LIGAND: protein–ligand template sphere identifier that
includes PDB ID of the ligand, ligand size and PDB ID
of the protein–ligand complex from which the sphere was
extracted.

• Ns: number of residues forming the protein–ligand tem-
plate sphere.

• RMSD: root mean square deviation calculated on super-
imposed C-alpha or C-beta atoms from sphere template
and detected protein pocket.

• Nc: number of conserved, i.e. ‘tightly’ superimposed,
residue pairs between the template sphere and detected
pocket in an evaluated protein.

• SeqID: sequence identity in structure aligned conserved
residues. The higher value indicates that the protein form-
ing a template sphere and the query protein might be
close homologues.

• LGA: structure similarity score based on aligned by the
LGA program C-alpha or C-beta atoms.

• GDC: structure similarity score calculated by the LGA
program assessing agreement in conformations of all
atoms (i.e. including side chain atoms).

• N4: the number of predicted protein–ligand contact
residues (i.e. query protein residues observed within 4.5
Å of the inserted ligand).

• cl: the number of query protein residues that may have
possible steric clashes with inserted ligand’s atoms.

First, to be considered a predicted site candidate, there
must be at least 10 aligned residues (Nc ≥ 10) that are
conserved between the query protein and the sphere. Sec-
ond, the structural similarity measured by GDC (29), which
counts how many atoms (including side chain atoms) in the
query protein and the template sphere are in close super-
position, must be at least 55% (GDC ≥ 55.0). Third, there
must be at least one query protein binding site residue that
has an atom within <4.5 Å of the atom of the inserted
PDB ligand (N4 ≥ 1). Finally, there are no more than two
steric clashes (cl ≤ 2) (distance <1.0 Å) allowed between
query protein binding site residue atoms and any atom of
the inserted ligand. The ‘cl’ number is counted per residue,
which means that multiple clashing atoms, all within a sin-
gle residue, are allowed, but not more than two residues can
be involved in clashes.

We may expect a higher confidence in predicted binding
sites when Nc ≥ 25, GDC ≥ 65 and cl ≤ 1. Note that these
thresholds cannot be considered as absolute requirements.
For example, possible clashes indicated by ‘cl > 0’ may sug-
gest a need to correct the placement of the inserted ligand.
Ideally, a score of ‘cl = 0’ would enhance the confidence in
ligand–protein binding prediction; however, in many cases
when ‘cl > 0’ the ligand placement within the pocket can be
fixed by additional adjustment or refinement of protein side
chain atoms through docking or molecular dynamics simu-
lations. It is also important to keep in mind that the query
protein structure may not be in its ‘holo’ conformation to
properly accommodate the ligand (i.e. without clashes), so
the conformation of binding site residues of the protein
may require more substantial optimization. Indeed, recent
studies of ligand binding site refinements show significant
success in generating reliable ‘holo’ (ligand-bound) protein
structures from their ‘apo’ (ligand-free) conformations (33).

If N4––the number of protein atoms within 4.5 Å of
the ligand––is very low, then this indicates that the current
placement of the ligand does not show strong interactions
with residues of the protein binding site. This may suggest
that the pocket is too large (or some residues in the protein
model are missing, or side chain atoms are not in the right
conformation). Of course, it may also indicate that the iden-
tified pocket is incorrect, or the location of the inserted lig-
and is wrong, but these conclusions can only be confirmed
by more detailed inspection. In such cases, it can be infor-
mative to check the overlap of the template sphere pocket
and the query protein pocket (i.e. check the Nc number of
conserved superimposed pocket-forming residues). Higher
overlaps (e.g. Nc ≥ 25) indicate greater size of the region
forming the pocket and thus the higher confidence in re-
ported pocket similarities (more residues identified as con-
served). However, such thresholds cannot be decided up-
front because in cases of shallow cavities or interface sites
on the surface of the protein, the Nc number can be low.

The application of the PDBspheres for binding site detec-
tion in papain-like proteinase (PL2pro) from COVID-19 is
illustrated in Figures 2–4. In Figure 2, we show results from
detected pocket cluster #1, which was defined based on
PL2pro pocket structure similarities with 60 pocket–ligand
template spheres (Nm = 60). The number of predicted dif-
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Figure 3. (A) Example of the peptide inhibitor VIR250 that passes through the ‘gorge’. Inhibitors GRL0617 and Jun9-72-2 are placed only on one side
(right part) of the cavity of pocket cluster #1. (B) Assessed by PDBspheres, poses of all three ligands that come from different template spheres show strong
overlap.

Figure 4. Fragment of the PDBspheres summary table reporting predicted PL2pro ligands assigned to pocket cluster #1. Results highlighted in green
(when SeqID > 95) indicate that similar pockets are detected in Sars2 or variants of Sars2. When SeqID < 30 (results highlighted in red), examples of
similar pockets detected in human proteins are shown. An agreement in sets of contact residues indicates that all listed ligands are predicted to bind the
same pocket identified through clustering as ‘pocket cluster #1’.
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ferent bound ligands is Nlig = 26, and the combined total
number of residues being in contact with bound ligands is
Nres = 22.

In Figure 3, we show that the poses of three inhibitors
from pocket cluster #1 (VIR250, GRL0617, and Jun9-72-
2, whose PDB IDs are 6wuu J, TTT and JW9, respec-
tively) overlap significantly. These ligand poses are brought
from 11 different template spheres listed in Figure 4: 3 for
VIR250, 5 for GRL0617 and 3 for Jun9-72-2.

In Figure 4, we present a snapshot (only 31 template
spheres out of Nm = 60) from the summary table automat-
ically created by the PDBspheres system for pocket cluster
#1. A complete summary table of predicted pocket–ligands
for a structural model of papain-like proteinase (PL2pro
model: nCoV nsp3.6w9c A.pdb) is provided in Supplemen-
tary File S1.

Benchmark dataset and evaluation metrics

The benchmark dataset used to assess the performance of
PDBspheres is the ‘LBSp dataset’ described in (25,26). It
comprises 304 unique protein families (2528 structures in
1456 ‘holo’ and 1082 ‘apo’ conformations) with each family
represented by several protein structures in different possi-
ble conformations. Since this LBSp dataset is curated, well
designed, large and diverse, we have found it very suitable
to test the performance of the PDBspheres method compre-
hensively.

The main criterion often used for the assessment of the
accuracy of predictions of the binding site is the agreement
in the set of residues predicted to be in contact with exper-
imentally confirmed ligands [residue contacts derived from
protein–ligand co-crystals from the PDB (27)]. To estimate
the accuracy of our method, we followed the same met-
rics and evaluation procedures as used in (25). The authors
defined reference lists called unified binding sites (UBS)
as unions of all residues contacted by any bound ligands
within the protein family. The scoring of binding site pre-
dictions is determined by agreement with the UBS reference
using calculated numbers of residues: all residues predicted
to be part of the binding site and confirmed in the experi-
mental data are denoted as true positives (TP), all remain-
ing residues (which are not predicted as part of the binding
site and not confirmed in experimental data) are denoted
as true negatives (TN), any residue predicted to be part of
the binding site and not confirmed in experimental data is
denoted as false positive (FP) or overprediction, and any
remaining residues in the experimental data not accounted
for in an algorithm’s predicted binding site are denoted as
false negatives (FN) or underpredictions.

Both MCCs and F scores as calculated by Equations (1)
and (2) have been used as metrics to represent the predictive
power of evaluated binding site prediction methods.

MCC = (TP × TN) − (FP × FN)
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (1)

F = 2 × TP
2 × TP + FP + FN

. (2)

Of course, there are other metrics sometimes used to eval-
uate protein–ligand binding site detection successes, e.g.
distance center–center (DCC) (34) and discretized volume

overlap (DVO) (12). DCC is a metric to evaluate the correct
location of the pocket based on the distance between the
predicted and the actual center of the pocket (centroids). If
DCC is below 4 Å, the pocket is considered as correctly lo-
cated. DVO, on the other hand, is defined as the ratio of the
volume of the intersection of the predicted and the actual
segmentations to the volume of their union. It assesses the
correctness of the shape of predicted pockets. However, in
our study we follow metrics described in (25) as they focus
on assessing accuracy of binding site prediction methods
based on the correctness of identified pocket residues be-
ing in contact with ligands. Similar approaches were used
in CASP experiments to evaluate the performance of bind-
ing site prediction methods.

RESULTS AND DISCUSSION

Performance of PDBspheres on LBSp dataset

In (25), predictive power of different methods is assessed
using two metrics: F scores and MCCs. The F scores and
MCCs provide a good description of the relative success of
evaluated algorithms by assessing whether or not a method
produced a predicted binding site that contains residues
in common with the reference UBS list of ligand contact
residues. They assign high scores not just when at least one
residue in a given site is identified correctly, but rather re-
ward methods with more correct and less false predictions
of contact residues implying which of the algorithm pocket
predictions are close to the ‘correct’ location on the binding
surface of the protein. Note that a similar evaluation pro-
cedure using MCC scores between predicted and observed
contact residues was also applied in CASP experiments.

Clark et al. (25) compared the following methods on their
LBSp dataset: SURFNET (19), Ghecom (35), LIGSITE
(36), Fpocket (37), Depth (38), AutoSite (39) and Kalas-
anty (15). Five of these methods are considered to be geom-
etry based, while one is energy based, and one is machine
learning based. To perform our analysis, we took predic-
tion results for these seven methods from the supplementary
data from (25). In Table 1, we present the prediction results
for PDBspheres and recalculated––for consistency––F and
MCC scores of the seven above-mentioned methods. The
last six data rows in Table 1 show results from the evaluation
of PDBspheres when the pocket detection was performed
using the complete PDBspheres library (100%), and when
the PDBspheres library was restricted to templates with no
more than 90%, 80%, 70%, 60% and 50% sequence iden-
tity with query proteins, respectively. The six rows for PDB-
spheres include also the mean values of MCC in addition
to the median values since this metric was used by CASP
assessors.

Structural similarity of binding sites versus sequence identity

Here, we discuss how close in sequence identity two pro-
teins need to be to have structurally similar binding sites,
addressing these two questions:

• How low the level of sequence identity between two pro-
teins can be and still share similar pockets and perform
similar functions?
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Figure 5. The plot illustrates how many pockets from the LBSp database
proteins (all 2528 pockets; ‘apo’ and ‘holo’ combined) can be predicted
based on binding site templates derived from proteins with lowest possible
sequence identity to the query proteins. For example, at least 400 pockets
(see left bottom part of the plot) can be predicted based on template bind-
ing sites derived from proteins that share as low as 20% SeqID with a query
protein. On the other hand, >2400 pockets (∼95%) can be correctly pre-
dicted based on templates sharing no more than 80% of SeqID with query
proteins in their binding site regions.

• Do such proteins have enough similarity in their func-
tional sites to bind ligands in a similar manner?

Figure 5 illustrates results from the LBSp database pocket
identification calculations, which were summarized in Ta-
ble 1. These results illustrate that in contrast to the large
diversity of possible protein sequences the number of struc-
turally distinct pockets is limited; therefore, proteins that by
sequence are very different may still share almost identical
structural conformations in local regions (e.g. binding sites)
and can perform similar functions. This observation served
as a basis for the development of our PDBspheres structure
template-based binding site detection method. The only
limitation in its ability to identify correct pockets for a
given protein might be an underrepresentation of particular
pocket’s conformation in currently experimentally solved
protein structures deposited in the PDB database. For ex-
ample, in case when a non-restricted library is used, the
binding sites for all 304 families (‘apo’ and ‘holo’ protein
conformations) were predicted. However, in the case of the
restricted library (which excludes template spheres derived
from proteins showing >90% sequence identity to the query
proteins), the binding sites for five families of ‘apo’ versions
and seven families of ‘holo’ versions were not predicted
(see Table 2). In Table 2, we show even more results indi-
cating that the protein binding sites are highly structurally
conserved and can be successfully detected using structure-
based template spheres taken from proteins sharing low se-
quence identity with targeted proteins. Even when the re-
strictions applied to the PDBspheres library increase from

90% to 50% sequence identity, the success in detecting the
number of predicted pockets does not drop so rapidly. The
same can be observed in Figure 5. More rapid decline in the
ability to successfully detected pockets starts when the re-
striction on the library gets below 50% of sequence identity.
Let us note that the main difference between results shown
in Table 2 and Figure 5 is that the plot illustrates the cor-
rectness of the prediction (i.e. as accurate as possible identi-
fication of residues involved in protein–ligand interaction),
while in Table 2 we report results from just detection of the
pocket location in the protein (i.e. without any assessment
of the accuracy and completeness of predicted interacting
residues).

The PDBspheres method leverages this structure conser-
vation quality efficiently. Indeed, thanks to the richness in
diversity of protein structures deposited in the PDB, the sys-
tem is able to identify location of 97% binding sites from
the LBSp dataset using structural templates that share as
low as 50% sequence identity with targeted proteins. Even
with such significant restriction to the library of template
spheres, the accuracy in identified sets of residues inter-
acting with ligands is still high, ∼0.75 (median) and ∼0.7
(mean), as measured by F and MCC metrics (see Table 1).

As mentioned in (25), we expected that the template-
based method such as PDBspheres could outperform non-
template-based methods, which is evidenced in Table 1. We
should emphasize, however, that PDBspheres is an exclu-
sively structure-based method that does not utilize any prior
information from libraries of sequences/residues forming
binding sites. Additionally, PDBspheres does not use any
prior information about the location of searched pockets
in proteins from the same family. We treat all structures
equally and independently (as pairwise comparisons) in
finding structural similarities between the query protein and
template spheres. Of course, we can find such cavities more
easily in the ‘holo’ conformations, but as the results show,
we can also find adequate structure similarities in ‘apo’ ver-
sions of the query protein, again strictly based on similari-
ties in structure without any sequence-based knowledge of
residues forming the pocket (residue information that could
be transferred from some databases of ‘holo’ structures). All
results reported here are based on PDBspheres superposi-
tions calculated on C-alpha atoms. Results based on super-
position of C-beta atoms (results not shown) are virtually
identical.

In Figure 6, we show an example of correct pocket detec-
tion by PDBspheres using different pocket–ligand template
spheres derived from proteins that share low sequence iden-
tity. Two compared proteins (serine proteases) have <38%
of sequence identity, but they are structurally similar at the
level of over 86% by LGA S (assessment of similarity on the
C-alpha atom level) and 77% by GDC (all-atom level). Of
the residues that are in contact with corresponding ligands
(distance below 4.5 Å) in the identified similar pockets, 11
out of 17 are identical (65%). The pocket template spheres
come from two PDB complexes that bind inhibitor com-
pounds having PDB ligand IDs 2A4 and QWE, respectively.
These ligands are significantly different in size. Therefore,
the distance between ligand centroids calculated from the
complexes of the same orientations is very different; specif-
ically, the distance between centroids of ligands when in-



10 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 4

Table 2. Number of detected pockets and pocket’s families when the PDBspheres libraries are restricted to templates with sequence identity to proteins
from the LBSp dataset not exceeding introduced cutoffs

Restricted sequence identity Number of detected pockets Number of pocket’s families

All Apo Holo All Apo Holo

100% 2528 1082 1456 304 304 304
90% 2481 1056 1435 299 299 297
80% 2469 1051 1428 298 296 297
70% 2469 1051 1428 298 296 297
60% 2464 1048 1426 297 295 296
50% 2457 1046 1421 295 294 294

Percent of detected pockets Percent of pocket’s families
50% 97.2% 96.7% 97.6% 97.0% 96.7% 96.7%

Results in this table reflect correctness in detection of just the pocket location in the protein, not an assessment of the accuracy and completeness of
predicted interacting residues, which are reported in Table 1.

serted in any of these pockets is ∼6.0 Å. However, the por-
tions of the ligands inserted in pockets have a similar over-
lapping region and are in contact with similar amino acids
from the pockets. In each of these two protein–ligand com-
plexes, the core parts of the ligands are in contact with 13
residues, of which 11 are identical (85%) (see Figure 6C and
E). We have had a similar observation in the example of hu-
man neuropilin-1 illustrated in Figure 1, when we focused
on possible discrepancies in distances between centroids of
two experimentally confirmed orientations of the same lig-
and inserted into the same pocket. The distance between
‘core’ parts of the ligand was very small, while the outside
parts varied significantly. It suggests that if we are interested
in identifying protein residues critical for ligand binding, we
should concentrate mostly on those residues that are in con-
tact with ligand’s ‘core’ parts. Likewise, as shown in Figure
6, in case of different proteins and different ligands, a high
sequence identity of residues being in contact with ‘core’
parts of the ligands can help identify those residues that may
be critical for binding in similar pockets. These results illus-
trate how PDBspheres can be used to detect conservation
in local structural conformations and to assess conserva-
tion of critical contact residues; both can assist in inferring
protein function. These conclusions are also supported by
results from evaluation of large and diverse set of proteins
collected in the PDBbind dataset (40).

Clustering binding sites from PDBbind database

In this section, we describe how PDBspheres can be used
to perform structure-based clustering and structure simi-
larity analysis of binding sites from the PDBbind dataset
(an extensive collection of experimentally measured binding
affinity data for the protein–ligand complexes deposited in
the PDB) (40) (ver. 2019). Some of these results were lever-
aged in our previous work generating rigorous training and
validation datasets for machine learning of ligand–protein
interactions (13). Here, we want to address the following
questions:

• To what extent can structurally similar binding pock-
ets having similar ligand placement allow inference of
binding affinity from one pocket–ligand pair to another
pocket–ligand pair?

• To what extent can clustering of detected pockets and
calculated structure similarities among clustered pock-

ets from different proteins provide functional informa-
tion for protein annotation?

In our analysis, we focus on the ‘refined’ 2019 dataset
(4852 structures), which we expanded by adding 24 struc-
tures from the previous PDBbind release that are not
present in the 2019 version. Hence, in total the dataset of
evaluated binding sites consists of 4876 structures. Since
we are interested in the assessment of similarities between
specific pockets listed in proteins from PDBbind (the PDB-
bind database reports only one pocket for each protein re-
gardless of how many different pockets a given protein may
have or how many alternative locations of a given pocket
in a multichain protein complex can be observed), we re-
stricted our structure similarity searches and evaluations
to only those regions in PDBbind proteins that encompass
targeted pockets. Note that many protein structures in the
PDBbind refined dataset are multidomain complexes with
total sizes of >2000 residues, so they can have multiple
binding sites in addition to the targeted ones. Therefore,
in our approach to evaluate similarities and cluster pock-
ets from PDBbind, each of its protein structures was re-
duced to the region in the close vicinity of a reported lig-
and (residues having any atom within 16 Å of any ligand
atom), and each ligand binding site reported in PDBbind
was associated with its corresponding PDBspheres template
sphere (residues having an atom within 12 Å of a ligand
atom). We performed an all-against-all PDBspheres detec-
tion and pocket similarity evaluation using the 16 Å pro-
tein region representation of each PDBbind protein. Results
from the pairwise pocket similarity evaluation are provided
in Supplementary File S5. Structure similarity results al-
lowed grouping of the 4876 PDBbind protein pockets into
760 clusters. Cluster details are provided in Supplementary
Files S2–S4. Figure 7 illustrates the clusters, and it is a snap-
shot taken from the HTML Supplementary File S6 (inter-
active overview of predicted clusters created using ‘plotly’
R graphic library). Each axis of Figure 7 indexes a sample
of 4876 protein pockets, where sampled protein names are
reported to help identification of corresponding pockets or
clusters in the plot. A ‘zoom-in’ option in the ‘plotly’ graph
expands each rectangle to show a list of individual members
of a selected cluster. It allows for each of the sampled pro-
teins to be labeled with its exact location within the cluster,
which is shown as the example in Figure 8. Further illus-
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Figure 6. Example of two structures of serine proteases: tryptase (in red PDB chain: 4mpv A) and thrombin (in blue PDB chain: 1a4w H) that share
high structure similarity in their binding sites (over 77% by GDC), while the level of sequence identity between them is no higher than 38%. (A) Overall
structure superposition of two protein–ligand complexes showing location of bound inhibitors. (B) PDBspheres-based local superposition of corresponding
protein spheres surrounding ligands. (C) Structurally superimposed spheres of 4mpv and 1a4w show significant similarity in side chain conformation of
residues interacting with corresponding ligands 2A4 and QWE. Residues interacting with ligands 2A4 and QWE are highlighted in orange and light
blue, respectively. (D) Local superposition indicates a perfect agreement in the nearby catalytic triad residue conformations (His, Asp, Ser). (E) Structural
alignment of residues from close distance (4.5 Å) from the corresponding ligands shows that 11 out of 13 (85%) residues that are in contact with similar
core parts of the ligands are identical.

trations can be found in Supplementary File S6. Each rect-
angle in Figure 7 represents a cluster and is composed of
small markers––one for each sampled protein–pocket pair
within the cluster––colored by the GDC all-atom similar-
ity score between each member of the cluster, where colors
closer to red indicate a higher degree of similarity between
members. For example, the first three large rectangles at the
bottom left of Figure 7 represent predicted clusters: clusters
#22 (318 members), #8 (351 members) and #5 (322 mem-
bers), respectively. Evaluation of predicted clusters, which
is reported in Supplementary File S2, shows that all mem-
bers of cluster #22 are enzymes that belong to EC subclass
4.2.1.1, members of cluster #8 belong to EC subclass 3.4.21
and members of cluster #5 belong to EC subclass 3.4.23.
All clusters along the diagonal in Figure 7 have high within-
cluster similarity and are separated from other clusters ac-
cording to the applied ‘exclusive’ clustering approach. Some

of automatically created by PDBspheres clusters are formed
by grouping together proteins from several ‘finer’ subclus-
ters. For example, at the top right there is a large cluster
(#25) with 382 members assigned to several subclasses of
the broad-spectrum transferases––EC class 2.7 (‘Transfer-
ring phosphorus-containing groups’), with varying degrees
of similarity among its members as they belong to differ-
ent and more specific subclasses that are still similar enough
(according to the selected thresholds) to form one distinct
cluster (#25). Data used in Figure 7 are reported in Supple-
mentary Files S2 and S6.

As an example of results from PDBspheres cluster-
ing, Figure 8 shows a ‘zoom-in’ to cluster #277 (cir-
cled and marked by an arrow in Figure 7), which con-
tains 24 protein–ligand pairs. This ‘zoom-in’ shows de-
tails of PDBbind binding sites grouped together based
on all-against-all structure similarity measured by the
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Figure 7. Clustering of the refined set of 4876 pockets from the PDBbind based on their structure similarity. PDBspheres-based pocket detection and
similarity evaluation resulted in 760 constructed clusters. HTML file allowing interactive overview of predicted clusters is provided in Supplementary File
S6. Figure 8 shows a ‘zoom-in’ to cluster #277, which contains 24 protein–ligand pairs.

Figure 8. ‘Zoom-in’ to cluster #277 identified by PDBspheres in PDBbind dataset (see Figure 7 and Supplementary File S2). All 24 proteins within this
cluster belong to the same enzyme subclass (3.4). The first column provides PDB IDs of each enzyme from the cluster. Corresponding EC numbers are
reported in the second column, where alternative EC assignments are separated by colon. Coloring in the plot reflects pairwise similarity scores between
clustered proteins as measured by GDC.
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Figure 9. Scatter plots of (A) Kd values from 1544 pocket pairs and (B) Ki values from 5137 pocket pairs. Results shown in the plot were calculated for
pairs satisfying the following similarity constraints: pocket GDC similarities ≥95% and ligand centroid’s distance cutoff of 0.5 Å. Redundant pairs––self-
comparisons and symmetry duplicates––are removed from calculations.

GDC score. Each of the proteins grouped into this clus-
ter shares the same EC subclass (3.4) and GO annota-
tion (:0006508:0008237:0008270:), which indicates that the
PDBspheres-based clustering can assist in making predic-
tions useful in protein functional annotation. The details of
cluster #277 are reported in Supplementary Files S2 and S4.
As shown in the plot, all 24 proteins belong to the same en-
zyme subclass (3.4)––hydrolases that act on peptide bonds;
specifically, hydrolases with EC subclass 3.4.11 cleave off
the N-terminal amino acid from a polypeptide. In addition
to the general functional clustering of proteins, the PDB-
spheres clustering approach provides finer subclustering of
proteins within predicted clusters. The bottom six proteins
from cluster #277 form a clear subcluster as they share ad-
ditional EC subclass 3.3.2.6––bifunctional zinc metallopro-
tease activities.

In Supplementary Files S2–S4, we provide specifics of
assigned EC, SCOP and GO annotations, respectively, for
each member of created clusters. The first two columns in
Figure 8 are just a snapshot of what kind of information is
reported in these files. Closer examination of these assign-
ments for members of each cluster shows that similar pock-
ets that are clustered together by PDBspheres share similar
functions.

Another important question is: Can we transfer binding
affinity scores from one ligand binding site to another if
the pockets and the ligand placements within the pockets
are similar? Results from PDBspheres analysis suggest that
pockets from PDBbind that share high structure similar-
ity and have similar ligand placements (distances between
the centroids of inserted ligands are no greater than 0.5
Å) show also similarities in reported protein–ligand bind-
ing affinities. In particular, for PDBbind entries with known

Kd values, in Figure 9A we compare the Kd values of each
pair of 1544 protein–ligand complexes when GDC is >95%
and aligned ligand centroids are within 0.5 Å. The R2 and
Spearman values of 0.5 and 0.7, respectively, indicate the
strength of the relation. Although reported scores are not
very high, they can still suggest that with required similar-
ity constraints the similar protein–ligand pairs tend to have
similar Kd values. Similarly, in Figure 9B, the pockets with
given Ki values and the same similarity constraints show the
R2 and Spearman values of 0.44 and 0.574, respectively, for
5137 evaluated protein–ligand pairs.

These similarities in binding affinities are even higher be-
tween pockets from different proteins when they bind the
same ligand. The corresponding R2 and Spearman scores
for 194 pairs with Kd values are 0.5 and 0.738, and for 411
pairs with Ki values are 0.69 and 0.772, respectively. Even
if we relax the similarity constraints by requiring a ligand
centroid’s distance cutoff of 1.0 Å and GDC pocket simi-
larities as low as 90%, for pocket pairs that bind the same
ligands, as shown in Figure 10A and B, for the Kd subset of
287 pairs the R2 and Spearman values are 0.46 and 0.703,
and for the Ki subset of 631 pairs the scores are 0.64 and
0.752, respectively.

Results from the PDBspheres clustering of the PDB-
bind dataset suggest that the structure similarity between
pocket/ligand placements is a significant characteristic that
can allow prediction of similar binding affinity values. In fu-
ture work, we anticipate enhancing current measurements
adding information about the specific atom location of pro-
tein residues interacting with the ligand, which may improve
our predictions. Complete results from PDBspheres analy-
sis of pairwise similarities in binding sites between proteins
from PDBbind are provided in Supplementary File S5.
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Figure 10. Scatter plots of (A) Kd values from 287 ‘same ligand’ pocket pairs and (B) Ki values from 631 ‘same ligand’ pocket pairs. Results shown in the
plot were calculated for pairs satisfying slightly relaxed similarity constraints: pocket GDC similarities ≥90% and ligand centroid’s distance cutoff of 1.0
Å. Redundant pairs––self-comparisons and symmetry duplicates––are removed from calculations.

CONCLUSIONS

While developing PDBspheres, we focused on two goals: (i)
binding pocket detection and (ii) identification of charac-
teristics and scores to assess similarities between pockets to
help further protein functional characterization and clus-
tering.

In particular, with regard to binding pocket detection,
we find that PDBspheres’ strictly structure-based approach
can correctly predict binding site regions in protein struc-
tures known to be in a ‘holo’ (i.e. ligand-binding) confor-
mation as well as in protein structures in an ‘apo’ (with-
out a ligand present) conformation. While we are not di-
rectly comparing our method with other template-based
binding site prediction methods, we can estimate that PDB-
spheres has very similar accuracy when assessed by MCC
between predicted and observed binding residues. CASP ex-
periments (CASP8–10) indicated that in comparison with
other methods the template-based methods were perform-
ing on the top with reported average MCC scores slightly
above 0.7. For example, the average scores for the best-
performing template-based methods at CASP10 Firestar
and SP-ALIGN were 0.715 and 0.707, respectively. Results
from testing PDBspheres on LBSp dataset, reported in Ta-
ble 1, show that the average MCC score for PDBspheres is
at the similar level (∼0.71) when the closest to the targeted
protein homologous template spheres are being removed
from the library. As shown in Table 1, when the sequence
identity drops, there is an immediate decline in the average
MCC values from ∼0.8 (for 100% SeqID when the exact or
very close match can be found in the library) to ∼0.7 (for
90% to 50% SeqID when possible best matches are being
eliminated). Interestingly, in case of restricted libraries, the

average MCC value seems to reach a steady level of ∼0.7,
which agrees with results of evaluation of template-based
methods in CASP8–10 experiments (22–24).

Since local regions in functionally similar proteins are re-
markably conserved in their structural conformations, the
PDBspheres method allows detection of similar binding
sites even in proteins that share very low sequence similarity.
Based on this observation and our tests on the LBSp bench-
mark dataset with restricted libraries, we can expect that
structure template-based methods may successfully predict
96% of pocket locations and reach the accuracy level in pre-
dicted binding residues measured by the average MCC of
∼0.7 for proteins that have no close representation in used
libraries.

With regard to characterizing and evaluating binding
pocket similarities among proteins, we find that a high level
of sequence similarity between different proteins is not es-
sential to identify structurally similar binding sites and that
proteins even significantly different by sequence may per-
form similar functions. In the structure-based detection of
binding sites, the similarity assessed based on calculated
structural alignment using C-alpha atom positions is suf-
ficient, and the use of other residues (e.g. C-beta atoms
or other points representing residue) in the similarity as-
sessment does not yield better results. Structurally simi-
lar binding pockets having similar ligand placements allow
inference of binding affinity from one pocket–ligand pair
to another pocket–ligand pair. PDBspheres-based cluster-
ing of detected pockets and calculated structure similarities
among pockets from different proteins provide information
that can significantly help protein function annotation ef-
forts.
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