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Summary
Background Infected pancreatic necrosis (IPN) represents a severe complication of acute pancreatitis, commonly
linked with mortality rates ranging from 15% to 35%. However, the present mortality prediction tools for IPN are
limited and lack sufficient sensitivity and specificity. This study aims to develop and validate an explainable machine
learning (ML) model for death prediction among patients with IPN.

Methods We performed a prospective cohort study of 344 patients with IPN consecutively enrolled from a large
Chinese tertiary hospital from January 2011 to January 2023. Ten ML models were developed to predict 90-day
mortality in these patients. A benchmarking test, involving nested resampling, automatic hyperparameter tuning
and random search techniques, was conducted to select the ML model. Sequential forward selection method was
employed to select the optimal feature subset from 31 candidate subsets to simplify the model and maximize
predictive performance. The final model was internally validated with the 1000 bootstrap method and externally
validated using an independent cohort of 132 patients with IPN retrospectively collected from another Chinese
tertiary hospital from January 2018 to January 2023. The SHapley Additive exPlanations (SHAP) method was
employed to interpret the model in terms of features importance and features effect. The final model
constructed with optimal feature subset was deployed as an interactive web-based Shiny app.

Findings Random survival forest (RSF) model showed the best predictive performance than other 9 ML models
(internal validation, C-index = 0.863 [95% CI: 0.854–0.875]; external validation, C-index = 0.857 [95% CI:
0.850–0.865]). Multiple organ failure, Acute Physiology and Chronic Health Examination II (APACHE II) score ≥20,
duration of organ failure ≥21 days, bloodstream infection, time from onset to first intervention <30 days, Bedside
Index of Severity in Acute Pancreatitis score ≥3, critical acute pancreatitis, age ≥ 50 years, and hemorrhage were 9
most important features associated with mortality. Furthermore, SHAP algorithm revealed insightful nonlinear
interactive associations between important predictors and mortality, identifying 9 features pairs with high interaction
SHAP value and clinical significance. Two interactive web-based Shiny apps were developed to enhance clinical
practicability: https://rsfmodels.shinyapps.io/IPN_app/ for cases where the APACHE II score was available and
https://rsfmodels.shinyapps.io/IPNeasy/ for cases where it was not.

Interpretation An explainable ML model for death prediction among IPN patients was feasible and effective, sug-
gesting its superior potential in guiding clinical management and improving patient outcomes. Two publicly
accessible web tools generated for the optimized model facilitated its utility in clinical settings.
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Research in context

Evidence before this study
Before the start of our study, we did an extensive literature
search using PubMed, Scopus, and Medline, focusing on
studies published up to 20 November 2024. We used the
search terms “pancreatitis”, “machine learning” and
“mortality”. We excluded nine cohort studies that employed
machine learning for mortality prediction in patients with
acute pancreatitis. Ultimately, only one study utilizing
machine learning for mortality prediction in patients with
infected pancreatic necrosis was identified. This study
analyzed 223 patients who underwent surgery for infected
pancreatic necrosis at West China Hospital of Sichuan
University. The results indicated that preoperative modified
Marshall score, time of surgery, duration of organ failure, and
onset of renal failure were important predictive factors for
postoperative mortality in patients undergoing delayed
surgery (≥4 weeks). However, the study was limited by its
retrospective, single-center design and lacked external
validation. Additionally, the machine learning model was lack
of explanation and deployment.

Added value of this study
To our knowledge, this is the first and largest study to
compare 10 machine learning models and develop an
explainable machine learning model with optimal predictive
performance for mortality among patients with infected
pancreatic necrosis. Additionally, this study is the first to offer

two publicly accessible web tools to facilitate the clinical
utility of the machine learning-based mortality prediction
model for infected pancreatic necrosis.

Implications of all the available evidence
Based on the results of this study, we expect that clinicians
can identify patients with infected pancreatic necrosis at high
risk of death early by using two interactive web-based Shiny
apps for random survival forest model. Furthermore, multiple
organ failure, Acute Physiology and Chronic Health
Examination II score ≥20, duration of organ failure ≥21 days,
bloodstream infection, time from onset to first intervention
<30 days, Bedside Index of Severity in Acute Pancreatitis score
≥3, critical acute pancreatitis, age ≥ 50 years, and
hemorrhage were 9 most important features associated with
increased mortality. Therefore, in clinical practice, persistent
organ failure should be reversed within 21 days, and surgical
intervention should, whenever possible, be delayed until at
least 30 days from the onset. The step-down approach should
be avoided whenever possible in cases of critical acute
pancreatitis, particularly in patients with multiple organ
failure and a duration of organ failure ≥21 days. However,
future studies with larger cohorts and more diverse external
validation, incorporating precision medicine techniques and
advanced artificial intelligence, would be needed to enhance
the applicability and generalizability of these findings.
Introduction
Acute pancreatitis (AP) is one of the most common
gastrointestinal disorders requiring acute hospital
admission.1,2 The global estimates indicate an incidence
of 34 cases and a mortality rate of 2 cases per 100,000
person-years.3 The majority of AP cases exhibit mild
symptoms, characterized by a self-limiting course.1,4

However, approximately 20% of patients progress to
moderate or severe acute pancreatitis, involving
pancreatic or peripancreatic necrosis and/or organ fail-
ure.1,4 Among these cases, 67% exhibit sterile pancreatic
necrosis, while 33% present with infected pancreatic
necrosis (IPN), a significant contributor to mortality,
with mortality rates up to 15%–35%.4 In recent years,
despite advances in critical care and minimally invasive
techniques, the mortality of IPN has remained around
15–20% or higher, even in specialized centers. There-
fore, timely and accurate identification of high-risk pa-
tients is crucial for guiding clinical management, so as
to enhance the prognosis of patients with IPN.

Several biochemical markers and scoring systems
have been developed to predict the severity and mortality
of AP, such as c-reactive protein, blood urea nitrogen,
Acute Physiology and Chronic Health Examination II
(APACHE II), Bedside Index of Severity in Acute
Pancreatitis (BISAP), Harmless Acute Pancreatitis Score
(HAPS), and CT Severity Index (CTSI), modified CT
Severity Index (MCTSI).2,5–8 Recently, traditional models
in several studies have identified certain mortality pre-
dictors for IPN.9–11 However, the accuracy and specificity
of these scoring systems and mortality predictors
remain unsatisfactory. Machine learning (ML), as a
www.thelancet.com Vol 80 February, 2025
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branch of artificial intelligence, can detect complex, non-
linear relationships between various features and dis-
ease outcomes, and has been widely applied in the field
of disease diagnosis, complication monitoring, and
prognosis prediction to assist physicians in decision-
making.12–18 Several studies have employed ML to
establish predictive tools for AP, mainly focused on
severity, complication, and mortality.19–23 However, most
studies were retrospective and single-center, featuring
relatively small patient populations and lacking external
validation and model interpretability. In our previous
research, 7 most important predictors has been identi-
fied to have nonlinear relationship with mortality of IPN
through the random survival forest (RSF) algorithm.24

However, the study lacked the development of an
explainable model for death prediction, and external
validation was not performed.

This study aimed to develop and validate an
explainable ML model for accurately predicting the
individual-level risk of death in IPN cases, with SHapley
Additive exPlanations (SHAP) method demonstrating
the effect of important features and potential interactive
effects between features.25 Additionally, an interactive
web-based Shiny app for the model was designed to
enhance its applicability in clinical settings.
Methods
Study design and population
Two different datasets were used to develop and validate
the explainable ML model for death prediction among
IPN patients, respectively (Fig. 1). The derivation cohort
was a prospective cohort of 344 patients with IPN
consecutively enrolled from Xiangya hospital, Central
South University, China between January 2011 and
January 2023, while the external validation cohort was a
retrospective cohort of 132 consecutive patients with
IPN admitted to the Third Xiangya Hospital, Central
South University, China between January 2018 and
January 2023. The exclusion criteria for the derivation
cohort included patients with a history of chronic
pancreatitis (n = 4), patients with chronic organ
dysfunction (n = 6), patients during pregnancy (n = 2),
and patients with incomplete data (n = 8). The exclusion
criteria for the validation cohort included patients with a
history of chronic pancreatitis (n = 3), patients with
chronic organ dysfunction (n = 5), patients during
pregnancy (n = 3), and patients with incomplete data
(n = 14). Patients with missing values were considered
to have incomplete data and were excluded from the
study. The study was approved by the Ethics Commit-
tees of Xiangya Hospital (No.201012067) and the Third
Xiangya Hospital (No.21019) and registered www.
researchregistry.com (https://www.researchregistry.
com/register-now#home/registrationdetails/64b8b18bc0
679a0027c1e25b/). Routine written informed consent
was obtained from all participants or their legal
www.thelancet.com Vol 80 February, 2025
representatives for the collection and publication of data.
This study followed the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement and the reporting
guideline of Strengthening The Reporting Of Cohort
Studies in Surgery (STROCSS).26,27

Data preprocessing and candidate variables
Data were extracted from two IPN cohorts, collected
both prospectively and retrospectively by trained pro-
fessionals, and sourced from the electronic medical re-
cord systems of two hospitals. Thirty-one candidate
variables were collected based on data availability and
clinical knowledge that spanned demographic, clinical,
and treatment and complication-related attributes: 9
demographic and baseline variables (age, gender, co-
morbidity, smoking or drinking, etiology, severity clas-
sification, intensive care unit (ICU) stay, the number
and duration of organ failure), 4 scoring systems vari-
ables (APACHEII score, BISAP score, CTSI score,
MCTSI score), 2 therapeutic variables (time from onset
to first intervention, step-up or step-down surgical
approach), 4 complication variables (gastrointestinal
fistula, hemorrhage, gastrointestinal fistula or hemor-
rhage, pancreatic fistula), 12 infection-associated vari-
ables (pancreatic polymicrobial infection, pancreatic
Klebsiella pneumoniae infection, pancreatic Acinetobacter
baumannii infection, pancreatic Enterococcus faecium
infection, pancreatic Escherichia coli infection, pancreatic
fungal infection, pancreatic Carbapenem-resistant
Enterobacter (CRE) infection, pancreatic multidrug-
resistant organisms (MDRO) infection, bloodstream
infection, bloodstream MDRO infection, bloodstream
CRE infection, candidemia). Most of the candidate var-
iables were collected at the baseline of IPN diagnosis
except for step-up or step-down surgical approach. The
primary outcome was death occurring within 90-day
from the onset of the disease. The interval, measured
in days, from the initial diagnosis to the recorded date of
death was defined as overall survival. The definition of
other variables were detailed in the Supplemental
methods.

Model and feature selection
The workflow of ML was showed in Fig. 1. A total of
10 ML models were developed for the death prediction
of patients with IPN: coxph, glmnet, rpart, RSF, gbm,
svm, xgboost, deepsurv, deephit, coxtime (Fig. 2). All the
ten ML algorithm employed in our research was spe-
cifically based on survival analysis (Supplemental
Table S1). The svm model referred specifically to sur-
vivalsvm. To obtain an unbiased and objective evalua-
tion of multiple ML models under consistent
conditions, a benchmarking test involving nested
resampling, automatic hyperparameter tuning and
random search techniques was designed. The selection
of the optimal model from 10 models was based on a
3

http://www.researchregistry.com
http://www.researchregistry.com
https://www.researchregistry.com/register-now#home/registrationdetails/64b8b18bc0679a0027c1e25b/
https://www.researchregistry.com/register-now#home/registrationdetails/64b8b18bc0679a0027c1e25b/
https://www.researchregistry.com/register-now#home/registrationdetails/64b8b18bc0679a0027c1e25b/
http://www.thelancet.com


Fig. 1: Overview of the study workflow. IPN, infected pancreatic necrosis; RSF, random survival forest; SHAP, SHapley Additive exPlanations.
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comprehensive evaluation of the concordance index
(C-index) and Brier score. To simplify the model for
enhanced applicability, the sequential forward selection
method was employed to select the optimal feature subset
based on the selected model above. Notably, the optimal
feature subset was selected by striking a balance between
www.thelancet.com Vol 80 February, 2025
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Fig. 2: Model selection from 10 machine learning models based on C-index (A) and Brier score (B). RSF, random survival forest.
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achieving a high C-index and maintaining a manageable
number of features (Supplemental methods, Figs. S1–S3,
and Tables S1 and S2).

Model construction and validation
The final model was developed based on the optimal
model and feature subset above. The performance of the
final model was assessed in terms of discrimination,
calibration, and clinical utility. Discrimination ability
was measured using C-index and time-dependent area
under curve (AUC). Calibration capability was assessed
through calibration curves and the integrated Brier
score. Of note, the C-index measures a model’s ability to
discriminate between subjects who experienced the
event of interest vs. those who did not, while the Brier
score assesses the calibration and goodness-of-fit of the
predicted survival probabilities from a model.28 More-
over, clinical utility was evaluated using decision curve
analysis (DCA). The final model was validated internally
and externally. The internal validation was performed on
www.thelancet.com Vol 80 February, 2025
the derivation cohort using the 1000 bootstrap method,
while the external validation was conducted on an in-
dependent test cohort. Meanwhile, we have also devel-
oped the final model with all features and assessed its
performance internally and externally. More details of
model construction and validation were provided in
Supplemental methods.

Model explanation and deployment
SHAP, introduced by Lundberg and Lee, offers a novel
approach to elucidate predictions generated by various
black-box machine learning models.29 In the study, the
SHAP summary and dependence plots were employed
to identify key predictors and investigate their relation-
ships with the outcome. Additionally, the SHAP inter-
active plot was used to identify potential interaction
effects between two features. To facilitate the accessi-
bility and usability of the model, the final model was
deployed as an interactive web-based Shiny app that
enables individualized survival prediction, personalized
5
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interpretation, and explanation of the model. More in-
formation was described in Supplemental methods.

Sensitivity and statistical analysis
Several procedures of sensitivity analysis were employed
to assess the robustness of results in the training cohort:
(1) explaining the final model (developed from the
training cohort) in the validation cohort; (2) assessing
feature importance with the permutation method; (3)
performing interaction effect analysis with the tradi-
tional Cox model.

Summary statistics were presented as total frequencies
and percentages for categorical variables, and reported as
median with interquartile range (IQR) or as means and
standard deviations (SD) for continuous variables, as
appropriate. Differences in data distribution between
datasets for both categorical and continuous variables
were assessed by the χ2 test and Mann–Whitney U test,
respectively, with a 2-sided P value < 0.05 considered
statistically significant. R version 4.3.1 was used to
perform all statistical analyses and create all figures. A list
of the R statistical packages utilized for the analyses in R
version 4.3.1 is detailed in the supplemental file
(Supplemental Table S3).

Role of the funding source
The funder had no role in the design and conduct of the
study; collection, management, analysis, and interpre-
tation of the data; preparation, review, or approval of the
manuscript; and decision to submit the manuscript for
publication.
Results
Patients characteristics
Clinical characteristics of the study population were
presented in Table 1. There were 344 patients in the
derivation cohort and 132 patients in the external vali-
dation cohort, in which death occurred in 83 (24.1%) and
42 (31.8%) patients, respectively. In the derivation cohort,
73.0% were males and 27.0% were females. The median
age of the cohort was 48 (37–55) years. The derivation
and validation cohorts were similar in terms of gender,
age, comorbidity, smoking or drinking, etiology, IPN
patients diagnosed on admission, ICU stay, time from
onset to first intervention, surgery approach, BISAP
score, CTSI score, MCTSI score, gastrointestinal fistula,
hemorrhage, gastrointestinal fistula or hemorrhage,
pancreatic fistula, pancreatic and bloodstream infection,
and 90-day mortality. However, the validation cohort had
a significantly higher rate of critical acute pancreatitis and
multiple organ failure (MOF), longer median duration of
organ failure, and higher APACHE II score (P < 0.05).

Model selection and construction
Ten ML models were developed for death prediction of
patients with IPN based on 31 candidate features in the
derivation cohort. After a benchmarking test, the RSF
algorithm achieved the best predictive performances
with the highest mean (SD) C-index of 0.865 (0.066) and
the lowest mean (SD) Brier score of 0.147 (0.121), out-
performing other models (C-index ranging from 0.698
to 0.863, Brier score ranging from 0.151 to 0.353) (Fig. 2
and Supplemental Table S4). Consequently, the RSF
model was used to construct the final models. Next, the
sequential forward selection method was performed to
identify optimal feature subsets that maximized the
performance in the RSF model (Supplemental Fig. S2).
As a result, the final model achieving the optimal C-
index was constructed by 10 features, including age,
smoking or drinking, APACHE II score, number of
organ failures, duration of organ failure, bloodstream
infection, pancreatic CRE infection, time from onset to
first intervention, surgery approach and hemorrhage
(Supplemental Fig. S3 and Table S5). Additionally, the
RSF model with all features was developed for model
explanation. Both RSF models, whether utilizing the
optimal features or all features, underwent hyper-
parameter optimization (Supplemental Fig. S4).

Model validation
Fig. 3 showed the excellent performance of the final RSF
model with the optimal features both in the derivation
and external validation cohort regarding discrimination,
accuracy, and clinical applicability. In the derivation
cohort, discrimination, evaluated through time-
dependent AUC analyses, consistently demonstrated
high values, reflecting sustained discriminative ability
over time. The C-index was 0.863 (95% CI: 0.854–0.875)
with 1000 bootstrap resampling (Fig. 3A), indicating
good discriminatory ability. Simultaneously, the cali-
bration plot was used to assess the predicted accuracy of
30-day, 60-day, and 90-day overall survival, revealing a
noteworthy correspondence with the ideal curve
(Fig. 3B). The integrated Brier score was 0.153 (95%
CI:0.143–0.163) with 1000 bootstrap resampling, further
endorsing the model’s high reliability. Moreover, DCA
affirmed the RSF model’s commendable clinical appli-
cability as a tool for initiating medical intervention
(Fig. 3C). Importantly, in the external validation cohort,
the time-dependent AUC curves, calibration plots, and
DCA curves to evaluate the RSF model were presented
in Fig. 3D–F, with C-index for 0.857 (95% CI:
0.850–0.865) and Brier score for 0.084 (95% CI:
0.076–0.092). Notably, the performance of the RSF
model with all features showed similar results with the
RSF model with the optimal features (Supplemental
Fig. S5).

Model explanation and deployment
The SHAP method was utilized to explain the model’s
explainability by generating an importance ranking of
candidate features on individual predictions. As shown
in Fig. 4, the top 9 most important prognostic features
www.thelancet.com Vol 80 February, 2025
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Characteristics Levels Derivation cohort (n = 344) Validation cohort (n = 132) P value

Dead No 261 (75.9%) 90 (68.2%) 0.112

Yes 83 (24.1%) 42 (31.8%)

Gender Female 93 (27%) 39 (29.5%) 0.665

Male 251 (73%) 93 (70.5%)

Age Median (IQR) 48 (37–55) 48 (42–52.5) 0.862

Complications No 208 (60.5%) 67 (50.8%) 0.069

Yes 136 (39.5%) 65 (49.2%)

Smoking or drinking No 191 (55.5%) 79 (59.8%) 0.454

Yes 153 (44.5%) 53 (40.2%)

Etiology Biliary 127 (36.9%) 43 (32.6%) 0.739

hypertriglyceridemia 150 (43.6%) 62 (47%)

Alcoholic 20 (5.8%) 10 (7.6%)

Other 47 (13.7%) 17 (12.9%)

Infected pancreatic necrosis diagnosed on admission Yes 137 (39.8) 59 (44.7) 0.334

No 207 (60.2) 73 (55.3)

ICU stay No 90 (26.2%) 33 (25%) 0.887

Yes 254 (73.8%) 99 (75%)

Severity classification Severe acute Pancreatitis 165 (48%) 49 (37.1%) 0.043

Critical acute Pancreatitis 179 (52%) 83 (62.9%)

Number of organ failures No 155 (45.1%) 50 (37.9%) 0.022

Single organ failure 71 (20.6%) 19 (14.4%)

Multiple organ Failure 118 (34.3%) 63 (47.7%)

Duration of organ failure Median (IQR) 2 (0–18) 10 (0–23) 0.013

Time from onset to first intervention Median (IQR) 21.50 (14–31.5) 22 (18.5–30) 0.120

Surgery approach Step-up approach 270 (78.5%) 105 (79.5%) 0.899

Step-down approach 74 (21.5%) 27 (20.5%)

APACHE II score Median (IQR) 8 (5–15) 9 (7–14) 0.025

BISAP score Median (IQR) 2 (2–3) 2 (2–3) 0.395

MCTSI score Median (IQR) 10 (8–10) 10 (8–10) 0.133

CTSI score Median (IQR) 8 (6–10) 8 (6–10) 0.064

Gastrointestinal fistula No 291 (84.6%) 107 (81.1%) 0.427

Yes 53 (15.4%) 25 (18.9%)

Hemorrhage No 269 (78.2%) 94 (71.2%) 0.138

Yes 75 (21.8%) 38 (28.8%)

Gastrointestinal fistula or Hemorrhage No 236 (68.6%) 87 (65.9%) 0.650

Yes 108 (31.4%) 45 (34.1%)

Pancreatic fistula No 192 (55.8%) 67 (50.8%) 0.374

Yes 152 (44.2%) 65 (49.2%)

Peripancreatic polymicrobial infection No 119 (34.6%) 43 (32.6%) 0.758

Yes 225 (65.4%) 89 (67.4%)

Pancreatic Klebsiella pneumoniae No 214 (62.2%) 76 (57.6%) 0.411

Yes 130 (37.8%) 56 (42.4%)

Pancreatic Acinetobacter baumannii No 249 (72.4%) 92 (69.7%) 0.639

Yes 95 (27.6%) 40 (30.3%)

Pancreatic Enterococcus faecium No 241 (70.1%) 89 (67.4%) 0.655

Yes 103 (29.9%) 43 (32.6%)

Pancreatic Escherichia coli No 256 (74.4%) 93 (70.5%) 0.447

Yes 88 (25.6%) 39 (29.5%)

Pancreatic fungal infection No 253 (73.5%) 94 (71.2%) 0.691

Yes 91 (26.5%) 38 (28.8%)

Pancreatic CRE infection No 237 (68.9%) 86 (65.2%) 0.501

Yes 107 (31.1%) 46 (34.8%)

Pancreatic MDRO infection No 153 (44.5%) 53 (40.2%) 0.454

Yes 191 (55.5%) 79 (59.8%)

Bloodstream infection No 233 (67.7%) 84 (63.6%) 0.459

Yes 111 (32.3%) 48 (36.4%)

(Table 1 continues on next page)
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Characteristics Levels Derivation cohort (n = 344) Validation cohort (n = 132) P value

(Continued from previous page)

Bloodstream MDRO infection No 275 (79.9%) 97 (73.5%) 0.161

Yes 69 (20.1%) 35 (26.5%)

Bloodstream CRE infection No 309 (89.8%) 113 (85.6%) 0.255

Yes 35 (10.2%) 19 (14.4%)

Candidemia No 328 (95.3%) 126 (95.5%) 1

Yes 16 (4.7%) 6 (4.5%)

APACHE II score, Acute Physiology and Chronic Health Examination II score; BISAP score, Bedside Index of Severity in Acute Pancreatitis score; MDRO, Multidrug-resistant
organisms; CRE, Carbapenem-resistant Enterobacter; ICU, Intensive care unit; MCTSI, Modified CT Severity Index; CTSI, CT Severity Index; IQR, Interquartile range.

Table 1: Comparison of baseline characteristics of patients with infected pancreatic necrosis in the derivation cohort and validation cohort.
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contributed to the high likelihood of death were number
of organ failures, APACHE II score, duration of organ
failure, bloodstream infection, time from onset to first
intervention, BISAP score, severity classification, age
and hemorrhage.

Additionally, SHAP dependence plots were used to
interpret the relationships of critical predictors with the
outcome. From the main and total effect plots (Fig. 5
and Supplemental Fig. S6), MOF, positive bloodstream
infection, BISAP score ≥3, critical acute pancreatitis,
and hemorrhage were unsurprisingly associated with
increased risk of death. Notably, we observed a positive
linear correlation between age and death risk, potential
nonlinear relationships and important thresholds be-
tween APACHE II score, duration of organ failure, time
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Fig. 3: Performance of the random survival forest model with the best
cohort. The model performance was comprehensively visualized with ti
decision curve analysis plot (C, F).
from onset to first intervention, and death risk. Specif-
ically, the death risk was not increased when the
APACHE II score was less than 10, slightly increased
when between 10 and 20, and significantly increased
when greater than 20. Additionally, the mortality risk
was much higher when the duration of organ failure
was longer than approximately 21 days and much lower
when time from onset to first intervention was longer
than about 30 days.

From the heat map of interaction SHAP value
(Fig. 6), there were strong interaction effects between
number of organ failures, duration of organ failure,
time from onset to first intervention, bloodstream
infection, BISAP score, APACHEII score, and severity
classification. We then selected the top 9 feature pairs
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Fig. 4: SHAP summary plot of random survival forest model with all feature in the training cohort. Each dot represented the value of an
individual patient data point in the training cohort, with feature’s value ranging from low (in blue) to high (in red). The distance of each dot
from the center of the x-axis represents the magnitude of impact (total SHAP value) on the model’s output, with SHAP value above zero
indicating contribution to death (increased death risk), and SHAP value below zero suggesting contribution to survival (reduced death risk).
Features were ranked on the y-axis from the highest to the lowest average contribution (average absolute SHAP value) in terms of feature
importance. SHAP, SHapley Additive exPlanations; APACHE II score, Acute Physiology and Chronic Health Examination II score; BISAP score,
Bedside Index of Severity in Acute Pancreatitis score; MDRO, Multidrug-resistant organisms; CRE, Carbapenem-resistant Enterobacter; ICU,
Intensive care unit; MCTSI, Modified CT Severity Index; CTSI, CT Severity Index.
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with both high interaction SHAP value and clinical
significance (Figs. 6 and 7, and Supplemental Fig. S7).
For instance, as shown in Fig. 7A, the negative inter-
action (SHAP interaction values < 0, indicating better
prognosis) was between age < 50 years and MOF,
however, this pattern was reversed between age ≥ 50
years and MOF. The positive interaction effect sug-
gested that patients with age ≥ 50 years and MOF would
fare worse than expected from the additive prognostic
effect of the two variables. Interestingly, the negative
interaction effect between age < 50 years and MOF, and
positive effect between age ≥ 50 years and MOF could
be observed in dependence plots of total effect
(Supplemental Fig. S6). Moreover, the addictive positive
interaction effect between age ≥ 50 years and MOF was
further confirmed by interaction metrics in traditional
Cox model (Supplemental Fig. S8 and Tables S6 and
S7). More detailed explanation has been provided in
Supplemental methods.

Finally, we implemented the final RSF model into an
interactive web-based Shiny app that provided survival
prediction and explanation for individuals. Additionally,
it also provided a global explanation of the model. The
web application was made accessible at https://
www.thelancet.com Vol 80 February, 2025
rsfmodels.shinyapps.io/IPN_app/. Given that collect-
ing all the required variables for the APACHE II score
may be challenging and may limit the clinical applica-
bility of the models, we developed an alternative online
model without the APACHE II score system (https://
rsfmodels.shinyapps.io/IPNeasy/). This model ach-
ieved a C-index of 0.855 (95% CI: 0.845–0.865) based on
1000 bootstrap samples and 0.851 (95% CI:
0.840–0.861) in the validation cohort (Supplemental
Table S8), both of which were slightly lower than the
corresponding C-index values of the model incorpo-
rating the APACHE II score system.

Sensitivity analysis
The RSF model explanation in the validation cohort
indicated similar results in terms of feature importance
and feature effect (Supplemental Figs. S9–14). Addition-
ally, feature importance achieved a similar ranking trend
across the SHAP method and permutation method both
in the training cohort (Supplemental Fig. S15) and vali-
dation cohort (Supplemental Fig. S16). Moreover, a
similar interaction pattern between age and number of
organ failure was seen in the validation cohort
(Supplemental Fig. S17 and Tables S9 and S10).
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Discussion
This is the first and largest study, to our knowledge, to
investigate and compare 10 ML models for death pre-
diction analyses in IPN cohorts. The RSF model ach-
ieved the best predictive performance both in the
derivation and external validation cohort regarding
discrimination, accuracy, and clinical applicability.
Meanwhile, the SHAP algorithm identified the top 9
contributing factors associated with increased mortality
likelihood, revealing insightful nonlinear interactive as-
sociations between predictors and death. Furthermore,
two publicly accessible web tools were constructed for
the optimized model, enhancing its utility in clinical
settings.

AP exhibited a diverse clinical course influenced by
individual characteristics, ranging from a mild, self-
limiting disease to a severe, life-threatening illness
with IPN and/or persistent (≥48 h) organ failure.30

Hence, it is crucial to identify mortality predictors and
construct a death prediction model for IPN to guide
clinical management and enhance prognosis. Previous
studies have highlighted laboratory variables like c-
reactive protein, along with scoring systems such as
APACHE II, Ranson, and SOFA, for assessing the
severity and prognosis of AP.2,5–8 However, these pa-
rameters have limitations, requiring an extensive set of
mandatory variables or exhibiting low sensitivity and
specificity for mortality prediction, thus limiting their
clinical utility. Moreover, existing scoring systems were
typically effective at admission but lacked utility in the
late phase of the disease due to the varied clinical course
of AP.

Several studies have developed ML death prediction
models for AP. Ding et al. developed an artificial neural
network prediction model for in-hospital mortality
based on age and 11 laboratory biochemical variables
(e.g., alanine aminotransferase, total bilirubin, creatine
kinase isoenzyme, prothrombin time, white blood cells,
amylase, total calcium, creatinine, hematocrit, lactate,
and lipase) within 24 h after admission of AP patients in
the Medical Information Mart for Intensive Care III
database, achieving an AUC of 0.769, notably higher
www.thelancet.com Vol 80 February, 2025
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than the Ranson score.22 However, it was a retrospective
public database study with relatively small samples,
limited clinical and laboratory characteristics, and inev-
itable missing part of data. Moreover, as all variables
were collected during the early stage of AP, applying the
model in later stage of the disease might pose limita-
tions, which was similar with the limitations of ANN
model for mortality prediction in AP developed by
Mofidi et al. 31 Lan et al. focused on the impact of sur-
gical timing on mortality, analyzing 223 IPN patients
who underwent surgery at West China Hospital.23 They
identified the key factors associated with surgical timing
(<4 or ≥4 weeks) and postoperative mortality for IPN
and predicted the surgical timing by applying ML
www.thelancet.com Vol 80 February, 2025
models. They found that the main factors associated
with postoperative mortality in patients who underwent
early surgery (<4 weeks) included modified Marshall
score on admission and preoperational modified
Marshall score. Preoperational modified Marshall score,
time of surgery, duration of organ failure and onset of
renal failure were important predictive factors for the
postoperative mortality of patients who underwent
delayed surgery (≥4 weeks). Finally, the random forest
model with better performance than common statistic
model, was constructed to predict the surgical timing,
providing good references for clinicians in developing
personalized surgical plans for patients with IPN.
Nevertheless, the study was limited by its retrospective,
11
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single-center design, lacking external validation. More-
over, its applicability was restricted to patients who un-
derwent surgery, thus excluding those who did not
undergo surgical intervention. In the present study, we
applied RSF model, better compared with other 9 ML
models, through a large prospective cohort to predict
death and identified the key factors associated with
mortality in patients with IPN. The RSF model was
constructed by 10 variables (age, smoking or drinking,
APACHE II score, number of organ failures, duration of
organ failure, bloodstream infection, pancreatic CRE
infection, time from onset to first intervention, surgery
approach and hemorrhage) and performed well both in
internal and external validation, with C-index of 0.863
and 0.857, respectively.

Notably, we utilized the SHAP algorithm to identify
key predictors, offering a general overview of feature
importance and their impact on model predictions.25,32

The top 9 important predictors associated with
increased mortality included MOF, APACHE II score
≥20, duration of organ failure ≥21 days, bloodstream
infection, time from onset to first intervention <30 days,
BISAP score ≥3, critically severe acute pancreatitis, age
≥ 50 years, and hemorrhage, which was consistent with
the results of our previous study.24 These results sug-
gested persistent organ failure should be reversed
within 21 days, and surgical intervention should,
whenever possible, be delayed until at least 30 days from
the onset. More effective treatment measures were
needed to reduce mortality in patients with MOF,
APACHE II score ≥20, or a BISAP score ≥3. Mean-
while, we explored interactive effects between variables,
revealing the intricate relationship between two pre-
dictors and their influence on mortality.24 For example,
patients with age ≥ 50 years and MOF exhibit a positive
interaction effect, indicating that patients would fare
worse than expected from the additive prognostic effect
of the two variables. This finding highlighted the ne-
cessity of implementing effective measures to reverse
MOF in elderly IPN patients. The addictive positive
interaction was further confirmed by interaction metrics
in the traditional model. Similar high interactive effects
www.thelancet.com Vol 80 February, 2025

http://www.thelancet.com


Articles
were also observed in the other eight pairs of features:
(1) number of organ failures and APACHE II score; (2)
number of organ failures and BISAP score; (3) number
of organ failures and time from onset to first interven-
tion; (4) number of organ failures and surgery approach;
(5) severity classification and surgery approach; (6)
severity classification and time from onset to first
intervention; (7) duration of organ failure and surgery
approach; (8) bloodstream infection and time from
onset to first intervention. These interactive effects
indicated that the patients would have worse prognosis
when any of the above paired features were present
simultaneously. Notably, the step-down approach
should be avoided whenever possible in cases of critical
acute pancreatitis, particularly in patients with MOF and
a duration of organ failure ≥21 days.

To our knowledge, this was the first time that inter-
active effects between death predictors were demon-
strated in IPN patients, which provided deep insights
into how the RSF model made its decisions. Two free,
interactive web-based Shiny apps for RSF model were
constructed to provide both death prediction and
explanation for individuals, enhancing its usability
among clinicians. The ML model offered two significant
benefits. First, it enabled clinicians to accurately predict
the risk of mortality for IPN patients, allowing for early
identification of high-risk patients and the imple-
mentation of targeted interventions and closer moni-
toring. Second, it served as a valuable tool for facilitating
communication with patients and their families
regarding prognosis and treatment options.

However, there were several limitations which
should be acknowledged in this study. First, the model
was developed using a single-center, prospective cohort
over an extended time period, raising concerns about its
generalizability to other centers and global populations.
The prolonged study period may introduce variability in
clinical management practices and data collection due to
evolving guidelines and treatment strategies for IPN,
potentially resulting in heterogeneous effects on clinical
outcomes and limiting the applicability. Furthermore,
while the two hospitals included in the study differed
significantly in patients volume, both were located
within the same province, limiting the model’s gener-
alizability. Second, IPN was defined based on a positive
culture of pancreatic necrosis or fluid obtained during
the first drainage or necrosectomy. Although the defi-
nition has a low false-positive rate, it may exclude pa-
tients with IPN successfully treated with non-surgical
therapy. Third, biomarkers (e.g., gene or protein
expression data) were not collected in the screening of
risk factors for death prediction due to the absence of
established biomarkers, although important biomarkers
may enhance disease understanding and outcome pre-
diction in various contexts. The use of antibiotics (e.g.,
types, duration, prophylactic or therapeutic use) was not
well documented due to the complexity of antibiotic
www.thelancet.com Vol 80 February, 2025
treatment for IPN. Our study focused on routinely
collected, clinically accessible variables for immediate
practical application. Fourth, while the combination of
ML models and interpretable SHAP algorithm facili-
tated clinician trust and meaningful information
extraction, it was crucial to acknowledge that clinical
judgment cannot be entirely replaced by the model.
Fifth, though ML model has shown potential in
decision-making assistance, the C-index may be
considered modest in comparison to models developed
with advanced artificial intelligence techniques in the
era of precision medicine. Future studies would focus
on constructing multicenter large-scale databases and
combine precision medicine techniques and advanced
artificial intelligence to develop and validate high-quality
models.

In conclusion, an explainable ML model for death
prediction among IPN patients was feasible and effec-
tive. The final RSF model had an excellent ability for
death prediction in both internal and external validation,
suggesting its superior potential in guiding clinical
management and improving patient outcomes. Two
publicly accessible web tools generated for the opti-
mized model facilitated its utility in clinical settings.
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