
HMGB1 Release and Redox Regulates Autophagy and Apoptosis 
in Cancer Cells

Daolin Tang1,4,5, Rui Kang1,4, Chun-Wei Cheh1, Kristen M. Livesey1, Xiaoyan Liang1, Nicole 
E. Schapiro1, Robert Benschop2, Louis J. Sparvero1, Andrew A. Amoscato1, Kevin J. 
Tracey3, Herbert J. Zeh1,5, and Michael T. Lotze1,5

1 The DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh 
Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA

2 Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA

3 North Shore University Hospital, New York University School of Medicine, Manhasset, NY 
11030, USA

Abstract

The functional relationship and cross-regulation between autophagy and apoptosis is complex. 

Here we show that high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of 

the balance between autophagy and apoptosis. In cancer cells, anti-cancer agents enhanced 

autophagy and apoptosis as well as HMGB1 release. HMGB1 release may be a pro-survival signal 

for residual cells following various cytotoxic cancer treatments. Diminished HMGB1 by shRNA 

transfection or inhibition of HMGB1 release by ethyl pyruvate or other small molecules led to 

predominantly apoptosis and decreased autophagy in stressed cancer cells. In this setting, 

reducible HMGB1 binds to the receptor for advanced glycation end products (RAGE) but not 

Toll-like receptor 4 (TLR4), induces Beclin1-dependent autophagy, and promotes tumor 

resistance to alkylators (melphalan), tubulin disrupting agents (paclitaxel), DNA crosslinkers 

(ultraviolet light) and DNA-intercalators (oxaliplatin or adriamycin). Oxidized HMGB1 

conversely increases the cytotoxicity of these agents and induces apoptosis mediated by the 

caspase-9/-3 intrinsic pathway. HMGB1 release as well as its redox state thus link autophagy and 

apoptosis, representing a suitable target when coupled with conventional tumor treatments.

INTRODUCTION

Broadly, stress can simultaneously provoke both an adaptive and apoptotic response within 

cells. Integration of these programmed survival and death signals determines the fate of the 

cell. Multiple and rather consistent defects in pathways that control apoptosis are found in 
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virtually all human epithelial and lymphoid tumors. Removal or functional inhibition of 

proteins essential for the apoptotic machinery can promote a cellular stress response 

characterized by decreased apoptosis and increased autophagy (Han et al., 2008; Lum et al., 

2005) and when adenosine triphosphate (ATP) sources are depleted, necrosis. 

Understanding this alternative, adaptive pathway known as autophagy, has thus become 

increasingly important (Amaravadi and Thompson, 2007). Autophagy presently is viewed as 

a “doubled-edged sword” whereby downregulation of this process promotes tumorigenesis 

and upregulation in an established tumor promotes cell survival (White and DiPaola, 2009). 

Autophagy allows tumor cells to survive bioenergetic stress via clearance of damaged 

organelles and mutant or unfolded proteins and generation of glycolytic substrates 

(Degenhardt et al., 2006; Levine, 2007). However excessive autophagy promotes 

programmed cell death under some specific condition (Kroemer and Levine, 2008). 

Although most cancer therapies such as radiation and cytotoxic drugs, activate apoptosis 

these treatments also induce autophagy (Apel et al., 2008; Levine, 2007). A thorough 

understanding of the functional relationship and cross-regulation between these paired 

processes, apoptosis and autophagy will reveal mechanisms of resistance and identify novel 

targets for cancer treatment (Maiuri et al., 2007).

High-mobility group box 1 protein (HMGB1) is a highly conserved nuclear protein which 

acts as a chromatin-binding factor that bends DNA and promotes access to transcriptional 

protein assemblies on specific DNA targets (Lotze and Tracey, 2005; Muller et al., 2001). In 

addition to its intra-nuclear role, HMGB1 also functions as an extracellular signaling 

molecule (Lotze and Tracey, 2005; Muller et al., 2001). HMGB1 is passively released from 

necrotic cells and is actively secreted by inflammatory cells. Released HMGB1 mediates the 

response to infection and injury by binding with high affinity to several receptors including 

the receptor for advanced glycation end products (RAGE), and Toll-like receptors (TLR)-2 

and -4, thereby promoting inflammation (Lotze and Tracey, 2005; Scaffidi et al., 2002; Tang 

et al., 2010; Wang et al., 1999).

The pathogenic role of HMGB1 release in patients undergoing cancer treatment remains 

largely unexplored (Tang et al., 2010). HMGB1 release has been identified as a means by 

which acute immune responses are initiated against tumor cells undergoing chemotherapy-

induced necrosis (Apetoh et al., 2007). Here we demonstrate that HMGB1 release is a 

critical regulator of the response to various forms of metabolic stress. Inhibition of 

autophagy limited HMGB1 release and promoted apoptosis in cancer cells. We demonstrate 

that in apoptosis-defective tumor cells, autophagy is upregulated and HMGB1 release is 

limited, suggesting that HMGB1 release is associated with sustained autophagy. Depletion 

of HMGB1 by RNAi or inhibition of HMGB1 release with small-molecule inhibitors 

increases tumor cell sensitivity to several clinically useful agents. Moreover, the redox state 

of HMGB1 is critical as exogenous delivery of reduced HMGB1 protein promotes 

autophagy and oxidized HMGB1 promotes apoptosis in cancer cells. HMGB1-mediated 

autophagy is dependent on RAGE/Beclin1, but not TLR4. These findings define new 

molecular mechanisms for HMGB1 action and support the notion that inhibition of HMGB1 

release could decrease autophagy and thus limit resistance to treatment.
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RESULTS

Cytotoxic agents induce cellular stress and HMGB1 translocation and release

A number of DNA-damaging agents including the alkylator, melphalan (“ME”) and the 

tubulin depolymerizing agent, paclitaxel (“PA”) induce cell death in a time dependent 

manner. We have confirmed this finding using a CCK8 cell viability assay (Figure 1A), and 

a trypan blue dye assay (data not shown). With prolonged treatment, there was a decrease in 

early apoptotic cells (Annexin V positive and PI negative) and an increase in late apoptotic 

and necrotic cells (both Annexin V-PE and PI positive) (Figure 1A). Western blotting 

analysis confirmed PARP cleavage, a marker of cells undergoing apoptosis, following 

chemotherapuetic treatment (Figure 1B). Microtubule-associated protein light chain 3 (LC3) 

is now widely used as a marker to monitor autophagy (Mizushima and Yoshimori, 2007). 

When autophagy is upregulated, a cleaved cytosolic form of LC3 (LC3-I) is conjugated to 

phosphatidylethanolamine to form LC3-phosphatidylethanolamine (LC3-II), which is 

recruited to autophagosomal membranes. Melphalan and paclitaxel treatment triggered a 

time-dependent accumulation of GFP-LC3 punctae (Figure 1A and C) and induction of 

LC3-II (Figure 1B). The addition of the lysosomal protease inhibitors pepstatin and E64D 

led to a further increase in the amount of LC3-II (data not shown), consistent with increased 

autophagic flux. An alternative method for detecting autophagic flux is measuring enhanced 

degradation of p62 (SQSTM1/sequestosome), a long lived scaffolding protein involved in 

the transport of ubiquitinylated proteins destined for proteosomal digestion (Pankiv et al., 

2007). Consistently, cells treated with melphalan and paclitaxel had reduced expression of 

p62 (Figure 1B) and increased levels of extracellular HMGB1 demonstrated by western blot 

analysis of the cell culture supernatants. Treatment with melphalan and paclitaxel for 6 h 

induced HMGB1 release unaccompanied by measurable lactate dehydrogenase (LDH, a 

marker of necrosis) or histone 3 (H3) release (Figure 1B). This suggests that early HMGB1 

release is an active process. Taken together, these data suggest that in tumor cells treated 

with a variety of cytotoxic agents, HMGB1 release is a widespread phenomenon regardless 

of the type of tumor cell death.

Inhibition of autophagy diminishes HMGB1 release and enhances selective apoptosis

To explore the relationship between HMGB1 release and autophagy/apoptosis, we inhibited 

the autophagy regulator Beclin1 and ATG5 (Maiuri et al., 2007) by RNAi in Panc02 cells. 

Knockdown of Beclin1 and ATG5 by shRNA (Figure 2A) inhibited stress-induced 

accumulation of GFP-LC3 punctae (Figure 2C) and HMGB1 release (Figure 2D). Neither 

histone 3 (H3) nor LDH were detected in the cellular supernatants following short treatment 

for 6 h, indicating that HMGB1 release did not depend on conventionally measured early 

necrosis. As reported previously (Han et al., 2008; Sy et al., 2008), knockdown of Beclin1 

promoted apoptosis as assessed by flow cytometry (Figure 2B). However, knockdown of 

ATG5 in vitro also inhibited apoptosis (Figure 2B) (Yousefi et al., 2006). To further confirm 

that HMGB1 release is associated with autophagy, we treated cells with 

phosphatidylinositol-3 kinase (PI-3K) inhibitors including 3-methyladenine (3MA), a wide-

used autophagy inhibitor. Indeed, 3MA limited autophagy as well as HMGB1 release and 

increased apoptosis (Figure 2B–D). Our findings suggest that autophagic stimuli regulate 

HMGB1 release.
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Anticancer agents promote HMGB1 release and autophagy and limit apoptosis

Bax and p53 are key proteins in the regulation of apoptosis following stress (Zhang et al., 

2000). To further characterize the relationship between HMGB1 release and cell death, we 

treated apoptosis-defective Bax−/− and p53−/− HCT116 cancer cells with anticancer agents. 

The absence of Bax or p53 in the well-characterized HCT116 colorectal cancer cell line 

(Figure 3A) completely abolished the apoptotic response to melphalan or paclitaxel (Figure 

3B). However, HMGB1 release and GFP-LC3 punctae were increased in Bax−/− and p53−/

− HCT116 cells following treatment (Figure 3C and D). A necrotic marker, LDH was not 

detected in supernatants when cells were treated for 6 h, suggesting that there is an 

alternative mechanism responsible for HMGB1 release. Furthermore, pretreatment with the 

pancaspase inhibitor ZVAD-FMK promoted accumulation of GFP-LC3 punctae (Figure 3C) 

and associated HMGB1 release (Figure 3D).

Inhibition of HMGB1 release promotes apoptosis and limits autophagic flux

Ethyl pyruvate (“EP”) and glycyrrhizin (“Gly”) were identified as experimental inhibitors of 

HMGB1 release and activity (Mollica et al., 2007; Ulloa et al., 2002). To examine whether 

inhibition of HMGB1 release sensitizes cancer cells to cytotoxic agents, we pretreated cells 

with ethyl pyruvate or glycyrrhizin. These inhibitors attenuated HMGB1 release induced by 

melphalan (Figure 4A). Interestingly, inhibition of HMGB1 release in Panc2.03 and 

HCT-116 tumor cells treated with chemotherapy decreased autophagy as assessed by GFP-

LC3 punctae and LC3-II/p62 western blot analysis and increased apoptosis as determined by 

flow cytometry and cleaved PARP assays (Figure 4A).

To further characterize the role of HMGB1 release in cancer cells following chemotherapy, 

a target-specific HMGB1 shRNA (Figure 4B) or HMGB1 neutralizing antibody (data not 

shown) was used in Panc2.03 and HCT116 tumor cells. Inhibition of HMGB1 release by 

shRNA or antibody in these cells rendered them significantly more sensitive to melphalan-

induced apoptotic cell death, which was also associated with lower levels of autophagy 

(Figure 4B). Moreover, knockdown of HMGB1 in Panc2.03 cells inhibited serum starvation 

(e.g. HBSS) and rapamycin-induced accumulation of LC3 punctae (Figure 4C), supporting a 

critical role for HMGB1 in the regulation of autophagy.

Provision of exogenous reduced HMGB1 increases autophagy

To further characterize the role of HMGB1 release in the setting of autophagy, we treated 

Panc2.03 and HCT116 cancer cells with recombinant HMGB1 proteins, which has been 

assessed for the oxidation state of the Cysteine residues in HMGB1 pools #2 and #3. 

HMGB1 contains three cysteine residues at positions 23, 45 and 106. To determine the 

relative oxidation states of these residues, tyrptic fragments were prepared from a solution 

digest of HMGB1 pool #2 and pool #3 preparations. A portion of the digest was subjected to 

reduction with DTT and was compared to the non-reduced digest and analyzed by MALDI-

TOF mass spectrometry (Figure 5A). In the absence of DTT, both HMGB1 pool #2 and pool 

#3 digests yielded fragments indicative of Cys 23–45 crosslinks which were capable of 

being reduced with DTT (not shown). In addition, both pool #2 and pool #3 preparations 

displayed essentially the same relative ratios of Cys 23 involved in disulfide bonding as 

compared to the total (disulfide-linked + free sulfhydryl). One major difference between 
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HMGB1 pool #2 and pool #3 fractions was evident in the oxidation state of Cys 106. Nearly 

half of the Cys 106 containing fragments (m/z 1944.9, residues 97–112, free sulfhydryl) in 

the HMGB1 pool #2 preparation were oxidized to the irreversible sulfonic acid (m/z, 

1992.9) and were not able to be reduced in the presence of DTT (Figure 5A). In contrast, 

only 17% of the Cys 106 residues were oxidized to the sulfonic acid form in the pool #3 

preparation. Oxidation to the sulfonic acid was confirmed by MS/MS analysis of the m/z 

1992.9 mass ion (see materials and methods). Cys 106 has been shown to be critical for 

HMGB1 nuclear-cytoplasmic shuttling (Hoppe et al., 2006) and thus may account, at least 

in part, for the observed differences in biological activity between these two preparations.

Treatment with reducible (“R”) but not oxidized HMGB1 (“O”) increased accumulation of 

GFP-LC3 punctae (Figure 5B), induced LC3-II formation (Figure 5C) and reduced 

expression of p62 (Figure 5C). Moreover, HMGB1 C106S mutant protein significantly 

decreased autophagy compared with wild-type reduced HMGB1 protein (Figure 5C). There 

is further accumulation of LC3-II in the presence of the lysosomal protease inhibitors 

pepstatin and E64D (Figure 5C), indicating the enhancement of autophagic flux. 

Conversely, oxidized HMGB1 led to a modest increased apoptosis but not necrosis in cancer 

cells assessed by flow cytometry (Figure 5B). Pretreatment with inhibitors of caspase-3 and 

-9 [mitochondrial pathway], but not −8 [non-mitochondrial pathway] inhibited oxidized 

HMGB1-induced apoptosis in Panc2.03 cells (Figure 6C), suggesting that oxidized HMGB1 

actives the mitochondrial apoptosis pathway.

Another important molecular event in autophagosome formation is the disassociation of the 

Bcl-2/Beclin1 complex (Pattingre et al., 2005). Only reduced HMGB1 suppressed 

interaction of Beclin1/Bcl-2 (Figure 5D). Moreover, knockout of Beclin1 by shRNA 

inhibited reduced HMGB1-induced autophagy (Figure 5E), suggesting that reduced 

HMGB1 promotes the Beclin1 dependent autophagic pathway.

To determine whether the receptor RAGE and/or TLR4 mediate HMGB1-induced 

autophagy, a target-specific shRNA against these receptors was transfected into tumor cells. 

Knockdown of RAGE in cancer cells diminished HMGB1-induced autophagy (Figure 5E). 

In contrast, there was no affect on HMGB1-induced autophagy in the TLR4 knockdown, 

suggesting that RAGE is required for HMGB1 promotion of Beclin1-dependent autophagy.

Redox status of HMGB1 regulates the effect of chemotherapy

To examine whether the redox state of the exogenous or released HMGB1 protein modifies 

the response to chemotherapy, we performed cell viability assays on cancer cells treated 

with various cytotoxic agents. The reduced form of HMGB1 decreased the effectiveness of 

many anticancer agents including oxaliplatin, melphalan, adriamycin, and paclitaxel against 

Panc2.03 and HCT116 cancer cell lines at 12–48 h by CCK8 cell viability assay (Figure 

6A). However, the oxidized form of HMGB1 increased cell death following treatment with 

chemotherapeutic agents. Similarly, oxidized HMGB1 but not reduced HMGB1 increased 

paclitaxel-induced apoptosis by flow cytometry (Figure 6A). To confirm the role of HMGB1 

release during therapy-induced stress in cancer cells, we evaluated colony forming assays. 

Consistent with the cell viability assays, treatment for 24 h and 72 h with reduced HMGB1 
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but not oxidized HMGB1 increased long term cellular viability (Figure 6B). Taken together, 

these data suggest that reduced HMGB1 increases resistance to a variety of cytotoxic agents.

DISCUSSION

Autophagy is a process associated with the degradation of intracellular organelles following 

sequestration within double-membrane delimited vacuoles. At present, the role of autophagy 

in tumor cells is not well characterized, particularly when subjected to various stressors 

including chemotherapy. Here we demonstrate that HMGB1 release and its redox state 

critically regulates the autophagic response to anticancer agents and influences antitumor 

efficacy.

Autophagy regulates HMGB1 release in tumor cells. Inhibition of autophagy by genetic 

manipulation or small molecule inhibitors minimized HMGB1 release. Similarly, autophagy 

is upregulated in apoptosis-defective tumor cells, which results in greater amounts of 

HMGB1 release in response to treatment in vitro. Furthermore, inhibition of HMGB1 

release by genetic manipulation or small molecule inhibitors limited autophagy and 

increased the apparent efficacy of anticancer agent-induced cell death. Our previous studies 

have demonstrated that quercetin and wortmannin inhibit LPS-induced markers of 

autophagy (LC3-II production and punctae) as well as HMGB1 translocation and release in 

sepsis (Tang et al., 2009). A diphtheria toxin targeted to the EGF receptor (DT-EGF) kills 

glioblastoma cells through a caspase-independent mechanism that is associated with high 

levels of autophagy and HMGB1 release (Thorburn et al., 2009). These findings suggest that 

HMGB1 is released during autophagy and is a rather universal finding in the cellular 

response to stress.

Is HMGB1 released during apoptotic cell death? This has been considered possible 

(Tesniere et al., 2008) but it appears that in normal cells, HMGB1 is released during 

necrosis, but not apoptosis (Ohndorf et al., 1999; Scaffidi et al., 2002). Two findings have 

challenged this notion. First, nuclear DNA is released in a time-dependent manner following 

induction of apoptosis (Choi et al., 2004). Second, during apoptosis there is increased 

binding of HMGB1 to DNA, consistent with the notion that uningested, late-stage apoptotic 

cells can release both DNA and HMGB1. Recent studies (Bell et al., 2006; Kazama et al., 

2008; Tian et al., 2007) have confirmed that HMGB1 can also be released from apoptotic 

tumor cells, at least at later stages of dissolution. Although necrotic cells release HMGB1, 

signaling tissue injury and initiating inflammatory responses (Scaffidi et al., 2002), 

apoptotic cells produce reactive oxygen species and oxidized HMGB1 released from 

apoptotic cells promotes tolerance (Kazama et al., 2008). Virtually all stressful stimuli not 

only induce apoptosis but also autophagy at early stages and promote necrosis at late stages 

in cancer cells with intrinsic apoptotic defects or with ATP depletion. Early inhibition of 

apoptosis in Bax−/− and p53−/− HCT116 cells promotes drug induced autophagy as well as 

HMGB1 release. Importantly, knockdown of ATG5, which decreases autophagy and 

apoptosis, inhibits HMGB1 release, suggesting that autophagy is a major regulator of 

HMGB1 localization.
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When considering application of anticancer agents, it is important not only to consider the 

lethal effectiveness but also the characteristics of tumor cell death which we believe 

determines the long-term effectiveness of the treatment. At present the effect of the HMGB1 

protein released from tumor cells and its microenvironment on tumor cell persistence and 

survival is not well characterized. Here we demonstrate that reducible exogenous HMGB1 

protein regulates cell death and survival in tumor cells. Reducible HMGB1 decreases cell 

injury/death in tumor cells by increasing Beclin1-dependent autophagy whereas provision of 

oxidized HMGB1 enhanced cell injury/death in response to anticancer agents. This suggests 

that the local redox state controls HMGB1’s function (Figure 6D).

Oxidative stress occurs when the generation of reactive oxygen species (ROS) in a system 

exceeds its ability to neutralize and eliminate them. Compared with normal cells, both ROS 

and autophagy are altered in cancer cells. On one hand, ROS can induce autophagy through 

several distinct mechanisms involving autophagy-related gene 4 (ATG4), catalase and the 

mitochondrial electron transport chain (Azad et al., 2009). On the other hand, defective 

autophagy can increases oxidative stress in tumor cells (Mathew et al., 2009). Moreover, 

suppressing ROS or p62 accumulation prevents damage resulting from autophagy defects 

(Mathew et al., 2009). This suggests that autophagy defects may increase the proportion of 

oxidized HMGB1.

Once present in the extracellular space, HMGB1 can bind to a range of receptors, including 

RAGE and TLR4 (Kang et al., 2010a; Lotze and Tracey, 2005; Sparvero et al., 2009). For 

example, if dying tumor cells release the immune modulator HMGB1 following treatment, 

they can activate a TLR4-dependent tumor-specific immune response that enhances the 

effectiveness of the initial treatment (Apetoh et al., 2007). We found that RAGE RNAi 

abolished HMGB1-induced autophagy in cancer cells while TLR4 RNAi had no effect, 

suggesting that there are separable roles for RAGE and TLR4 in cancer and immune cells in 

response to anticancer chemotherapy or radiotherapy. Moreover, the involvement of 

HMGB1/RAGE in the NF-κB pathway has been demonstrated in many studies (Bierhaus et 

al., 2001; Liliensiek et al., 2004), although the precise mechanism is unknown. Interestingly, 

a recent study suggests that the IKK complex has a role in the induction of autophagy by 

physiological and pharmacological stimuli (Criollo et al.), suggesting that IKK has a novel 

function in regulating autophagy. Thus HMGB1 may active IKK and promote autophagy 

through RAGE.

In summary, these studies suggest that release of HMGB1 by autophagic cells promotes 

local cancer cell survival following administration of chemotherapy. Reducible HMGB1 

protein induces autophagy in cancer cells that is RAGE/Beclin1-dependent. These findings 

serve as the basis for a novel therapeutic approach to potentiate cancer treatment efficacy via 

inhibition of HMGB1 release and resultant autophagy or by enhancing the aerobic 

denaturation of HMGB1. Future studies to elucidate the molecular mechanisms and impact 

of HMGB1-mediated autophagy regulating both tumor and immune cells within the tumor 

microenvironment are areas of great interest and worthy of further study.
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MATERIALS AND METHODS

Antibodies

The antibody to HMGB1 was generated as previous described (Ito et al., 2007); The 

antibodies to cleaved-PARP, Bcl-2, Bax and H3 were obtained from Cell Signaling 

Technology (Danvers, MA, USA); The antibodies to GAPDH, actin and RAGE were from 

Sigma (St. Louis, MO, USA); The antibodies to LC3-I/II and Beclin1 were from Novus 

(Littleton, CO, USA); The antibodies to TLR4 and LDH were from Abcam (Cambridge, 

MA, USA); Anti-p62 antibody was from Santa Cruz (Santa Cruz, CA, USA); Caspase 

inhibitors were purchased from Calbiochem (Gibbstown, NJ, USA). Other anticancer agents 

and inhibitors were from Sigma.

HMGB1

Oxidized (Pool #2) and reducible (Pool #3) recombinant HMGB1 proteins were from Eli 

Lilly and Company (Indianapolis, IN, USA); the endotoxin content was 1.9 EU/ml for Pool 

#2 and 3.1 EU/ml for Pool #3. Authentic full length HMGB1 was transiently expressed in 

human embryonic kidney 293 cells. Cell lysates were collected and passed first over a 

DEAE sepharose then over a heparin-sepharose Pharmacia XK16 23ml column. The 

samples were loaded at 10ml/minute and eluted at 8 ml/min with a fraction size of one 

minute. The two buffers used were A] 30 mM tris, 1 mM CaCl2, pH = 8.0 and B] 30 mM 

tris, 1 mM CaCl2, 1M NaCl, pH=8.0. For the first 60 minutes, a linear gradient up to 50% B 

was used, ramping up to 100% B over the next ten minutes, which was maintained for the 

next five minutes. Pool #2 (fractions 53–60) 387 μg/ml, and Pool #3 (fractions 42–45 and 

61–68) 258 μg/ml demonstrated a band with the predicted molecular weight of 27,987.1 

Daltons as well as a higher smaller band collapsing to single bands under reducing 

conditions on a 4–20% Tris-Gly gel. We obtained 60.8 mls of Pool #2 and 92.7 mls of Pool 

#3. All pools were aliquoted and frozen at −80°C until use. MALDI mass spectrometry 

revealed that Pool #2 was primarily (>70%) oxidized based on analysis of peptide fragments 

and Pool #3 was primarily (>70%) reduced. HMGB1 C106S mutant protein was a gift from 

Dr. Helena Erlandsson Harris (Karolinska Institutet, Sweden).

Measurements of HMGB1 release

HMGB1 released into cell culture supernatants was evaluated using Western blotting as 

previously described (Scaffidi et al., 2002; Tang et al., 2008; Tang et al., 2007b; Wang et 

al., 1999) or enzyme-linked immunoabsorbent assay (ELISA) kits from the Shino-Test 

Corporation (Sagamihara-shi, Kanagawa, Japan) according to the manufacturer’s 

instructions.

MALDI-TOF mass spectrometry

For MALDI-TOF Mass Spectrometry sample preparation, solid-phase extraction pipette tips 

(C18 ZipTip) from Millipore were used. Protein sequencing grade trifluoroacetic acid (TFA) 

was purchased from Fisher Scientific. Mass Spectrometry grade acetonitrile (MeCN) and 

alpha-cyano-4-hydroxycinnamic acid (CHCA) were purchased from Sigma-Aldrich. ACS 

reagent grade dithiothreitol (DTT), ammonium citrate and ammonium bicarbonate were 
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purchased from Sigma-Aldrich. Modified trypsin was purchased from Promega as Gold 

grade (proteomics quality). The UPCI Clinical Proteomics Facility Bruker Ultraflex II Mass 

Spectrometer (nitrogen laser, 337nm) was used in either reflector-positive or LIFT (MS/MS) 

mode as appropriate.

To determine the oxidation state of HMGB1, three samples each of HMGB1 Pool #2 and #3 

were diluted to 25ng/uL in 25mM ammonium bicarbonate, pH7.4, and digested at 37’C 

overnight with trypsin (100:1 ratio protein:trypsin). Two 50uL aliquots from each digest 

where acidified with 5% TFA and passed through ZipTips as per the manufacturer’s 

directions to bind tryptic peptides. Each tip was washed once with 20uL water to remove 

residual salts. One tip from each digest was incubated (100mM DTT in ammonium 

bicarbonate) at 56’C for 1hr to reduce the available cysteines entirely to sulfhydryls. Both 

tips from each digest were washed four times with 0.1% TFA and eluted with 3uL 50/0.1 

MeCN/TFA. Each elutant was mixed 1:1 with CHCA solution (10mg/mL) in the same 

solvent, centrifuged very briefly, then applied to a MALDI target plate in 0.75uL drops and 

allowed to air-dry. Once dry, they were on-plate washed with 2uL of ice cold 5mM 

ammonium citrate.

The MALDI-TOF Mass Spectrometer was recalibrated with a peptide standard before each 

analysis. Each MS sample was acquired as the sum of 200 shots from each five different 

regions within the same spot. Tryptic peptides were identified with the assistance of the 

Protein Prospector software suite (Baker, P.R. and Clauser, K.R., http://prospector.ucsf.edu). 

MS/MS spectra were acquired with varying laser intensities depending on fragmentation 

pattern and a sum total of 12,000 shots.

Cell culture

Human pancreatic cancer Panc2.03 cells were from American Type Culture Collection 

(USA) and human colon cancer HCT116 cells were a kind gift of Dr. Bert Vogelstein 

[Baltimore]. Mouse pancreatic cancer Panc02 cells were from National Cancer Institute 

(USA). HCT116 Bax−/− and p53−/− cells were kind gifts of Dr. Lin Zhang (Department of 

Pathology, University of Pittsburgh). These cells were cultured in RPMI 1640 or McCoy’s 

5a medium supplemented with 10% heat-inactivated FBS, 2 mM glutamine and antibiotic-

antifungal mix in a humidified incubator with 5% CO2 and 95% air.

Western blotting

Whole cell lysate were resolved on 4–12% Criterion XT Bis-Tris gels (Bio-Rad, Hercules, 

CA, USA) and transferred to a nitrocellulose membrane as previously described (Tang et al., 

2007a; Tang et al., 2007b). After blocking, the membrane was incubated for 2 h at 25°C or 

overnight at 4°C with various primary antibodies respectively. After incubation with 

peroxidase-conjugated secondary antibodies for 1 h at 25°C, the signals were visualized by 

enhanced chemiluminescence (Pierce, Rockford, IL, USA) according to the manufacturer’s 

instruction. Levels of HMGB1 in the culture medium were determined by Western blotting 

analysis as previously described (Tang et al., 2007a; Tang et al., 2007b; Tang et al., 2005; 

Tang et al., 2007c; Wang et al., 1999).
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RNAi by shRNA

RAGE-shRNA, Beclin1-shRNA, ATG-5 shRNA, HMGB1-shRNA, TLR4 shRNA, and 

control shRNA (from Sigma, USA) were transfected into cells using Lipofectamine 2000 

reagent (Invitrogen, San Diego, CA, USA) according to the manufacturer’s instructions. At 

the end of the shRNA treatment (48–72 h), the medium over the cells was change before the 

addition of a chemotherapy agent.

Immunoprecipitation analysis

Cells were lysed at 4°C in ice-cold RIPA lysis buffer (Millipore, Billerica, MA, USA), and 

cell lysates were cleared by a brief centrifugation (12,000 g, 10 min). Concentrations of 

proteins in the supernatant were determined by BCA assay. Prior to immunoprecipitation, 

samples containing equal amounts of proteins were pre-cleared with Protein A or protein G 

agarose/sepharose (Millipore) (4°C, 3 h) and subsequently incubated with various irrelevant 

IgG or specific antibodies (5 μg/mL) in the presence of protein A or G agarose/sepharose 

beads for 2 h or overnight at 4°C with gently shaking (Kang et al., 2010b; Tang et al., 

2007a; Tang et al., 2007b). Following incubation, agarose/sepharose beads were washed 

extensively with PBS and proteins eluted by boiling in 2 × SDS sample buffer before SDS-

PAGE electrophoresis.

Apoptosis assays

Apoptosis in cells was assessed using the BD Pharmingen (San Jose, CA, USA) FITC 

Annexin V Apoptosis Detection Kit (Annexin V-FITC, Propidium Iodide (PI) solution and 

Annexin V binding buffer). This assay involves staining cancer cells with Annexin V-FITC 

(a phospholipid-binding protein binding to disrupted cell membranes) in combination with 

propidium iodide (PI, a vital dye binding to DNA penetrating into apoptotic cells). Flow 

cytometric analysis was performed on cancer cells that were in early apoptosis (annexin V

+/PI−) or late apoptosis/necrosis (annexin V+/PI+) phase (Geft et al., 2008). Caspase-3 

activity assays were performed using a Caspase-3 Colorimetric Assay Kit from Calbiochem. 

Cleaved-PARP was measured by western blotting analysis.

Autophagy assays

Formation of autophagic vesicles was monitored by GFP-LC3 (gifts of Dr. Xiao-Ming Yin, 

Department of Pathology, University of Pittsburgh) or endogenous LC3 aggregation in cell 

lines. The percentage of cells with LC3 dots was quantified by assessing 50 randomly 

chosen cells from three separate experiments. Autophagic flux assays were performed by 

western blotting for LC3-II formation and p62 expression, after treatment with HMGB1 

protein in the presence or absence of lysosomal protease inhibitors (E64d/pepstatin A) 

(Mizushima and Yoshimori, 2007).

Cell viability and cell survival assay

Cells were plated at a density of 2×104 cells/well on 96-well plates in 100 μl RPMI. Cell 

viability was determined by WST-8 (2-(2-methoxy-4-nitrophenyl) - 3 - (4-nitrophenyl) - 5 - 

(2, 4-disulfophenyl) - 2 H - tetrazolium, monosodium salt), assay using a Cell Counting Kit - 

8 (CCK-8) from Dojindo Laboratories (Tokyo, Japan) according to the manufacturer’s 
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instructions (Hamamoto et al., 2004). In parallel, trypan blue exclusion test of cell viability 

was also used (data not included). Long term cell survival was monitored by colony 

formation assay. In brief, 1000 cells treated with chemotherapeutic drugs for 24 h were 

plated into 24 well plates. Colonies were visualized by crystal violet staining 3 weeks later 

(Wang et al., 2007).

Statistical analysis

Data are expressed as means ± SEM of three independent experiments performed in 

triplicate. One-way ANOVA was used for comparison among the different groups. When 

the ANOVA was significant, post hoc testing of differences between groups was performed 

using LSD test. In general, a p-value < 0.05 was considered significant.
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Figure 1. Cell injury/stress promotes HMGB1 release from cancer cell lines
(A) Small molecule anticancer agents decreased cell viability and induced both apoptotic 

and autophagic pathways. Panc02 and HCT116 cancer cells were treated with either a DNA 

alkylating agent or a tubulin depolymerization inhibitor (melphalan, “ME”, 160 μg/ml; 

paclitaxel, “PA”, 10 μg/ml respectively) for 0–24 h, and then assayed for cell viability using 

measures of NADH dehydrogenases [CCK8], apoptosis by flow cytometric analaysis (right 

panel) using Annexin V/PI stain and autophagy by quantification of the percentage of cells 

with GFP-LC3 punctae as described in methods (N=3, * p<0.05 versus control group). (B) 

The anticancer agents indicated in (A) induced HMGB1 release by ELISA assay (N=3, * 

p<0.01 versus untreated “UT” group, top), and western blot analysis (bottom), A 

representative western blot analysis of the protein levels indicated is included (LDH and H3 

were both used as controls for protein leakage from damaged cells). (C) GFP-LC3 punctae 

are induced by melphalan and paclitaxel following 6 h treatment in Panc2.03 cells 

transfected with a GFP-LC3 reporter plasmid. “UT”: untreated. The percentage of cells 

showing accumulation of GFP-LC3 in punctae is reported in panel (A). Bar=20 μm.
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Figure 2. Inhibition of autophagy diminishes HMGB1 release and enhances selective apoptosis
(A) Immunoblots are shown for Beclin1 and ATG5 knockdown performed in Panc02 cells. 

(B–D) Panc02 cells as indicated were treated with the anticancer agents (melphalan, “ME”, 

160 μg/ml; paclitaxel, “PA”, 10 μg/ml) for 6 h. and then assayed for early apoptosis 

(annexin V+/PI−) by flow cytometry (B), autophagy by quantification of the percentage of 

cells with GFP-LC3 punctae (C) and HMGB1 release, by western blotting analysis (LDH 

and H3 were both used as controls for protein leakage from damaged cells) (D). PI3-kinase 

inhibitor 3-methyladenine (3MA, 5mm) was used as a nominal autophagy inhibitor. 

Representative western blots of the indicated proteins are presented.
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Figure 3. HMGB1 release and autophagy is detected in the absence of measurable apoptosis
(A) Immunoblots are shown for Bax and p53 knockout in HCT116 cells. (B-D) WT, Bax 

knock out, p53 knockout or pan-caspase inhibitor treated (ZVAD-FMK, 20 μm) HCT116 

cells were treated with melphalan, “ME”, 160 μg/ml or paclitaxel, “PA”, 10 μg/ml for 6 h. 

and then assayed for measures of early apoptosis (annexin V+/PI−) by flow cytometry (B), 

autophagy by quantification of the percentage of cells with GFP-LC3 punctae (C) and 

HMGB1 release by western blot analysis (LDH and H3 were both used as controls for 

protein leakage from damaged cells) (D). Representative western blots of the indicated 

proteins are presented.
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Figure 4. Inhibition of HMGB1 release increases tumor cell sensitivity to anticancer agents
(A) Inhibition of HMGB1 release with small molecule drugs increases tumor cell sensitivity 

to anticancer agents. Panc2.03 and HCT116 cells were pretreated with the HMGB1-release 

inhibitors ethyl pyruvate (EP, 10 mm) or glycyrrhizin (Gly, 500 μm) for 2 h and then 

cultured in the presence of melphalan for an additional 24 h. Representative western blotting 

analysis of protein levels are presented. In parallel, measures of apoptosis (annexin V+/PI−) 

were assayed by flow cytometry and autophagy by quantifying the percentage of cells with 

GFP-LC3 punctae. (B) Panc2.03 and HCT116 cells were knocked down for HMGB1 using 

shRNA for 48 h, and then stimulated with melphalan for 24 h. Representative western 

blotting analysis of protein levels is presented. In parallel, apoptosis (annexin V+/PI−) was 

assayed by flow cytometry (right panel) and autophagy by quantifying the percentage of 

cells with GFP-LC3 punctae (N=3, p<0.01). Representative FACS plots are presented. (C) 
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HMGB1 was knocked down in Panc2.03 using shRNA for 48 h, and then these cells were 

stimulated with starvation (HBSS, 3 h) and rapamycin (1 μm, 6 h). Autophagy was 

evaluated using the percentage of cells with LC3 punctae (N=3, p<0.01). Representative 

image are presented. Bar=20 μm.
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Figure 5. Provision of exogenous reduced HMGB1 increases autophagy in cancer cells
(A) Relative amounts of oxidized Cys106 (as Cys sulfonic acid) in Lilly Pool #2 and #3. 

MALDI-TOF Mass Spectrum of tryptic fragments of Lilly Pool #2 (top) and Pool #3 

(bottom). The Cys106 containing fragment is amino acids 97–112. The free sulfhydryl (-SH) 

of total reducible cysteine is at a mass of 1944.9 Da. The monoxide is faintly seen at a mass 

of 1960.9 Da. The di- and tri- oxides are at masses of 1976.9 Da and 1992.9 Da, 

respectively. The peak at 1962.9 Da is the free sulfhydryl of the 13–28 fragments, used as an 

internal standard to verify the DTT reduction went to completion. (B) Reduced HMGB1 

protein induces autophagy and oxidized HMGB1 mildly induces apoptosis. Panc2.03 and 

HCT116 cancer cells were treated with oxidized HMGB1 (“O”, 10 μg/ml) or reduced 

HMGB1 (“R”, 10 μg/ml) for 24 h, and then assayed for apoptosis by FACS using Annexin 

V/PI stain and autophagy by quantification of the percentage of cells with GFP-LC3 dots as 

described in methods. (C) Western analysis of LC3 processing in the presence or absence of 

lysosomal protease inhibitors pepstatin A (10 μg/ml) and E64D (10 μg/ml) and degradation 

of p62 by autophagy after HMGB1 or HMGB1 C106S mutant treatment. (D) Reduced 

HMGB1 protein regulates Beclin1/Bcl-2 complex formation in autophagy. Panc2.03 cells 

were treated with oxidized HMGB1 (“O”, 10 μg/ml) or reduced HMGB1 (“R”, 10 μg/ml), 

for 6 h, then cell lysates were prepared for IP with anti-Beclin1/-Bcl-2 or IgG. The resulting 

immune complexes and inputs were analyzed by western blotting as indicated. 

Representative western blotting analysis of protein levels is presented. (E) RAGE/Beclin1 

but not TLR4 is required for HMGB1 mediated autophagy. Cells were transfected with the 

indicated shRNA for 48 h and then were treated with reduced HMGB1 (“R”, 10 μg/ml) for 
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24 h. Representative western blotting analysis of protein levels is presented. In parallel, 

autophagy was assayed by the percentage of cells with GFP-LC3 dots (N=3, * p<0.001).
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Figure 6. Redox of HMGB1 regulates chemotherapy effectiveness
(A) Cell viability and apoptosis assay. Panc2.03 and HCT116 cells were treated with 

oxaliplatin (160 μg/ml), melphalan (320 μg/ml), adriamycin (1.6 μg/ml), paclitaxel (20 

μg/ml) with or without oxidized HMGB1 (“O”, 10 μg/ml) or reduced HMGB1 (“R”, 10 μg/

ml). Cell death was analysis at indicated time by CCK-8 cell viability assay (n=3, * and #, 

p< 0.05 versus no HMGB1 group, left panel). In parallel, cell death was assayed by 

Annexin-V/PI using flow cytometry when Panc2.03 and HCT116 cells were exposed to 

paclitaxel (20 μg/ml) for 48 h (right panel). (B) Colony formation assay. Panc2.03 and 

HCT116 cells were treated with oxaliplatin (160 μg/ml), melphalan (320 μg/ml), adriamycin 

(1.6 μg/ml), paclitaxel (20 μg/ml) with or without oxidized HMGB1 (“O”, 10 μg/ml) or 

reduced HMGB1 (“R”, 10 μg/ml) for 24 h or 72 h, then 1, 000 cells were plated into 24 well 

plates. Colonies were visualized by crystal violet staining 3 weeks later. (C) Effects of 

caspase inhibitors on oxidized HMGB1-induced caspase 3 activity. Panc2.03 cells were 

treated with HMGB1 (“O”, 10 μg/ml) with or without a pan-caspase inhibitor (ZVAD-FMK, 
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20 μM), caspase-3 inhibitor (Z-DEVD-FMK, 20 μM), caspase-8 inhibitor (Z-IETD-FMK, 

20 μM) or caspase-9 inhibitor (Z-LEHD-FMK, 20 μM) for 24 h, and then analyzed Caspase 

3 activity. (n=3, ** p<0.001, *** p<0.0001). (D) The relationship between HMGB1 release 

and autophagy. Anticancer agents such as melphalan and paclitaxel promote HMGB1 

release. Redox status of the tumor microenvironment and internal environment decides the 

activity and function of HMGB1. Reduced extracellular HMGB1 binds to the RAGE 

receptor but not TLR4 and induces Beclin1-dependent autophagy, which in turn promotes 

tumor survival. In addition, oxidized HMGB1 increases the cytotoxicity of anticancer agents 

and induces apoptosis via activation of caspase-3 and -9. HMGB1 is involved in the cross-

regulation between autophagy and apoptosis.
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