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On the nature of “skeletal” biofilm patterns, “hidden”
heterogeneity and the role of bubbles to reveal them

A short communication on the recent paper by Jang et al. discusses the role of “mushroom” structures and effects of nearly static

bubbles on nascent biofilms.
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The effect of bubbles on surface-adhered microbiological systems
in flow cells are usually associated with the applied wall shear
forces during their transit, which can be significant. However, the
role of nearly static bubbles on biofilm development is less
studied. Therefore, we read with interest a recent paper by Jang
et al. in your journal in which the authors studied the effects of
slow moving bubbles across nascent biofilms of different ages
within microchannels.! Following their passage, beautiful semi-
regular skeletal patterns were formed, depending on the biofilm
age. In separate experiments, unperturbed nascent biofilms were
stained with a lectin-based probe, which showed a “hidden
heterogeneity” comprised of regions of accumulated extracellular
polymeric substance (EPS) amongst otherwise continuous biofilm
layers. The similarity to the skeletal patterns after bubble passage
led the researchers to propose a mechanical “scraping” process
under the bubble as a mechanism for bacterial rearrangement and
accumulation at the relatively well-attached EPS sites, referred to
as “bacterial levees”.

Not mentioned in the original paper is the striking resemblance
of the observed features to the patterns formed by “mushroom-
like” structures in many biofilms, including those of the
Pseudomonas aeruginosa used by Jang et al. Mushroom structures
also feature a hidden features, such as a network of open spaces
surrounding localized anchor points at the attachment surface,
which enhance nutrient exchange between the biofilm and the
liquid phase. This, leads us to wonder if the structures observed by
Jang et al. were not already there and that passage of the bubble
simply revealed the underlying anchor points after shearing off
the upper confluent biofilm layers. Here the question comes to
confirmation of the initial 3D structure that was not visible from
fluorescence images provided. Was it really planar as the authors
suggested, or had the 3D structuration already started? Moreover,
if it was truly a planar layer of bacteria containing hidden islands
of EPS, as the authors propose, could these EPS structures have
been the early-stage attachment points for future mushroom
anchor points? This could inform previous dynamic studies by
attenuated total reflection Fourier transform infrared spectroscopy
(ATR-FTIR) that followed the development of 3D mushroom
structures> and the tendency for early formation of EPS chemical
groups, such as polysaccharides.* As well, it matches studies
recently conducted by our group on Pseudomonas sp. biofilms
using electrochemistry and time-lapse confocal laser scanning
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confocal microscopy (CLSM) in microchannels.” In the latter case,
CLSM images show a self-directed transition to similar skeletal
structures shown by showed by Jang et al. under normal flow
conditions—no bubbles required.

This is not to say that we doubt that static bubbles can affect
biofilm properties. Quite the opposite. Recently, we also confirmed
that surface-adhered bubbles can indeed have stark effects on
nascent biofilms.® Using CLSM imaging under a static bubble
attached to a microchannel surface, we saw many small liquid
pools, likely resulting from the rupture of a thin film as discussed
by Jang et al. In the case that the bubbles formed on surfaces
inoculated less than 30 mins earlier, we found that the pools were
scattered throughout the field of view, with some containing
bacteria at random. However, if similar measurements were made
under bubbles which had been inoculated more than 2 h before,
many of these liquid pools contained EPS and bacteria, which
could protrude up to 10 um from the surface. In all cases, the dry
segments between the pools contained no observable bacteria.
This supports the idea put forward by Jang et al. that loosely
bound bacteria had been swept away under the force of the
moving triple line from retreating liquid films until they became
accumulated in EPS-rich locations. Were we seeing the same
bacterial levees as reported by Jang et al, a few months earlier?
Possibly. But the most interesting result in our studies was what
happened after the bubble left the surface, which included
pronounced effects on biofilm growth rates, homogeneity and
even patterning. Therefore, we think it would be equally
interesting for the authors to monitor the fate of the skeletal
biofilms after the passage of the bubble.

Globally, we are hopeful that the work of Jang et al. can lead to
more attention being paid to the effects of bubbles on biofilms.
Moreover, their work is yet another magnificent example among a
growing list showing how microfluidics can reignite fundamental
research into bacterial biofilms.”
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