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Abstract
With the objective to enhance human performance and maximize engagement during the performance of tasks, we aim to
advance automation for decision making in complex and large-scale multi-agent settings. Towards these goals, this paper
presents a deep multi agent reinforcement learning method for resolving demand - capacity imbalances in real-world Air
Traffic Management settings with thousands of agents. Agents comprising the system are able to jointly decide on the
measures to be applied to resolve imbalances, while they provide explanations on their decisions: This information is
rendered and explored via appropriate visual analytics tools. The paper presents how major challenges of scalability and
complexity are addressed, and provides results from evaluation tests that show the abilities of models to provide high-quality
solutions and high-fidelity explanations.

Keywords Air traffic management · Multi-agent deep reinforcement learning · Interpretability · Stochastic decision trees ·
Explainability · Visualization

1 Introduction

Complex and large-scale multi-agent problem settings typ-
ically involve a large number of self-interested agents with
interacting, and potentially conflicting decisions/actions,
and dynamic avalanches of actions’ effects in space and
time, affecting others. Such settings appear in various real-
life domains (urban traffic congestion, air traffic manage-
ment and network routing), with emerging challenges. This
class of problems includes interesting real-world conges-
tion problems, which have drawn much attention in the AI
and autonomous agents research (e.g. [1–5]) for at least
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two decades [6] and have been the focus of game theoretic
models for much longer [7, 8].

Aiming to contribute to the automation of operations
in a real-life complex and large-scale multi-agent setting
where congestion problems arise, we need to meet not only
domain-specific objectives, but also objectives regarding
human performance and engagement. In this context, a new
important challenge emerges, regarding trustworthiness in
the system, in the sense that operators should be comfortable
relinquishing control to it, given appropriate explanations
on system’s decision making [9]. Major factors affecting
trustworthiness include quality of automated solutions, as
well as quality of explanations provided. As far as we know,
while many works address the computation of problems’
solutions in complex multi-agent settings, there is not any
work that addresses the dual challenge of providing (a)
qualitative solutions in large scale settings and (b) coherent
and concise explanations regarding agents’ joint decision
making in large scale and complex settings.

In this work we address the challenging issues of
scalability and complexity towards advancing automation
in real-world multi-agent settings with thousands of agents,
aiming to (a) compute qualitative solutions to congestion
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problems and (b) provide explanations on how individual
agents’ decisions jointly affect their common setting.

Specifically, in the air-traffic management (ATM)
domain, demand and capacity balancing problems (DCB)
are a kind of congestion problems that arise naturally when-
ever demand of airspace use exceeds capacity, resulting to
“hotspots”. Hotspots are resolved via capacity management
or flow management solutions, including regulations that
generate delays and re-routings to flights, causing unfore-
seen effects for the entire system, and increasing uncer-
tainty regarding the scheduling of (ground and airspace)
operations. For instance, flight delays cause the introduc-
tion/increase of time buffers in operations’ schedules, and
may accumulate demand for resources within specific peri-
ods. These are translated into costs and negative effects on
airlines’ reliability, customers’ satisfaction and environmen-
tal footprint.

Increased demand for airspace use is the major factor
for unprecedented measures applied to flights (over 90%
in some airspaces) [10]. It got significantly worse in 2018
[11] when delays across Europe more than doubled, due to
the increase in traffic, among other factors. In general, all
performance analysis and studies lead to the idea that the
ATM system in the post-Covid-19 era was very close to, or
already at, a saturation level. These issues, in conjunction to
the foreseen increase in air traffic [12, 13] impose the need
for the assessment and minimization of measures applied to
flights at the “pre-tactical” phase of operations (i.e. from
several days to few hours before operations), so as to satisfy
as much as possible airspace users’ plans and bring no
surprises to their operations. This contributes at increasing
the predictability of the overall ATM system, alleviating
many of the negative effects.

Today, measures are imposed to flights without consider-
ing the propagated effects to the entire ATM system (e.g. to
other flights and airspaces). Indeed, even at the pre-tactical
phase of operations, measures are decided in a rather greedy
way: Congested airspaces are regulated, and measures are
applied to specific flights entering these airspaces in a
first-come-first-regulated basis. This functionality is imple-
mented by the Computer Assisted Slot Allocation (CASA)
system, as also described in [14]. While this may resolve
local congestion, it considers neither (a) the optimal mix-
ture of measures one needs to apply to all flights w.r.t. their
temporal and spatial interactions, nor the (b) side-effects to
the inherently complex and dynamic ATM system (e.g. the
emergence of hotspots and their effects on other airspace
users). In practice, many hotpots remain unresolved at the
pre-tactical phase, with the aim to resolve these at the tacti-
cal phase, introducing additional factors of uncertainty and
inefficiency of ATM stakeholders’ operations. For instance,
Table 1 shows regulations imposed to flights towards resolv-
ing hotspots during 3 days in 2019: While the average delay

Table 1 Delay regulations imposed to flights in three days

Day Average Delayed Unresolved

Delay(min) Flights Hotspots

20190705 3.29 1204 99

20190708 2.93 771 81

20190714 2.70 1010 74

per flight is small and the number of flights affected are not
many, the hotspots in the Spanish airspace after imposing
these regulations, for each of these days, are really many: In
the first case almost as many as in the original situation (i.e.
prior to the regulations), or even worse in the other days.

Indeed, solutions to hostpots may be impossible in some
cases, as in the case shown in Fig. 1, where there are
many hotspots for many consecutive periods during the day:
Blue bars show the demand in an airspace compartment
(sector LECPDEO) for different periods during a day, and
the orange line indicates the 110% of the sector capacity
(we explain operational terms in detail in the next section).
Measures to resolve a hotspot in a specific period may cause
cascade effects to the same or other sectors in different
times: This imposes the need for a global view of the
airspace, requiring higher levels of automation to support
humans’ decision making, due to the scalability and the
inherent complexity of the problem.

Towards these aims, herein we continue our work [15–
19] on agent-based approaches to resolving DCB problems
in the ATM domain: Agents, representing flights, aim to
decide on own measures, jointly with others, with respect
to own preferences and operational constraints on the
use of airspace, while possessing no information about
the preferences and payoffs of others. However, we go
beyond our previous efforts in several critical aspects: First,
instead of producing a single type of solution, agents are
able to produce different types of solutions with different
measures for resolving DCB problems. Second, addressing
the limitations of tabular Q-learning methods, we propose
the use of a deep multi-agent reinforcement learning
method for resolving demand - capacity imbalances in real-
world ATM settings, being able to consider numerous and
potentially continuous features of states, while addressing
robustness, generalization and scalability issues in training
the agents. Finally, we emphasize on the explainability of
agents’ decision making, which is supported by appropriate
visual analytics tools to render and explore agents’ decision
making (i.e. explanation content).

Specifically, the contributions made in this paper are as
follows:

• We devise a scalable multi-agent deep reinforcement
learning method based on DQN, providing a policy
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Fig. 1 Evolution of daily demand in sector LECPDEO in a singe day

model for agents to jointly decide on DCB resolution
measures in an inherently complex and large-scale real-
world multi-agent setting.

• We propose the use of Stochastic Gradient Trees to
build interpretable models that mimic the decisions
of the well-trained DQN model, providing explanation
content for agents’ local decisions.

• We propose visual analytics methods for rendering and
exploring solutions and explanations, addressing the
scale of the multi-agent task, and the complexity of the
problem.

• We report on important findings and lessons learnt after
validating the system with experts in real-world DCB
scenarios.

Major findings of this article are that multi-agent Deep
Reinforcement Learning methods (a) can scale up to the
number of agents that operate in an airspace, (b) providing
qualitative solutions to DCB problems, thus, imposing
measures to individual flights that resolve most of the
existing hotspots, while they (c) can be made explainable,
towards keeping the human in the loop, enhancing situation
awareness, using (d) advanced visualization methods.
However, on the negative side, (e) explanation content can
be made very detailed and large in volume, due to the scale
and complexity of the problem, while (f) it is very difficult
for a human to master the complexity of the system and
fully understand the explanations provided. This is due to
the inherently large number and unpredictable interactions
between agents.

The structure of this paper is as follows: Section 2
presents related efforts on reinforcement learning tech-
niques in resolving demand and capacity balancing prob-
lems, as well as related work on scalable multi-agent deep
reinforcement learning and explainable deep reinforcement
learning. Section 3 specifies the problem and introduces ter-
minology from the ATM domain. Section 4 presents the
problem formulation within a multi-agent MDP framework
and shows that the problem can be considered as a Markov
Game. Section 5 identifies critical aspects regarding expla-
nations. Section 6 presents the deep reinforcement learning
method proposed for solving the problem, while Section 7

presents the explainability paradigm advocated and the
interpretation method used. Section 8 presents visual ana-
lytics tools for exploring solutions and explanations, while
Section 9 presents evaluation cases and results. Finally,
Section 10 concludes the article outlining future research
directions.

2 Related work

In this section we consider prior work related to the three
main challenges that this work addresses: (a) The use of
reinforcement learning techniques in resolving congestion
problems and in particular to solving DCB problems in
the ATM domain, (b) scalable deep reinforcement learning
methods, and (d) explainable deep reinforcement learning.
We succinctly present the advantages and limitations
of previous efforts, motivating our choices towards our
contributions.

2.1 Reinforcement learning for solving congestion
problems

The potential of reinforcement learning methods (either
centralized or multiagent methods) to congestion problems,
other than those in the aviation domain (e.g. to urban
traffic) has received much attention in the recent years, with
the most challenging issue being the coordination among
agents, so as the solutions to increase agents’ individual
payoff, in conjunction to increasing the whole system
utility. Towards this target there are several proposals,
among which the use of coordination graphs [3], where
agents coordinate their actions only with those whose tasks
somehow interact.

The use of coordination graphs, where agents connected
in pairs have to decide on joint policies, connects the
computation of joint policies to computing equilibria in
Markov games between interacting agents. Towards this
goal, early studies (e.g. [20–22]), have shown that Q-learners
are competent to learners using for instance WoLF [23],
Fictitious Play [24], Highest Cumulative Reward -based
[25] models. Based on these conclusions, the work in [26]
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proposes social Q-learning methods, according to which
agents interact with their acquaintances, considering their
tasks in their social contexts, w.r.t. operational constraints.
This happens in contrast to other approaches where agents
learn by iteratively interacting with a single opponent from
the population [21, 27], or by playing repeatedly with
randomly chosen neighbours [28].

Our work goes beyond state of the art methods in
resolving congestion problems in any domain, where either
a centralized agent learns a global policy, or multiple
independent (i.e. non-interacting) Q-learners learn their
policies, considering the other agents as part of their
environment. Exceptions to this is the method proposed
in [3], where instead of collaborative reinforcement
learning methods, the max-plus algorithm has been used,
and the method proposed in [29], where a model for
incorporating multiple deep reinforcement learners is
proposed.

2.2 Resolving the DCB problem

A comprehensive review of mathematical modelling and
various formulations of demand-capacity imbalance prob-
lem is presented in [30]. This work reviews methods
addressing congestions due to excess of the airport arrival
and departure capacities, or of the airspace sector capacity.
While most of early work refers to the simplest mod-
els, which do not consider airspace sectors, a category
of methods addressing the Air Traffic Flow Management
Problem attempts to solve real situations, also consider-
ing the airspace sector capacity. Additionally, while ground
and en-route delays are important measures studied towards
resolving congestions, methods addressing the Air Traf-
fic Flow Management Rerouting Problem consider also the
case where the flights can be diverted to alternative routes.
Authors in [31] focus on the importance of adding rerout-
ing as an additional mechanism, although at a smaller scale,
as far as the number of flights, origin-destination pairs
and air space segments are concerned. As the authors of
[30] point out, the problem becomes more realistic when
changes in capacity are considered, which has led to incor-
porating stochastic methodologies for possible unforeseen
changes. These methods focus mostly on the tactical phase
of operations, rather on the pre-tactical.

Other efforts has shown the importance and potential
of multiagent reinforcement learning methods to address
congestion problems in Air Traffic Management at the
tactical level [1, 4, 32–34]. This provides a shift from
the current ATM paradigm, which rely on a centralized,
hierarchical process, where decisions are based on flow
projections ranging from one to six hours, resulting to
slow reactions to developing conditions, potentially causing
minor local delays to cascade into large regional congestion.

In contrast to efforts on predicting the demand and
delays in a data-driven manner [35, 36], as well as to
the rich literature and various formulations of demand-
capacity balance problem in the context of the Air Traffic
Flow Management problem (among which those mentioned
above) at the tactical phase (i.e. during operation), our
work considers solving the DCB problem at the pre-tactical
phase. Thus, we do neither aim to predict regulations under
certain conditions based on historical data, nor we aim
to resolve conflicts during the tactical phase: We rather
aim to resolve the DCB problem at the pre-tactical phase
considering the problem in an airspace comprising multiple
sectors (e.g. the airspace of Spain) and for long time
horizons, minimizing the regulations and measures applied
to flights.

This is also the case in our previous work, where
we introduce a new paradigm for solving DCB problems
using an agent-based approach and where we show the
potential of reinforcement learning to provide qualitative
solutions compared to what happens today, however with
a delta to the realistic setting we consider in our current
work. Specifically, our previous work explores tabular
Q-learning methods, following the individual learners’
approach either in a flat or in a hierarchical way, while
also comparing these approaches to collaborative tabular Q-
learning methods exploiting a dynamic coordination graph
[16–18].

Here we extend these works by following the DQN deep
Q-learning method, being able to be trained efficiently for
a large number of agents, in a high dimensional state space,
incorporating numerous state features. In relation to tabular
hierarchical approaches, as authors in [37] have shown,
DQN offers spatio-temporal state abstractions, since the
features learned aggregate the state space in a hierarchical
fashion in spatial and temporal dimensions.

2.3 Scalable deep reinforcement learning

Scalability regarding the size of the population of Deep
Reinforcement Learning agents is a major and well
documented issue [38–42] that becomes apparent in many
real-life problems. A large agent population could mean
anything from hundreds up to several thousands of agents,
as is in our use case.

There are several factors which affect training scalabil-
ity. Firstly, the training paradigm adopted, i.e., agents may
train independent, centralized or shared models. Secondly,
the types of models learnt following any paradigm, mainly
divided into two categories, the policy and the actor-critic
models. Thirdly, assumptions regarding agents homogeneity
are crucial, as agents may be heterogeneous, homogeneous,
or even interchangeable. In addition, effectiveness of com-
munication can play a central role. Finally, decomposing
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rewards among agents is a relevant issue, affecting both
scalability and the quality of joint policies.

A technique which is vital in Deep MARL is centralized
training and decentralized execution (CTDE): In order
to alleviate problems of inefficiency and instability in
learning, CTDE employs a form of centralized training,
thus exploiting information that is available during training
but unavailable during execution. Parameter sharing [43]
is the extreme case of CTDE, as it learns a single policy
shared by many agents. The main idea is that this single
policy should be able to adequately describe the behavior of
different agents with the same goals. The resulting policy
can be robust, given the fact that it has been trained with
samples that potentially belong to different parts of the state
space, explored by different agents. This technique provides
excellent scalability, as the number of trained models does
not change as the agent population increases.

CommNet [44] has major limitations regarding scala-
bility. Firstly, all agents use the same centralized network,
which can become problematic if the agent population con-
tains thousands of agents. In addition, in CommNet all
existing agents have to communicate with everyone while
the mean of messages are calculated, therefore assuming
that all agents are of equal importance. This could result
in significant noise in the communication channel, as an
agent could receive a communication vector consisting of
the average observations of irrelevant agents.

Another interesting approach, which focuses on learning
how to communicate while learning a policy, is Bayesian
action decoder (BAD) [45]. The method introduces the
public belief MDP, and utilizes it to approximate a Bayesian
update to obtain a public belief, which conditions on the
actions taken by all agents in the environment. It achieves
state of the art results in the game of Hanabi [46], a fully
cooperative card game in which communication between
players is paramount. Scaling this method to populations of
agents in the order of magnitude of thousands is a non-trivial
task. Separate agent neighborhoods would need separate
public beliefs, in order to avoid noise in the communication
scheme. In addition, as shown in [47], Policy Gradient
methods present significant sample efficiency deterioration
when applied to problems with large agent populations.

A method with scalability potential is BiCNet [38]. The
major drawback is that, similarly to CommNet, all agents
communicate with everyone. Later works [48] show that
the ability of BiCNet to learn effective policies is reduced
as the number of the agents increases. This deterioration
of effectiveness is attributed to the lack of a mechanism
capable of capturing the importance of information from
different agents.

Mean Field MARL [47] proposes two algorithms, a Q-
Learning and an Actor-Critic variant, with the explicit aim
to improve MARL scalability. The main idea is to calculate

the mean action of an agent’s neighborhood, assuming
that each agent interacts with a virtual mean agent. Both
algorithms are empirically shown to scale up to 1000 agents
and should in theory be applicable in our use case of around
7000 agents. Despite the scalability of both algorithms,
their main drawback lies in the coordination scheme, as
averaging neighborhoods can result lackluster cooperation
[49].

Graph Convolutional Reinforcement Learning (DGN)
[49] proposes a MAS framework in which agents are
connected in a graph where each agent is a node and edges
exist between neighbors. Communication is allowed only
between neighbors, in order to minimize inefficiency. The
method was compared against well-known algorithms like
CommNet [44] and MFQ [47] and is shown to achieve
very competitive results in environments with up to 140
agents. As shown in the experimental section of [47]
approaches that produce qualitative results in settings with a
few hundred agents may significantly deteriorate in sample
efficiency with thousands of agents.

K.Lin et al. in [50] proposes two distinct methods which,
similarly to our use case, aim to resolve large scale demand-
capacity imbalance problems in the air traffic management
domain. The environment simulates a population of approx.
5000 homogeneous agents. An assumption that both
methods make is that agents have the same action values.
In practice, this assumption means that the agents are not
simply homogeneous, but interchangeable. Closely related
works, with scalability in mind, are those in [51–53]. They
achieve extreme scalability and provide experiments with
up to 8000 agents. A fundamental idea underlining the
work described in these papers and a vital aspect to achieve
scalability, is exploiting the count of agents in state s

taking action a. This count, as well as other more complex
measures based on this, serve a statistical basis for training,
eliminating the need to collect trajectory samples from every
agent, so the resulting policy is dependent on count-based
observations. Similarly to [50], this approach assumes that
the agents are interchangeable.

To address scalability and in order to alleviate problems
caused by the non-stationarity of independent learners, we
do employ centralized training, exploiting information that
is available during training but often unavailable during
execution. In so doing we are using the centralised training
and decentralized execution (CTDE) technique, aiming to
learn a single policy shared by many agents. Our hypothesis
is that the resulting policy can be generalizable and robust,
given the fact that it is trained with samples that potentially
belong to different parts of the state space, explored by
different agents.

In addition to CTDE, and in contrast to other works
considering explicit communication between agents, we
have made a conscious design choice to not include
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explicit inter-agent communication, in order to avoid the
communication cost, which can become significant when
working with population sizes as big as 6000 agents or
bigger. Of course, there is implicit communication among
agents due to the fact that all agents share the same network
parameters and explore the same state-action space, while
we do consider in an explicit manner perturbations caused
by the actions of other agents acting simultaneously.

2.4 Explainable deep reinforcement learning

DRL models, are inherently hard to interpret. We need
methods that extract explanations (i.e. interpret these
methods) in either a local or in a global way: By “local”
we mean providing explanations for decisions taken in
fine granularity and scale, while by providing “global”
explanations we consider providing information of the
entire logic (means and/or ends) towards achieving goals.

To interpret DRL methods without using interpretable
models as DRL components, a method may use samples
provided by the DRL method, potentially exploiting further
information from DRL models. This results into two
paradigms: The mimicking and the distillation paradigms.

For DRL methods, the distinguishing line between the
distillation and the mimicking processes is not that clear
in the literature. For instance, in reference [54], the DRL
model provides samples, each comprising an observation
sequence and a vector of state-action Q-values. We can
say that the main difference between the two paradigms
concerns the input provided to the interpretation process:
While the distillation process distils the knowledge acquired
by the trained DRL agent by exploiting directly information
from any of the constituent DRL models, the mimicking
process monitors the interaction of the reinforcement
learning agent with the environment and gathers interaction
samples, recording agent decisions, state transitions and
rewards that the agent got.

Specifically, in the ATM domain, explainability of
AI algorithms has not been extensively studied, as also
mentioned in [55]. Going one step further, authors in [55]
identify three major pieces of information that stakeholders
in ATM should be provided by AI modules when these are
induced within the complex ATM system: (a) Descriptive
explanations, as the system should be able to provide the
detailed description of the situation, motivating the actions
to be taken; (b) Predictive, by providing information of the
consequences of actions to be taken; and (c) Prescriptive, by
being able to propose the appropriate actions and options,
along with an appropriate explanations, so as stakeholders
to decide on the next course of actions.

In this work we follow the mimicking paradigm for
explaining DRL decisions. We use a state of the art method
for training interpretable models, not used before for this

purpose: Stochastic Gradient Trees. These have been shown
to outperform other types of tree models that have been used
to interpret DRL models. In so doing, we strive to cover all
three requirements for explainability in the ATM domain.
We propose a pipeline that is able to describe situations
under which decisions have been taken, provide arguments
for the proposed actions, visualize their consequences, and
give alternative solutions in the form of imposing different
types of regulations.

3 Problem specification

3.1 Demand-capacity balance: Definition of terms

While the trajectory becomes the cornerstone upon which
all the ATM capabilities will rely on1, flight trajectories
cannot be considered in isolation: Intertwined operational
aspects lead to inefficiencies to trajectory planning and
introduce factors of uncertainty to trajectory execution.
Accounting for network effects and their implications
on the joint execution of individual flights, requires
considering interactions among trajectories, and thus,
dynamic operational conditions that influence any flight.

Being able to devise methods that capture aspects of
that complexity and take the relevant information into
account, would greatly improve planning and decision-
making abilities in the ATM domain.

Towards this goal, our specific aim is to automate the
resolution of DCB problems, by deciding the measures
that need to be imposed to planned flight trajectories
(flight plans) before the actual operations, considering ATM
system dynamics and network effects due to interactions
among trajectories.

More specifically, the DCB problem (or DCB process)
considers two important types of objects in the ATM system:
aircraft trajectories which in our case are flight plans, and
airspace sectors. Sectors are air volumes that divide the
airspace.

Airspace sectorizations determine the active (open)
sectors at any time instance. Only one sectorization can be
active at a time. Airspace sectorization changes during the
day, given different operational conditions and needs. This
happens transparently for flights.

The capacity of a sector is of utmost importance in DCB:
this quantity determines the maximum number of flights
that can enter a sector during any time period of specific
duration (typically, 60’).

There are different types of measures to monitor the
demand evolution, with the most common ones being the

1Due to different initiatives, notably SESAR in Europe and Next Gen
in the US
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Hourly Entry Count and the Occupancy Count. In this work
we consider Hourly Entry Count, as this is the one used by
the Network Manager (NM) at the pre-tactical phase.

The Hourly Entry Count (HEC) for a given sector is
defined as the number of flights entering the sector during
a time period, referred to as an Entry Counting Period (or
simply, counting period). HEC measures demand providing
a “snapshot” of the entry traffic in a sector, taken at
every step value along a counting period of fixed duration:
The step value defines the time difference between two
consecutive counting periods. The duration of the counting
period is equal to the duration of the period used for
defining capacity. For example, for a 20 minutes step value
and a 60 minutes counting period duration, entry counts
correspond to pictures taken every 20 minutes, over 60
minutes. Figure 1 shows the evolution of demand in sector
LECPDEO during a day using a step of 20 minutes, over a
duration of 60 minutes.

Let us consider a finite set of air sectors R={R1, R2, ...}
segregating the airspace. Demand-capacity imbalances
occur when DR,p > CR , where p is a counting period of
duration d, DR,p is the demand for the active sector R during
p, and CR is the capacity of that sector, defined for any such
period.

Aircraft trajectories are defined to be series of spatio-
temporal points (longi , lati , alti , ti), where each point
denotes the longitude, latitude and altitude of the aircraft
at a specific time point ti . Casting trajectories into a DCB
resolution setting, these are specified to be time series of
events specifying the time points at which the trajectory
enters and exists each sector crossed. Therefore, a trajectory
T is specified to be of the form:

T = {(R1, entry1, exit1)....(Rm, entrym, exitm)}, (1)

where Rl, l = 1, ..., m, is an active airspace sector and
entry/exit are time points of entering/exiting that sector.
This information per trajectory suffices to monitor demand
evolution for the active sectors, in any counting period p.

Given a set of such trajectories, the demand in sector R
in counting period p is DR,p = |TR,p|, i.e., the number of
trajectories in TR,p, where:

TR,p = {T ∈ T|T = (. . . , (R, entryt , exitt ), . . .), and
the temporal interval [entryt , exitt ] overlaps with counting
period p }.

Trajectories requiring the use of a sector R at the same
counting period p, i.e. trajectories in TR,p are interacting
trajectories for p and R.

3.2 Operational context

We assume a trajectory-based operations environment, with
an enhanced accuracy of pre-tactical flight information
– provided by airlines’ flight plans. This operational

environment is close to the one existing today, but it requires
airlines to specify their flight plans during the pre-tactical
phase, which, together with airspace operational constraints
allow the detection of hotspots.

In this operational context we consider an agent Ai to
be the aircraft performing a planned flight trajectory, in a
specific date and time. Thus, we consider that agents and
trajectories coincide, and we may interchangeably speak of
agents Ai , trajectories Ti , flights, or agents Ai executing
trajectories Ti . Agents, in the general case can have own
interests, preferences and restrictions, and take autonomous
decisions on resolving hotspots.

3.3 Resolution of demand-capacity imbalances

To resolve DCB problems at the pre-tactical stage, airspace
users have several degrees of freedom: They may either (a)
change the trajectory of flights to cross sectors other than
the congested ones, devising alternative flight plans via re-
routing, or (b) change the entry and exit time for each of the
crossed sectors by imposing a ground delay, i.e. delaying
take-off. In this paper we consider DCB resolution measures
implying (a) vertical re-routing due to level capping: i.e.
changing the vertical profile of the flight plan, restricting
flights to climb to a certain level so as to avoid congested
sectors at high levels; and (b) changes in the schedule of
crossing sectors by means of ground delays: i.e., shifting the
whole trajectory by a specific amount of time.

Overall, agents decide on the measures that they will
apply so as to execute their trajectories jointly, resolving
DCB problems.

Specifically, the objectives of the agents are to

• Resolve demand-capacity imbalances, providing a
solution with a minimized number of hotspots, which
shall be tolerated or be resolved at the tactical phase; in
conjunction to

• minimize the average delay per flight (ratio of total
delay to the number of flights) without imposing re-
routings that increase the operational costs.

In doing so, the system must

• distribute delays to flights without penalising a small
number of them, and

• utilise efficiently the airspace, distributing demand
to sectors evenly in all counting periods during
trajectories’ execution period.

3.4 Amulti-agent system perspective

To resolve a hotspot occurring in counting period p and
sector R, a subset of interacting trajectories in TR,p must be
re-routed or delayed.
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Imposing demand measures to trajectories may cause the
emergence of hotspots to subsequent time periods for the
same and/or other sectors, resulting to a dynamic setting
for any of the agents: the sets of interacting trajectories
do change unpredictably for the individual agents, due
to agents’ joint decisions and changes in sectorization.
Furthermore, while the decision of one of the interacting
trajectories directly affects the others, a trajectory may
indirectly affect any other trajectory, due to ATM “network
effects”.

The society of agents (A,Et) can be modelled as a
dynamic coordination graph [56] with one vertex per agent
Ai in A. An edge (Ai, Aj ) in Et connects agents with
interacting trajectories in T, at time t. The set of edges are
dynamically updated when the set of interacting trajectories
changes.

Nt(Ai) denotes the neighbourhood of agent Ai in the
society, i.e. the set of agents interacting with agent Ai at
time instant t, including itself.

The ground delay options available in the inventory of
any agent Ai may differ between agents: These are in Di =
{0, 1, 2, ..., MaxDelayi}, and each option specifies minutes
of delay. Regarding level capping, the options of agent Ai

are in a set FPi, specifying flight plans. Overall, the set of
options available for each agent Ai are in FPi × Di.

We consider that options for delays and re-routing may
be ordered by the preference of agent Ai , according to
the functions p

f lightP lans
i : FPi → IR and p

delays
i :

Di → IR. We do not assume that agents in A −
{Ai} have any information about these functions. This
represents the situation where airlines set own options and
preferences for alternative flight plans, even in different
own flights, depending on operational circumstances, goals
and constraints. We expect that the order of preferences
on delays should be decreasing from 0 to MaxDelayi ,
although, with a different pace/degree for different agents.
The preferences on flight plans depends on the cost-
effectiveness of the plan. For instance, flight plans with
abrupt and/or frequent changes in flight levels are less
favorable than plans with a smooth vertical profile. We
address this issue in subsequent sections.

3.5 Problem statement (Multi-agent DCB problem
resolution)

Considering any pair of interacting agents Ai and Aj in
the society (A,Et), with Aj in Nt(Ai) − {Ai}, they must
select among the sets of available options in FPi × Di and
FPj×Dj respectively, so as to increase their expected payoff
w.r.t. their objectives and preferences on delays and flight
plans.

This problem specification emphasises on the following
problem aspects:

• Agents need to coordinate their decisions to execute
their trajectories jointly with others, considering traffic
and network effects, w.r.t. their objectives, preferences
and operational constraints;

• The setting is highly dynamic given that the agents’
society, the occurring hotspots, and the sectorization
change unpredictably for agents.

• Agents need to jointly explore and discover how differ-
ent combinations of level-capping and delay measures
affect the joint performance of their trajectories, given
that the ways different trajectories do interact cannot be
predicted;

• Agents’ preferences and constraints on the options
available may vary depending on the trajectory per-
formed, and are kept private;

• There can be multiple and interdependent hotspots that
occur and agents aim to resolve all of them.

4Multi-agent DCB policy search problem
formulation

According to the problem specification stated above we
formulate the multi-agent DCB policy search problem as an
MDP comprising the following constituents:

• A set of time instances t = t0, t1, t2, t3, ..., tmax , s.t.
tmax − t0 = H and ti+1 − ti = �t, i = 0, ...max − 1,
where H is a time horizon and �t a timestep.

• The dynamic society of agents (A,Et) at time t, as
described above.

• A set of agent states: A local state per agent Ai at time t,
denoted by st

i , comprises state variables that correspond
to (a) the delay imposed to the trajectory Ti executed
by Ai , ranging to Di = 0, . . . , MaxDelayi , (b) the
number of hotspots in which Ai is involved in during
H, (c) the sector IDs that it crosses, (d) the minutes
Ai it remains within each sector it crosses (e) counting
periods in which Ai participates in hotspots and the
corresponding sectors, and (f) the minute of the day that
Ai takes-off, given Di.

The joint state st
Ag of a set of agents Ag at time t is

the tuple of all agents in Ag local states. A global (joint)
state st at time t is the tuple of all agents’ local states.
The set of all joint states for a subset Ag of agents is
denoted StateAg , and the set of joint society states is
denoted by State.

• The set of agent actions: A local action (decided
measure) for agent Ai at time t, denoted by at

i is a
choice of an option in FPi × Di (i.e., the agent acts
to impose a demand measure). This action results from
agent’s decision on changing the flight plan: Given a
flight plan, at each time point until take-off the agent
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has to take a decision on the additional minutes of delay
up to that time point. So, given the delay Dt

i decided
up to a time point t the agent may add to its total delay
dt
i ∈ {0, 1, ..., �t}, minutes, given that Dt

i + dt
i ≤

MaxDelayi . Similarly, in the case of level capping
solutions, the choice is in FPi, and it is a variation
of trajectory Ti produced by imposing level capping
measures.

The joint action of a subset of agents Ag of A at time
t (e.g. of Nt (Ai)), is a tuple of local actions decided by
agents, denoted by at

Ag (e.g. at
Nt (Ai )

). The joint action
for all agents A at any time instant t is denoted at . The
set of all joint actions for any subset Ag of A is denoted
ActionAg , and the set of joint society actions is denoted
by Action.

• The state transition function Tr gives the transition to
the joint state st+1 based on the joint action at taken in
joint state st . Formally:

T r : State × Action → State, (2)

It must be noticed that the state transition per agent is
stochastic, given that no agent has a global view of the
society, of the decisions of others, and/or of changing
sectorization, while its neighbourhood gets updated.
Thus, no agent can predict how the joint state can be
affected in the next timestep. Thus, from the point of
view of agent Ai this transition function is actually:

T r : StateAi
× ActionAi

× StateAi
→ [0, 1], (3)

denoting the transition probability p(st+1
i |st

i , a
t
i ).

• The local reward of an agent Ai , denoted Rwdi , is the
reward that the agent gets in a specific state at time
t. The joint reward, denoted by RwdAg for a set of
agents Ag specifies the reward received by agents in Ag
by executing their trajectories according to their joint
action, in a joint state. Further details on the reward
function are provided in Section 6.

• A (local) policy of an agent Ai is a function πi :
StateAi

→ ActionAi
that returns an action for any

given local state.

It must be noted that each agent, according to its decided
action, either (a) chooses a flight plan by re-routing, without
imposing any ground delay to its flight, (b) keeps the
original flight plan and chooses the ground delay to be
imposed, or (c) changes the flight plan by means of re-
routing and imposes a ground delay. We consider all these
alternatives separately, thus resulting to different types of
solutions to a DCB problem. In the later case where agents
choose re-routing and delay, we consider it as a two stage
approach: Agents choose their flight plan from those in
FPi and given their chosen flight plan they decide on the
ground delay from options available in Di. An alternative

way to choose an action among the available options at
the pre-tactical stage of operations would be to choose
conjunctively a flight plan and the ground delay. However,
this unnecessarily explodes the size of the state-action
space.

The objective for any agent Ai in the society is to find an
optimal policy π∗

i that maximizes the expected discounted
future return for each state st

i , given the initial state s1
i .

V ∗
i (s) = maxπ∗

i
E

[ ∞∑
t=1

γ t−1Rwdi(s
t
i , π

∗
i (st

i ))|s = s1
i

]

(4)

The discount factor γ ranges in [0,1].
This model assumes the Markov property, assuming also

that rewards and transition probabilities are independent of
time. Thus, the state next to state s given a (joint) action is
denoted by s’ and it is independent of time. Subsequently,
subscripts and superscripts are avoided in cases where it is
clear where a state or action refers to.

4.1 DCB resolution as a Markov game

The problem can be considered as a specific instance of the
multi-agent coordination problem specified in [26], where
each agent has several options to execute a single task
(trajectory in this case), while agents’ tasks must jointly
satisfy operational constraints.

In doing so, the resolution of any DCB problem can be
formulated as a Markov game: Let us consider a society with
two agents executing interacting trajectories and causing a
hotspot. Let us also assume that each agent, has two (e.g.
level capping) options: a low (Ld) and a high (Hd) one.
Assuming, without loss of generality, that one of the agents
should choose Hd to resolve the DCB problem (otherwise
either there is no hotspot, or the hotspot will re-occur later
in time), agents are assumed to play a game of the form
shown in Fig. 2a: All entries in this matrix are different than
zero; x, x, y, y’ can be considered positive integers (in case
the hotspot is resolved); u, v, u’, v’ can be negative integers
(in case agents do participate in a hotspot). As it can be
noticed, this can be a coordination game, with two Nash
equilibria, namely the joint options providing payoffs (x,

Fig. 2 Payoff matrices for 2X2 games
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y) or (x’, y’). However, this is not necessarily a symmetric
game, considering that the payoff incorporates agents’
preferences. The game can be extended to multiple options
and/or multiple agents executing interacting trajectories.

Given that the information concerning the effects of
agents’ joint decision is not known to any agent in the
society, and given that agents do not know about the payoffs
of other agents when choosing specific delay options, agents
need to learn about the structure of the game to be played,
and they have to coordinate with others to play the game.
The information that an agent has about a 2 × 2 game is
as shown in Fig. 2b. Question marks indicate the missing
information: For instance, none of the two agents knows
whether a decision is effective in resolving hotspots, nor the
payoffs from joint decisions (e.g. since new hotspots may
emerge as a result of agents’ joint decision). Our goal is
agents in the society to converge to a joint decision, so as to
resolve hotspots that occur jointly with all society members.

5 Explainability desiderata to promote trust

As pointed out in the introductory section, we aim at intro-
ducing automation and promoting system trustworthiness,
in the sense that operators should be comfortable relinquish-
ing control to the system, given appropriate explanations
on system’s decision making. Therefore, the system must
be able to provide explanations of its decisions. Challenges
towards addressing this objective include: (a) The large
number of agents participating, (b) the fact that - as pointed
out in the MDP formulation - agents decide every �t time
points on the additional minutes of delay up to MaxDelay,
or until they reach the take-off time point, (c) the inherent
complexity of the system.

Therefore, given humans’ cognitive limitations, it is
challenging to provide a global understanding of agents’
policy, to inspect the contribution/effect of every single
agent decision to the overall joint solution; or even to
understand patterns of behaviour that emerge from the
decisions of interacting agents.

However, operators need (a) to get a qualitative
understanding of the system, (b) get a justification of agents’
decisions at the appropriate level of granularity and scale,
and (c) understand the importance of state features in
agents’ decision making.

Qualitative understanding expresses how humans under-
stand the policies of agents, their preferences, abilities and
objectives, being able to inspect the rationale and effects
for agent’s courses of decisions, as the environment evolves
within a state space.

This is equivalent to supporting humans to model how
agents respond in certain circumstances w.r.t their abil-
ities, preferences and objectives, without considering

low level algorithmic details and numerical assess-
ments/computations that the system makes.

Regarding the second requirement, while the granularity
concerns the level of detail regarding agents’ behaviour, and
it may refer to the specific decisions taken at any timestep,
or to the mode of behaviour or skill exercised by any agent
within a time period, scale refers to the temporal or to
the spatial extent in which decisions are considered. For
instance, one may consider agents’ decisions at any timestep
(fine level of granularity) for a time horizon of X hours
and only within specific space compartments (temporal and
spatial scale).

Finally, understanding the importance of state features,
allows humans to understand where do agents “pay
attention” while taking any decision.

Towards this goal, in this paper we do explore the use
of appropriate visualizations and visual analytic tools that
allow operators to explore the system behaviour at various
temporal, spatial and societal scales, while providing
interpretations of individual agent decisions at low levels of
granularity.

The main point here is that in large scale and complex
systems human operators need time to explore the solutions
proposed by the system, to explore agents’ interactions and
consequences of decisions. In so doing, trust to the system
is developed while operators are acquainted with the system
and while they review the rationale behind intertwined
agents’ decisions in multiple cases. In our case, automation
is introduced at a pre-tactical phase, so indeed, humans have
the time to delve into the details of solutions.

6Multi-agent deep Q learning

6.1 The deep Q learningmethod

To resolve problems in high dimensional and large state-
action spaces, the deep Q-network [57] method successfully
combined Reinforcement Learning (RL) with neural networks
(NNs). Deep Q-Network (DQN) uses a NN (“online net-
work”) to approximate the optimal action-state Q function

Q∗(s, a) = maxE[Rwdt + γRwdt+1 + γ 2Rwdt+2 + ...|st = s, at = a, π∗]
(5)

which, is the maximum expected sum of rewards discounted
by γ at each timestep t , achievable by policy π∗, after state
s and taking action a.

It is well established that the combination of RL with
nonlinear function approximators such as NNs, can be
unstable [58]. This instability has several causes: the
correlations present in the sequence of observations, the fact
that small updates to Q values may significantly change the
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policy - and therefore change the data distribution, and the
correlations between the action-values and the target values.

As shown in Fig. 3, two vital elements of DQN that address
these issues, are the target network and the experience
replay memory. The target network mitigates the effect
of constantly moving update targets, by incorporating a
second network from which the update targets are sampled.
This network is periodically updated with the weights of
the online network. The addition of a uniform experience
replay memory de-correlates the samples collected during
rollouts, by randomizing over the data, thereby smoothing
over changes in the data distribution. During learning,
the method applies Q-learning updates on samples (or
minibatches) of experience drawn uniformly at random
from the pool of samples stored. The Q-learning update at
iteration i uses the following loss function:

Li(θi ) = E(s,a,Rwd,s′)∼U(D)[(Rwd + γmaxa′Q(s′, a′; θ−
i ) − Q(s, a; θi ))

2]
(6)

In which γ is the discount factor, θi are the parameters
of the online network at iteration i and θ−

i are the target
network parameters at iteration i.

Regarding the number of agents participating in a typical
DCB problem setting (typically, more than 6000), scala-
bility is an important challenge. While the straightforward
way to train agents towards a joint policy, is to train inde-
pendent policies in parallel, one for each agent, following
the independent learners paradigm, this approach can pro-
duce results in low-dimensional problems with only few
agents: In real-world, large scale settings is inefficient and
unstable. As already pointed out in Section 2, to allevi-
ate problems caused by the non-stationarity of independent
learners and in order to address scalability, we do employ
some form of centralized training, thus exploiting informa-
tion that is available during training but often unavailable
during execution. A technique that has many variants and

is vital in understanding Deep MARL, while tackling scal-
ability issues, is the centralised training and decentralized
execution (CTDE) technique. Following the parameter shar-
ing [43] paradigm, we aim to learn a single, generalizable
and robust policy shared by many agents. The main idea is
that this single policy should be able to adequately describe
the behaviour of different agents with the same goals.

At every step of the environment, transition samples are
collected from every agent and stored in the experience
replay memory. These samples contain the state of the agent
s, the action decided a, the resulting state s′ and reward
Rwd (i.e., (s, a, Rwd, s′)).

Furthermore, we incorporated three enhancements of
DQN in order to improve stabilization of the method and
quality of results.

The first extension is Double DQN [59]. Double Q
Learning was originally introduced in [60] and aims at
addressing the problem of overestimating action values: A
phenomenon inherent to the DQN method. This addition to
the original method is considered to be standard practice
and is particularly useful in the multi-agent domain, where
non-stationarity is a common phenomenon. Originally, the
idea behind this method is to utilize two independent tabular
approximations of the Q function during training, where
each Q function is updated with targets produced from the
other Q function. Specifically, in its tabular version, given
a Q function approximation A and a second one B, it uses
the following formula to update A. The update for B is
symmetrical.

QA(s, a) = QA(s, a)+α(Rwd +γQB(s′, a∗)−QA(s, a))

(7)

Double DQN transfers this approach in the Deep
RL setting, by exploiting the already existing second
approximator in the form of the target network. The online
policy network is used to choose the best next action a′,

Fig. 3 DQN architecture
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but its Q value is evaluated by the target network. Thus the
original Q-learning target

Yt
Q = Rwdt+1 + γQ(st+1, argmaxaQ(st+1, a; θt ); θt )

(8)

becomes

Yt
QDouble = Rwdt+1 + γQ(st+1, argmaxaQ(st+1, a; θt ); θ−

t ) (9)

The second extension is the prioritized experience
replay [61]. In the original approach, experience transitions
are uniformly sampled from a replay memory. This
approach ignores the significance of samples, replaying
them at the same frequency that they were originally
observed in the environment. Prioritized experience replay
enforces a priority over the samples, aiming to replay
important transitions more frequently, and subsequently
improve learning efficiency. In particular, the method
proposes to assign higher priority to transitions with high
expected learning progress, as measured by the magnitude
of their temporal-difference (TD) error. Specifically, a
stochastic sampling method interpolates between pure
greedy prioritization and uniform random sampling, while
guaranteeing a non-zero probability even for the lowest-
priority transition. The probability of sampling transition i

as

P(i) = p
η
i∑

k p
η
k

(10)

where, pi > 0 is the priority of transition i and the exponent
η determines how much prioritization is used. pi = |δi |+β,
where δi is the TD error of sample i and β a small positive
constant.

In our case, preliminary results showed that prioritized
experience replay was essential. Uniform experience replay
failed to obtain the optimal solution even in simple DCB
cases with few (e.g. 5) agents, by resolving all hotspots, but
assigning unnecessary demand measures: The combination
of optimal measures that resolve all hotspots are quite rare
in the experience memory and should be prioritized when
encountered.

Finally, we incorporate the exploration scheme of
Adversarially Guided Exploration (AGE), as proposed
in [62]. As reported in [63], training on adversarial
examples can lead to a more robust policy, especially
against perturbations produced by the same technique. In
the multi-agent domain perturbations can be produced by
the agent population acting simultaneously, thus leading
to the non-stationarity problem. By utilizing a form of
data augmentation which produces perturbations through
adversarial examples, we aim to train the policy over
adversarial examples of states, which are generated when

an agent acts and observes a state different than the one
expected, due to other agents’ actions. This results to
obtaining a resilient and robust policy, against perturbations.

The AGE mechanism extends the classic ε-greedy
exploration mechanism by adjusting the probability of
sampling actions for each state s according to the adversarial
state-action significance, defined as follows:

ζ
πi

adv(s, a) = exp(maxa′Qπi (s, a′) − Qπi (s, a)/ε)∑
a∈A exp(maxa′Qπi (s, a′) − Qπi (s, a)/ε)

(11)

where, ζ
πi

adv measures the maximum achievable adversarial
gain determined by the difference between maximum Q-
value at state s and Qπi (s, a) with respect to actions.
Following the ε-greedy exploration paradigm, this approach
chooses argmaxaQ

πi (s, a) when ε < rand(), but in the
case of ε ≥ rand() the action is sampled according to ζ

πi

adv .
Subsequently, we describe how DRL has been used to

compute each of the types of solutions for resolving DCB
problems.

6.2 Solutions by imposing ground delays

In the first type of solutions agents can impose only delay
regulations. Agents interact with a simulated environment
and at each time step they can observe the resulting global
state after their joint decision: It must be recalled that
the environment comprises the sectorizations at different
periods, capacity constraints, as well as other flights.

As already pointed out, according to our methodology,
a flight is not regulated with a number of minutes at
once (e.g. 14 min of delay), but by adding additional
minutes of delay at every timestep, according to needs,
as follows: Decisions are taken during an (simulation)
episode. An episode simulates a specific scenario of a time
horizon H=1440 minutes. A scenario comprises a set of
flights flying in an airspace within H, and all active sector
configurations during that period. Each episode comprises
a series of rounds. Each round corresponds to a number of
minutes of the day (mentioned as simulation timestep, and
denoted by �t in the MDP formulation). At each round each
agent takes a concrete decision for additional delay from
zero up to �t minutes. Therefore, in case an agent (flight)
has 13 minutes of delay at a time point during simulation,
then there should be a number of distinct timesteps in the
simulation prior to that time point, where the agent has
decided to take additional minutes of delay that sum up
to 13. The method takes into account the existing daily
traffic, given all the initial flight plans and agents’ joint
decisions at each timestep. By so doing, agents are able
to explore the state-action space and learn very effectively.
More importantly, agents are able to justify their decisions



Explaining deep reinforcement learning decisions in complex multiagent settings...

of (not) taking additional minutes of delay at any timestep,
also due to hotspots that may emerge due to combined
agents’ decisions.

Figure 4 shows the calculations that occur at every
timestep during simulation: After agents have taken their
decisions, the overall demand and the unresolved hotspots
during H are recalculated by the simulated environment.

The reward function utilized in this type of solutions
has two distinct parts. If an agent does not participate in
hotspots, it receives a positive scalar value C minus the
minutes of delay accumulated, divided by the maximum
allowed minutes of delay. If it participates in one or more
hotspots, it receives a negative reward which is equal to
the ratio of (a) multiplying a positive scalar value CpM ,
representing the cost per minute within a hotspot, with the
total duration (in minutes) of the flight in hotspots, with (b)
the duration of the longest flight in the scenario.

Rwdi =
{

C − Di/MaxDelayi hotspotsi = 0
−CpM ∗ Duri/MaxDur hotspotsi > 0

Regarding the first case of the reward function, the
motivation is to provide the agent with a distinctive positive
reward when it does not participate in any hotspot, i.e.,
what it has accomplished its main goal. In addition, we
aim to minimize the minutes of delay. To regularize the
negative part, delay is divided by the maximum allowed
minutes of delay. Regarding the second case of the reward,
the reasoning is quite similar. The negative scalar reward
drives the agent to resolve all the hotspots in which it
participates. It is multiplied by the total duration (minutes)
that the agent is in hotspots: Larger duration indicates larger
agent “contribution” in hotspots. To regularize in this case,
we divide by the length of the longest flight in the scenario

(which is the maximum time period that any scenario flight
can participate in hotspots).

6.3 Solutions by re-routing due to level capping

In this type of solutions agents’ options are restricted to
the flight plans in FPi. This set consists of the original
flight plan and revisions of this flight plan. These revised
flight plans are devised so as to avoid any sector with
hotspot in any counting period, via level capping measures.
Our methodology starts with the production of the revised
flight plans by applying level capping measures to the
original flight plans, where this is possible. Thus, a revised
flight plan represents a decision for applying level capping
measures.

Flights eligible for level capping measures are those
which take off inside the airspace of our interest, or in
nearby airports. For each eligible flight, a set of flight
plans with level capping measures are created and ranked
according to the smoothness of the resulting planned
trajectory (details about this ranking are provided in
Section 9.2). This set of plans, including the original flight
plan, constitute the set of flight plan options for each agent
Ai , i.e. FPi .

After calculating the demand at the scenario initial state
(please mind that this concerns all hotspots during the
scenario), the method checks which flights participate in
hotspots, and for each flight Ai , which plans in FPi can
avoid most of the hotspots. In the case where more than
one hotspots can be avoided, the highest ranked flight plan
that can avoid most of the hotspots in which the agent
participates, is selected. Figure 5 describes the process.

Avoiding a hotspot does not mean it is resolved: Agents’
joint decision may leave hotspots unresolved and they may

Fig. 4 Simulation rounds for
delay regulations
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Fig. 5 Selecting alternative
flight plans due to level capping
measures

create new hotspots which can be more in number and more
severe in intense, than those in agents’ initial state. To avoid
this, the agents use the DQN algorithms to jointly decide
which of the plans to follow.

In contrast to the approach described in Section 6.2 and
the multi-agent MDP formulated, agents decide how to play
a one-shot game, comprising the initial state and a final one
where the environment transits taking into account agents’
joint decision. Thus, the second and final state is the one
where all agents have decided on their flight plans.

The reward function in this case has two distinct parts.
If an agent participates in no hotspots it receives a positive
scalar value C. If it participates in one or more hotspots
it receives a negative reward which is calculated by the
number of hotspots it contributes, times a scalar value of the
cost per hotspot.

Rwdi =
{

C hotspotsi = 0
−CpH ∗ hotspotsi hotspotsi > 0

The reasoning here is similar to the one described in
Section 6.2. In the first case, the function returns a positive
feedback in order to reward the agent for not contributing
to any hotspot. In the negative case the agent is penalized
proportionally to the hotspots in which it contributes.

6.4 Solutions mixing level capping and ground
delays

The approach here is identical to the one described in
Section 6.2, but the initial state of the process for deciding
delay regulations is the last state after agents have decided
their - potentially revised- flight plans. Specifically, this is a
two-stages process: In the first stage, after calculating level

capping measures, agents’ decide on their flight plans (as
specified in Section 6.3). This new set of flight plans results
in a relaxed DCB problem compared to the initial one,
where some of the initial hotspots have been resolved. In
the second stage, this DCB problem is solved by imposing
ground delays to the decided flight plans, according to the
method described in Section 6.2. Figure 6 illustrates this
process.

This two-stages process results in a Pareto optimal
solution regarding the two dimensions of decision making,
w.r.t. delays and level capping measures. This is done
without unnecessarily exploding the state-action space, as
it would be done if we considered all the combinations
of measures in the joint State × Action space. This can
easily be seen if we consider that agents jointly decide the
best possible level capping measures, resulting in a relaxed
DCB problem that agents can resolve with joint decisions on
ground delays. Less effective level capping measures would
result in the need for additional ground delays for agents and
less total reward, while in case the agents could decide on
more effective level capping solutions, then they would do
that as their reward would increase and they would not need
to impose the minutes of delay decided.

7Mimicking DRLmodels for the provision
of explanations

The overall mimicking approach we follow in this work
towards providing explanation content (interpretations) on
individual agents’ decisions at a fine level of granularity is
shown in Fig. 7. Overall, given the well-trained DQN model,
this is treated as an oracle for training a model realized by a
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Fig. 6 Combining level capping and ground delays measures

forest of Stochastic Gradient Trees (SGT), called the mimic
model.

Specifically, as it is shown in Fig. 7, given an observation
signal I, assuming in the general case that the full state may
not be observable by the agent, the DQN model predicts
the values of the actions a in that state, i.e. Q(I, a). Given
these values, together with the observation signal, the mimic
model is trained to approximate the Q-value (denoted by
Q̂) for any possible option and state, following a regression
process.

The mimic model predicted action is the one with the
maximum Q̂-value:

a∗ = arg max
a

Q̂(s, a).

The fidelity of mimic model is determined by comparing
the mimic model predicted action with the action prescribed
by the DQN policy model, at each state and for any of
the agents. We say that an action prediction is correct, if
it coincides with the DQN prescribed action. We measure
the accuracy of the mimic model as the number of correct
predictions over all the predictions.

Subsequently, we provide background knowledge on
SGT and specify how the mimic model is being trained and
exploited to interpret agents’ decisions per type of solution.

7.1 Stochastic gradient trees

Stochastic Gradient Trees (SGT) [64] is a state-of-the-
art method for learning decision trees using stochastic
gradient information as the source of supervision. SGT
can operate in an incremental learning setting, although

in our case we are using the method in a batch mode:
As our interest is to mimic the trained DQN model, we
aim to perform regression on the Q function, as it has
been modeled by the online policy model of DQN. SGT
have been shown to outperform state of the art regression
trees.

Overall, we consider supervised learning settings where
data at every timestep t is of the form (xt , yt ) ∈ X × Y ,
and the aim is to predict the value of yt given xt . In our
case, as also discussed in the mimicking paradigm above, xt

is a (state, action) pair and yt is the Q-value for that pair,
as predicted by the DQN policy model. These samples are
tagged with the simulation timestep and provided from each
of the agents during simulation.

We succinctly describe how SGT incrementally construct
decision trees, optimising arbitrary twice-differentiable loss
functions. The main ideas behind SGTs are (a) evaluating
splits and computing leaf node predictions using only
gradient information, and (b) using standard one-sample
t-tests to determine whether enough evidence has been
observed to justify splitting a node.

Solving a regression problem in our case we aim to
predict the Q̂-value of each possible agent option, at any
state: The objectives here is SGT (a) to learn how to rank
alternative options per state, so as to (c) mimic faithfully
(with fidelity) the decisions of the DQN model, and (b) to
explain the reasons justifying each decision.

We train SGT using a squared error loss function

l(y, ŷ) = 1

2
(y − ŷ)2 (12)

Fig. 7 The mimicking approach
for interpretability
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measuring how well our predictions, Q̂, match the
predictions Q provided by the deep model. Predictions
are computed using SGT (function QSGT ), optionally
composed with an activation function, σ ,

ŷ = σ(QSGT (x)) (13)

The objective during training is to minimize the expected
loss, as estimated from the data observed between the
current timestep t , and the timestep r , at which the tree was
previously updated. Assuming i.i.d. data, the expectation on
the loss can be approximated in a stochastic manner using
the most recent observations,

E(l(y, ŷ)) = 1

t − r

t∑
i=r+1

l(yi, ŷi)
2 (14)

Towards minimizing the expected loss, at each timestep,
the method may modify the tree either by splitting one of
its leaf nodes, or by updating the prediction made by a leaf
node.

The empirical expectation of the loss function can
be approximated using a Taylor expansion around the
unmodified tree at time t (indicated by QSGT ):

Lt (u) ≈
t∑

i=r+1

[l(yi, QSGT (xi)) + giu(xi) + 1

2
hiu

2(xi)],

(15)

where, u denotes the potential split given a new instance. g

is the first derivative of the loss function w.r.t. QSGT (xi),
and h the second derivative, i.e. (ŷ − y) and 1 in our case,
respectively.

Optimization can be expressed by eliminating the
constant first term resulting in the following formula

�Lt (u) ≈
t∑

i=r+1

[giu(xi) + 1

2
hiu

2(xi)] =
t∑

i=r+1

�li(u)

(16)

that describes the change in loss due to a split u. The optimal
splitting, given all possible splits is

v∗
u(j) = −

(
∑

i∈I
j
u

gi)

(l + ∑
i∈I

j
u

hi)
(17)

where I
j
u is the set of indices of instances reaching the

new leaf node identified by j , and v maps these new leaf
node identifiers to the difference between their predictions
and the prediction made by their parent. SGT use student’s
t-test to determine whether a split should be made, with
the hypothesis that no split should be made. This avoids
knowing in advance the range of values that can be taken for
n terms �li(u).

The process to determine whether enough evidence has
been collected to justify a split is prohibitively expensive

to carry out every time a new instance arrives. Therefore,
in practice, SGT check whether enough evidence exists to
perform a split when the number of instances that have
fallen into a leaf node is a multiple of some user specified
parameter.

7.2 Training themimic models

Following the mimicking approach with SGT as an
interpretable model, we train an SGT mimic model to
provide explanations on the measures decided by the deep
model. For each of all the possible agent’s options a, the
regression process aims at minimizing the squared error loss
function, as specified in formula (12). We use the Mean
Absolute Error to measure the mean absolute difference
between the Q-values provided by the DQN and the Q̂-
values predicted from the SGT.

For solutions with ground delays, described in Sec-
tions 6.2 and 6.4, each agent can decide among 11 different
action options, corresponding to 0−10 minutes of additional
delay at each timestep of the simulation. For any option and
at any timestep, SGT provides an interpretation.

In the type of solutions where level capping measures are
imposed as described in Section 6.3,

the agent can choose among two options corresponding
to the original flight plan and the highly ranked plan
with a level capping measure. In this case, SGT provides
interpretations for agents’ decision on imposing a level
capping measure or not.

To train the mimic model the method gathers samples
that correspond unique states visited over 400 episodes
from all DQN agents interacting with the environment. To
gather as many samples as possible (i.e., regarding different
(state, action) pairs), the trained DQN interacts with the
environment starting with exploration, having set the ε-
greedy parameter ε = 0.9 and diminishing ε as the episodes
progress.

We train the mimic model passing over the training
dataset once, i.e. in one epoch, taking advantage of the
incremental learning abilities of SGT. To test the mimic
models, we gather samples from all agents interacting with
the environment in one episode with ε = 0.04.

State features are discretized using equal width binning,
with 64 bins. For the gradient updates, hyper-parameters are
set as in [64]. To determine whether enough evidence has
been collected to justify a split on a leaf node, the hyper-
parameter regarding the number of instances that have fallen
into that node is set to be a multiple of 200, as proposed in
[64].

7.3 Interpreting agent’s decisions

Interpretations comprise arguments regarding:
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• Why the agent has decided an action;
• Why the agent should not take the decided action.

For the first, we exploit the stochastic gradient tree
that corresponds to the demand measure decided by the
DQN. The latter provides counterarguments for not taking
the decided action. Counterarguments for an action are
provided by an SGT model corresponding to any option,
which is different from the one decided by the DQN.

For any specific state-action pair (s, a), the interpretation
method follows the path in the stochastic gradient tree
corresponding to action a from the root to the leaf node that
makes the prediction of Q̂(s, a). The interpretation contains
arguments for a decision. An argument corresponds to a
stochastic gradient tree branch node and comprises a split
feature and a split condition. The order of nodes visited, and
thus the order of arguments in an interpretation, shows the
importance of features to decisions.

As for example, let us consider the arguments made by
SGT towards interpreting a decision for a flight to take no
delay at a particular time instance: These are shown in order
of importance as provided by SGT in Table 2.

We note that the same feature may appear multiple times
in an explanation, as it can be associated with different
conditions: This is the case for the “Existing delay” in
our example. First, we have to note that the interpretation
method provides the explanation content: This must be
associated with the particular environment conditions, and
the whole information is provided by visualizations and
tools for rendering information and exploration of solutions.

Arguably, this is a detailed explanation for a single
simulation step and from a single agent: Such explanations
can be (a) associated with particular states of the airspace at
specific time instances, to inspect the situation, (b) provided
as a dataset for further exploration towards providing
a qualitative understanding of agents’ decision making.
However, from this single explanation, one may understand
that the model does not prescribe any additional minute of
delay for that flight, given that it participates in 2 hostpots
in the same sector (first two arguments), occurring early in

Table 2 Arguments for receiving no delay

Feature Value

1st Hotspot 2nd sector (LECMBLI)

2st Hotspot 2nd sector (LECMBLI)

Counting period of 2nd Hotspot 49

Existing Delay (≤ 3.12) 0 min

Duration in 6th Sector 8 min (LECBP2R)

Counting period of 1st Hotspot 48

Existing Delay (≤ 1.56) 0 min

Duration in 2nd Sector 11 min (LECMASU)

the afternoon of that day (49th and 48th counting period, i.e.
approx. at 16:30) while the flight has a small duration in
specific sectors (5th and 8th arguments). To fully understand
the situation one has to inspect the demand of the sectors
during each period crossed by that flight: This information
is provided by the visual analytics tools for exploring
solutions described in the next section.

A similar case, where the SGT argues for no minutes of
additional delay for another flight is provided in Table 3.
Actually, in this case, these are counterarguments provided
by the mimic model, against the actual decision made by this
flight for taking 1 min of additional delay. The arguments
for that decision are presented in Table 4. If we consider
the set difference of those arguments w.r.t. their order of
importance, we can say that the decision of receiving an 1
minute of additional delay versus receiving no additional
delay was based on (a) the number of hotspots the agent
participates, (b) the counting period of its first hotspot and
(c) the duration of the flight in the first sector crossed,
which is LECBCCC. Contrarily, we can say that the first
two hotspots that the agent participates and the counting
period it stays in the second hotspot are considered as the
most important factors for not taking any additional delay.

8 Visual analytics for exploring solutions
and explanations

To promote trust in the use of the system and facilitate

- understanding of problematic situations requiring mea-
sures, i.e. demand-capacity imbalances;

- exploration and understanding of solutions developed
by the multi-agent system;

- exploration and understanding of the explanations of
the decisions taken by the individual agents,

we propose a Visual Analytics (VA) component, devel-
oped in accordance to general principles [65, 66] of visual
data science and, more specifically, pattern search.

The VA component includes two modules providing
different levels of abstraction and details:

Table 3 Arguments for not receiving any additional delay

Feature Value

1st Hotspot 0nd sector (LECBCCC)

2nd Hotspot 1st sector (LECPL1W)

Counting period of 2st Hotspot 25

Counting period of 3rd Hotspot 26

Existing Delay 1min
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Table 4 Arguments for receiving 1 minute of additional delay

Feature Value

Number of Hotspots 3

Counting period of 1st Hotspot 26

Existing Delay 1min

Counting period of 3rd Hotspot 26

Duration in 1st Sector 19min (LECBCCC)

• Solution Explorer: high level of abstraction and low
level of detail. It is meant for gaining overviews of the
evolution of use of airspace over the scenario duration,
identifying major differences between solutions, and
tracking major changes along the process of solution
development.

• Sector Explorer: lower level of abstraction and
higher level of detail. Unlike Solution Explorer, Sector
Explorer shows information about individual flights.
This module also allows accessing all explanations for
a selected flight, as provided by the mimic model.

To gain an overview of one solution, Solution Explorer
proposes a table view demonstrated in Fig. 8. The columns
of the table correspond to sectors and the rows to hourly
counting periods. The cells contain horizontal bars with
the lengths proportional to the counts of the flights that
enter the sectors in the 1-hour periods corresponding to the
rows. Where the number of the entries is over 110% of the
sector capacity threshold, the cell contains a red vertical
line crossing the bar showing the counts of the entries. The
horizontal position of the line within the cell corresponds
to the sector capacity; hence, it is possible to compare the
capacity with the demand and judge the amount of excessive
demand.

When the solution represented in the table view involves
delayed flights, the bars inside the cells are divided into
segments corresponding to different durations of the delays
(Fig. 9). The segments are painted in different shades of
grey, so that darker shades correspond to longer delays.

The VA component supports a variety of interactive
operations, thus enabling focusing on particular solutions,
selected time intervals and sectors of interest. Multiple
solutions (e.g. initial state, an intermediate and final
state) can be shown simultaneously for comparison, see
Fig. 10.

Sector Explorer can present a single solution or provide
a comparative view of two solutions (Fig. 11). A major
part of the display is given to the main view where the
horizontal dimension represents time. The time slider below
the main view is used for choosing a time interval to be

shown with the highest possible resolution. The vertical
dimension of the main view accommodates several sectors
one of which is considered as the focus sector. Above the
band of the focus sector are the bands corresponding to
the upstream sectors, i.e., the sectors from which flights
come directly to the focus sector. The bands below the band
of the focus sector correspond to the downstream sectors,
i.e., the sectors to which flights go directly from the focus
sector.

Apart from the flights, the main panel of Sector Explorer
shows sector loads (i.e., demands) by time periods of 1-
hour length, taken every step of 20 minutes. The demands
are represented by time-based histograms with overlapping
bars, as shown in Fig. 12.

The SectorExplorer component supports interactive
selection of flights of interest. Data-driven selection is
supported: for example, it is possible to select flights that
were delayed or changed a sequence of crossed sectors
from one solution to another. A list of selected flights and
their properties can be presented visually in a tabular form
Fig. 13. This table shows how delays for the selected flights
were added over multiple steps of the model. For example,
flight IBE3340 (on top of the table) got a total delay of 100
minutes in the result of 23 changes that occurred at steps 4
to 31.

As described in Section 7, each decision of the model
is interpreted by a mimic model in the form of a list
of conjunctive arguments. A collection of such arguments
for a selected flight is present in a table, as shown in
Fig. 14. Each row represents arguments for a decision
made at some step. Column “Action” represents the
added delay (from 0 to 10 minutes), while arguments
like f eatureA is in interval [Amin..Amax] and actual
feature values are displayed graphically in the columns
of the table. Such tabular representation allows tracing
the conditions over model’s steps and enables an efficient
assessment of consistency of decisions, assuming that
similar actions are supposed to be performed under similar
conditions.

To summarise, the VA component efficiently enables
consideration of solutions from multiple perspectives:
model evolution, sectors, hotspots, time intervals, and
flights, and provides access to interpretations of model deci-
sions. This information can be used by model developers for
checking data quality and validating model outputs. Domain
experts can use the proposed VA tools for gaining trust to
models, understanding model behavior and for purposes of
model certification. The VA component successfully imple-
ments major principles of human-centered machine learning
[67]. A detailed overview of the proposed approach and its
implementation is published in [68].
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Fig. 8 An overview of a solution: a table view with columns corresponding to sectors and rows to time intervals

9 Experimental results

9.1 Data sources

For the construction of scenarios with a time horizon H of 1
day, both for training and testing the multiagent system, we
employ a dataset reporting flight plans and sectorizations
for the same spatial and temporal ranges.

Fig. 9 An overview of a solution involving flight delays. Segmented
bars of different shades of grey indicate proportions of delayed flights
with different delay durations. Light grey corresponds to non-delayed
flights; the darkness increases proportionally to the delay duration

The flight plans dataset reports the intended trajectories
of all the flights during 2019, worldwide. Data are provided
in ALLFT+ format, described in [69]. For each flight we
focus on the fields reporting the departure and destination
airports, the aircraft callsign, the Last off-block time
(LOBT) and the points profile. Each reported position in
the point profile is defined by the latitude and longitude
coordinates, as well as the intended flight level and the
expected time of arrival to that position. The sequence of
positions in the points profile, define the intended trajectory
of the flight.

The sectorizations dataset provides the information about
the activation intervals of airspace volumes. An Air Traffic
Controller (ATC) is responsible for a specific airspace
volume, which has an explicitly defined 3D geometry and an
activation interval. A sector is considered active only during
its activation interval.

The sectorizations dataset reports the active sectors in the
European airspace, their capacities and their 3D geometries
for the entire 2019.

9.2 Preprocessing of data

For the preparation of scenarios, we categorize the flight
plans w.r.t. their departure and destination airports, and the
geometry of the airspace of interest (the part that covers
the Iberian Peninsula, namely, LTOT). Specifically, flights
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Fig. 10 Comparison of three solutions with a focus on a selected sector and the sectors connected to it

departing from airports within or close to the airspace of
interest, can be potentially affected by delay and level
capping measures. If only the destination airport is within
LTOT (i.e. an incoming flight), or in case the flight crosses
the airspace but neither the departure nor the destination
airport is within or close to LTOT, only delay regulations
can be applied. The rest of the flights are excluded from
the dataset, since they are disjoint to the airspace of
interest.

Regarding the sectorization data, we filter the sectors
that overlap with LETOT and organize them in an STR-
tree. Thus, given a spatio-temporal position (as part of the
trajectory of a flight), we can identify the candidate sectors
that cover the position by querying the STR-tree, and then
refine the result by evaluating the activation intervals of the
candidate sectors, and the 3D geometry of each sector. This
process provides one active sector per trajectory point for
original and revised flight plans.

During the preprocessing phase, we compute all the
revisions of an original flight plan that can be the result of
applying any combination of time delay and level capping
(where applicable) measures. We rank the flight plans with
level caping measures w.r.t. the number and width of altitude
changes. Formally, given a trajectory T crossing a set of

sectors R, we compute the expected rate of flight-level
change in all sectors (ERFL) by the formula:

ERFL(T ) =
R∑
s

|�altTs |
�timeT

s

(18)

where |�altTs | is the difference of altitude at entry and
exit points of T in sector s, and �timeT

s the time (in
minutes) where T spends in sector s. We sum the absolute
values of altitude changes, since any change (either upwards
or downwards) should not cancel any previous changes.
Finally, we rank the revised flight plans by their ERFL
values, such that given two trajectories T1 and T2, T1 is
higher in the ranking iff ERFL(T1) < ERFL(T2). The
intuition behind this choice is to show higher preference
to those trajectories that have less and smoother altitude
changes.

9.3 Experimental settings and results of multiagent
DQN

In our experimental settings, the DQN parameters are set as
shown in Table 5. Specifically, regarding hyper-parameter
β, it starts at 0.4 and is increased by 0.01 every 6 episodes,
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Fig. 11 Components and contents of Sector Explorer in the mode of showing a single solution

until it reaches the maximum of 1. Also, at the start of
exploration, ε is set to 0.9 and is diminished by 0.01 every
15 episodes, until it reaches the minimum of 0.04. The total
number of episodes is 2100. During testing, epsilon is set to
0.04.

All results presented are the averages from results
produced by 10 independently trained models, each of
which was tested 100 independent times.

Experiments were performed with six in total scenarios
that correspond to days in 2019 with heavy traffic in
the Spanich airspace: 20190622, 20190703, 20190704,
20190705, 20190708 and 20190714. These scenarios were
selected based on the number of hotspots within the
duration of the corresponding date. Specifically, the busiest
Aeronautical Information Regulation and Control (AIRAC)
days of 2019 for Madrid Area Control Center, from
20/06/2019 to 17/07/2019 have been identified. We selected
the 6 out of these 28 days to test the proposed methods,
based on the number of detected hotspots, while also
selecting dates with different sectorizations in order to have
a variety in the sectors to be monitored.

The testing environment and simulation have been
introduced in Sections 6.2 and 6.3. The testing of the multi-
agent system has been done in two ways, for all three types
of solutions: First the policy model has been pre-trained in
various scenarios. Those scenarios are 20190801, 20190802
and 20190803. The training was done sequentially, meaning

20190801 was used for training the first model, which
initializes the training for 20190802 and the resulting policy
produced initializes the training for 20190803. Then, the
resulting policy model is evaluated in three individual
demanding scenarios, showing the ability of the method to
provide qualitative solutions by imposing delay regulations,
level capping measures and combinations of these two
types of measures. In a second group of experiments, the
pre-trained policy model is further trained in a subset of
scenarios in a gradual manner, and it is tested in two
scenarios: In one included in the training set, and in a
scenario not included in the training set. In so doing, we aim
to show the ability and limitations of the proposed method to
(a) learn policies that can be easily tuned to new scenarios,
balancing between efficiency in training and quality of
solutions, while agents accumulate knowledge as they are
trained in different scenarios, and also (b) the possibility
of method’s performance deterioration, as experience is
accumulated from scenario to scenario.

First, Table 6 presents data regarding each of three exper-
imental scenarios: 20190705, 20190708 and 20190714.
These are the most demanding scenarios and their results
represent adequately the results from the other scenar-
ios, which are used in the second group of experi-
ments described subsequently. Flights column indicates
the number of flights that cross LTOT during the spe-
cific day. Hotspots column indicates the number of hospots
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Fig. 12 Hourly demands for sectors are represented by time-based histograms with overlapping bars

occurring in LTOT in the initial state of the scenario. Flights
in hotspots column indicates the number of flights that par-
ticipate in at least one hotspot. We can see that all three
scenarios have an agent population of similar size, but
20190708 displays less severe traffic, with fewer hotspots
and fewer flights participating in them. It must be noted here
that all scenarios used are hand picked with traffic severity
in mind, in order to pose the highest possible challenge to
our approach.

Table 7 shows the first group of results: Solutions
obtained by exclusively applying delay regulations. Final
hotspots column shows the number of unresolved hotspots
in the final state, after imposing the regulations. The month
of July displays the most severe traffic of the year and this
is evident especially in the case of 20190705 where, on
average 38.4 hotspots remain unresolved. Average delay per
flight column shows the total minutes of delay imposed,
divided by the number of flights in the scenario. It must
be noted here that all delays less than five minutes are
ignored. Delayed Flights column shows the number of
flights affected by more than four minutes of delay. The
final column shows the ratio of total delay imposed to flights
while ignoring delays less than five minutes, divided by

the number of flights delayed (previous column). Figure 15
shows the box plots for all the previous indicators, per
scenario. Horizontal lines of each box plot represent the
25th, the 50th, the 75th and the 100th percentile. Diamonds
indicate outliers. It must be noted that the number of delayed
flights is divided by 100, in order to maintain readability of
the plot.

Table 8 shows solutions obtained by exclusively applying
level capping measures. This type of measure is only
applicable in a small number of flights, therefore, compared
to delays, it has a smaller impact on the existing demand.
The final hotspots column shows the number of unresolved
hotspots in the final state. Affected flights column shows the
number of flights with a level capping measure.

Table 9 shows results obtained by combining the
two types of demand measures. Figure 16 shows the
corresponding box plots, where the x axis specifies the
indicator. The notation is identical to that of the previous
plot.

Figures 15 and 16 provide a detailed view of the
distributions of values regarding all indicators for all
scenarios, facilitating the comparison between different
types of solutions. Most notably, the combination of delay



Explaining deep reinforcement learning decisions in complex multiagent settings...

Fig. 13 List of flights with
accumulated delays. The
dynamics of delays
accumulations is shown if
columns “Cumulative delays”
and “Added delays”,
representing total and
momentary delays, accordingly

regulations and level capping measures not only provide
better mean values for average delay and number of delayed
flights, but also much less deviation from that mean, with
remarkably less outliers. This reduction of measures comes
at a slight cost in the number of unresolved hotspots in
the case of 20190708 (4.5 additional hotspots to the 4.6
reported in the solution with delay regulations, out of the 82
in the initial state). In the other two scenarios the unresolved
hotspots in the final state are practically the same for the two
types of solutions. Minimal differences are also observed in
average delay per delayed flight: for example we can see
slightly better results in 20190714 in favor of the combined
measures.

Therefore, experiments show that DQN can produce
high-quality results, resolving the majority of the hotspots
that occur in large airspaces under realistic conditions,
applying combinations of measures. This is due to the
ability of the method to “view” at each time step during
simulation the demand for all sectors crossed by each agent,
something that goes far beyond the cognitive abilities of
humans to manage the inherent complexity at the extent
that the system does with 7000 agents’ joint decision.
Such solutions, although not directly comparable to those

provided by the Network Manager (i.e. those in Table 1),
can extent our abilities to plan how to use the airspace well
in advance, and in the best possible way, before applying
further measures, e.g. assigning more ATCs.

In the next group of experiments we study the extent
at which our approach can produce models that are
transferable among scenarios, i.e. models which, when
trained on a number of scenarios, can produce solutions in
new scenarios with no or minimal training: This is essential
to produce policies that can be easily tuned to new scenarios,
balancing between efficiency in training and quality of
solutions. To evaluate this possibility we compare the results
presented in the previous Tables with those in Table 10. For
all these experiments we utilized a model pre-trained with
five scenarios: 20190622, 20190703, 20190704, 20190705
and 20190708. This model is denoted M20190622-0708,
as it is constructed gradually to scenarios with respect to
their chronological order: it is constructed by training a first
model in the first scenario, the resulting model is further
trained in the second scenario, and so on. The individual
models per scenario are indicated by M2019X. All of
the scenarios are hand-picked and present exceptionally
severe traffic in LTOT. The main goal here is to test



T. Kravaris et al.

Fig. 14 Decisions applied to a single flight over multiple model steps are explained by a series of sets of arguments. Arguments, intervals of
feature values, and actual values for each step are shown in table rows

the M20190622-0708 model against scenario 20190714,
which was not used in the training stage. In so doing,
we can explore the value of accumulated knowledge from
training with different scenarios. In addition to that, we test
M20190622-0708 to scenario 20190705, which is a scenario
used in the training stage, but not the final one. Thus, we
can evaluate the possible deterioration in performance, as
the model is trained in additional scenarios and accumulates
new experience on top of that gained in a past scenario.

We use three different “modes” in these experiments:
(a) No additional training of M20190622-0708 to the spe-
cific scenario in which it is tested, noted with “no trai-
ning” in the Training Episodes column in Table 10. (b)

Minimal-training of M20190622-0708 with 500 exploita-
tion episodes, denoted with 500. (c) Half-training of
M20190622-0708 with 1000 exploitation episodes, denoted
with 1000. Minimal and half-training are with respect to
the number of episodes of the original experiments, which
where 2100. The rest of the columns report on the indicators
reported also in the previous experiments.

As shown in Table 10, there is merit in the pre-
training scheme. In scenario 20190714, the model produces
a solution with 23.7 unresolved hotspots, out of the
92 in the initial state, with no additional training: A
solution that leaves 20.5% hotspots occurring in the
initial state unresolved, in addition to those not resolved



Explaining deep reinforcement learning decisions in complex multiagent settings...

Table 5 Hyper-parameters

Hyper-parameter Delay solutions Level Capping solutions

fully connected layers 4 2

activation relu relu

nodes 512 100

loss Huber Huber

Huber δ 0.05 0.05

batch size 200000 32

optimizer Adam Adam

α 0.0001 0.0005

epochs 20 10

clipnorm 0.1 0.1

γ 0.99 0.99

τ 0.9 0.9

replay memory size 3000000 3000

memory’s ε 0.05 0.05

memory’s α 0.6 0.6

memory’s β min 0.4 0.4

memory’s β max 1 1

starting ε 0.9 0.9

min ε 0.04 0

training episodes 2100 2000

by the M20190714 model. This shortcoming can be
mitigated with minimal additional training. With minimal
training, the M20190622-0708 model reaches very similar
effectiveness compared to that of M20190714. Specifically,
the M20190622-0708 model leaves 0.2% of the hotspots
unresolved, in addition to those not resolved by the
M20190714 model, while imposing 25% more delays. Half
training improves these results even further. As shown in
Fig. 17 the M20190622-0708 model produces results that
are comparable to the results of M20190714, with less
variation.

Regarding the scenario 20190705, and in comparison to
the results reported with the model M20190705, the model
M20190622-0708, with no additional training, produces
a solution that leaves 4% hotspots occurring in the
initial state unresolved, in addition to those not resolved
by the M20190705 model, while imposing 7% more
regulations. Thus, it seems that there is some deterioration
in performance in case a model trained in a scenario is
trained with additional scenarios. This is something that

Table 6 Scenarios’ data

Scenario Flights Initial Hotspots Flights in Hotspots

20190705 6676 100 2074

20190708 6581 79 1567

20190714 6773 92 2004

needs further investigation. Additional training seems to
close the gap between the two models further. Half-training
results in a penalty of 1% unresolved hotspots in addition to
those not resolved by the M20190705 model, and 4% more
regulations.

As can be observed in Fig. 18, the values for all the
indicators reported by the M20190622-0708 model are very
close to the results reported by the M20190705 model,
except for the unresolved hotspots in the case of no training:
Indeed, the M20190622-0708 model produces results with
less variation compared to those of M20190705, while
M20190622-0708 values are gathered in the upper half of
the M20190705 plots, and in the lower half for the average
delay per delayed flight.

Figures 19 and 20 delve further in comparing the
effectiveness of different approaches in scenario 20190714.
Figure 19 shows the distribution of delay minutes to flights.
These results are provided for the solutions with delay
regulations and solutions that combine delay regulations
and level capping measures, solutions produced by the
M20190622-0708 model with no follow-up training (no
training) and solutions produced with half training (i.e.
1000). Figure 20 shows the distribution of unresolved
hotspots to flights, for the different types of solutions
produced by the corresponding models. First, as shown in
Fig. 19, M20190622-0708 with half training manages to
reduce the distribution of delays to flights compared to
the “no training case”. However it increases considerably
the number of flights in the range 10-59min and slightly
in the other delay ranges, compared to the solutions with
delays (D) and mixture of measures (D+LC). Also, as shown
in Fig. 20, the M20190622-0708 model with half training
is much more effective than with no training in resolving
hotspots.

As a conclusion for this group of experiments, DQN
manages to accumulate knowledge gradually while the
model is being trained in different scenarios, however
additional training is needed to “tune” the policy to
a scenario. The additional training time required is
considerably less than the time needed for training a model
from scratch to any specific scenario. Thus the pretraining
scheme produces models that can balance between the
training time and the quality of the provided solutions. In
addition to that, successful accumulation of new knowledge
while training models in subsequent scenarios needs further
investigation.

9.4 Evaluation of themimic model

Given the models learned by training DQN in each of
the individual scenarios, i.e., M20190622, M20190703,
M20190704, M20190705, M20190708, M20190717, we
train several mimic models as follows: (a) One model for
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Table 7 Solutions with delay
regulations Scenario Final Hotspots Average delay Delayed flights Average delay

per flight per delayed flight

20190705 38.4 13.04 1556.5 56.15

20190708 4.6 11.4 1387.2 54.21

20190714 4.8 10.72 1645.2 44.03

each of these individual scenarios, denoted by MM2019X,
and (b) one model per subset of models, with respect to the
chronological order of scenarios, denoted by MM2019X-Y.
For instance, MM20190622-0708 denotes the mimic model
trained using samples from all DQN models M20190622 to
M20190708, in order. All these models have been trained
to regulate flights with ground delays only, while results
are provided by considering predictions per delay option
in {0, 1, 2, 3...10} for solutions with delay regulations and
combination of delay with level capping measures. In so
doing, we aim to show the fidelity of the mimic models
to the DQN models, as well as the ability of SGT to
accumulate new knowledge and generalize beyond specific
training scenarios.

First, for each mimic model we report the max tree depth
in Table 11. Although not an indicator that can clearly
show the complexity of the explanations, the tree length
provides a measure indicating the amount of information
one can expect from any explanation. Table 11 further shows
how adapting a trained MM2019X model to subsequent
models makes the explanations more lengthy, due to the
need of SGT to adapt the accumulated knowledge to the
new data. Therefore, as Table 11 shows, trees’ depth for

the MM2019X individual models (1st column) is maximum
28 and in average approximately 26. Training these models
further in subsequent scenarios, the depth of trees increases
consistently, and can increase considerably, up to 35 in the
worst case, and in average up to approx. 33 (last column).
It must be noted that the model increases considerably
its length when training MM20190622-0704 with samples
from M20190705, i.e. in MM20190622-0705, which is not
the case between other model “transitions”.

To measure the fidelity of mimic models, we measure
the accuracy of the predictions made w.r.t. the predictions
made by DQN. Specifically, we report on the accuracy per
delay option, in solutions with delay regulations (D), and
in solutions with combinations of delay regulations and
level capping measures (D+LC). The results are presented
in Table 12 and show the remarkable fidelity of the mimic
models to the DQN models.

Then, we gradually train a mimic model in the first
four scenarios, given the corresponding DQN models for
imposing delay regulations, for each of these scenarios.
Next we measure the fidelity of each mimic model to
the corresponding DQN models for ground delays (D)
and combination of delays with level capping measures
(D+LC). This is essential to produce interpretable models

Fig. 15 Box plots for delay regulations
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Table 8 Solutions with level capping measures

Scenario Final hotspots Affected flights

20190705 90 59.3

20190708 76 2.6

20190714 77 113.2

that can accumulate successfully knowledge from DQN
policy models, with high fidelity.

Results in Table 13 show that SGT manage, due to
their incremental learning abilities, to accumulate new
knowledge and provide very accurate results, also in
comparison to the fidelity of models trained per scenario
(Table 12).

Next, given the mimic model MM20190622-0705, we
measure the fidelity of that mimic model to the DQN models
for delay regulations (D) and combinations of delays with
level capping measures (D+LC) for each of the scenarios.
In so doing, we aim to show whether accumulating new
knowledge leads to reducing the accuracy of the mimic
model to previously seen scenarios, and whether the mimic
model can demonstrate satisfactory fidelity to unseen
scenarios. The results are presented in Table 14: These show
that indeed, mimic models accumulate successfully new
knowledge, as they consistently improve the accuracy to
seen scenarios while being trained to new ones, and they
do have the ability to generalize so as to provide highly
accurate results to unseen scenarios, i.e. to 20190708 and
20190717, in comparison to the accuracy of MM20190708
and MM20190717, respectively, shown in Table 12.

To further delve in the predictions made by the mimic
models, Table 15 reports on the mean absolute error, per
model,

considering the predicted Q̂ values from the mimic
model and the corresponding Q values provided by the DQN
model per delay option.

As results on absolute errors show, while the mimic
model is being trained accumulating new knowledge
from subsequent DQN models, the mean absolute error
(MAE) is being increased, with the exception of training
MM20190622-0703 with samples from M20190704: In this
case (MM20190622-0704) MAE is reduced, which shows
that the increase of mimic model size reported earlier
resulted to a good fit in the new samples.

9.5 Validation exercises with human operators

Validation experiments aim to qualitatively evaluate how
effective the “explanatory” capabilities of the automation
tools (i.e. DRL agents, with the mimic model) would be
in operational situations. The experiments were carried
out using a full, Human-in-the-Loop, interactive simulation

environment that allowed the automation tools to be
integrated in operational exercises where DCB measures
were required. To ensure that the situation was as realistic
as possible, the INNOVE Network Management simulation
platform2 was used to create validation scenarios for six
scenarios taken from traffic days in the July 2019 time
period. These days were selected since the summer period is
the most heavily loaded in the Spanish ATM system, and as
a result, the region experiences many hotspots. To respond
to those hotspots, the automation tools propose solutions,
that spread the demand from the overloaded sector(s) and
period(s) to other sectors and later periods that are less busy,
as described in Sections 6.2, 6.3, 6.4. Using a specially
adapted Flow Manager Position tool (the FMP client), the
DCB measures being proposed by the automation tools
are published in the emulation of the environment that the
Network Manager uses today, being simulated by INNOVE
– as a set of measures to flights (using delays that have
been assigned based on agents’ decisions). Human operators
then receive information on the problem and solutions in
parallel from the INNOVE (via the FMP client) and the
Visual Analytics (VA) tools.

Depending on the level of automation selected during
the validation exercise, the DCB process was either carried
out in collaboration with the human operators or fully
automatically, as follows:

In collaborative mode, the operator was able to review
the proposed solutions in a ‘what-if’ sandbox environment
before selecting part or all of the solution set and
publishing the proposed actions to implement the proposed
measures(s). Once published, the results of the selected
actions could be immediately seen in the FMP client traffic
demand charts (such as the one shown in Fig. 1).

In full automation mode, the solutions identified
by the automation tools were automatically converted
into the corresponding Network Manager requests and
were published to INNOVE without human intervention.
Thereafter the operators were required to consult the FMP
client traffic demand charts and additional explanatory
information provided via a co-located Visual Analytics (VA)
tools in order to develop an understanding of what had
happened, and why.

The purpose of the validation exercises was not
specifically intended to evaluate how the automation
components performed, although as already described,
a separate evaluation was carried out to see how the
automation tools performed in the chosen scenarios, and
under different training conditions. Instead, the main
objective was to try to evaluate how the information being

2Information about INNOVE is available at https://www.
eurocontrol.int/simulator/innove and https://www.isa-software.com/
innove-23-deployed-at-eurocontrol/

https://www.eurocontrol.int/simulator/innove
https://www.eurocontrol.int/simulator/innove
https://www.isa-software.com/innove-23-deployed-at-eurocontrol/
https://www.isa-software.com/innove-23-deployed-at-eurocontrol/
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Table 9 Solutions with delay
regulations and level capping
measures

Scenario Final hotspots Average delay Delayed flights Average delay

per flight per delayed flight

20190705 38.2 11.80 1357.5 58.17

20190708 8.9 11.05 1317.1 55.28

20190714 5.4 8.08 1360.2 40.48

gathered and published by the explanatory component (i.e.
the mimic model) could be best used through the advanced
VA tools to promote a high level of understanding and
situational awareness for the operators when the “black-
box” automation components were solving problems in
place of the human. In order to evaluate how effective
the explanatory components had been, a combination of
“over-the-shoulder” observation, post exercise de-briefs
and questionnaires were used to help measure levels
of understanding, emphasizing on confidence in the
system and situational awareness for the human operators.
Considering the number of operators involved in the
validation experiments (which was held over three days
in June at the research premises of the Spanish Air
Navigation Service Provider – CRIDA), we aimed at a
qualitative validation process. We must emphasize the high-
level of expertise of operators involved in the exercises and
thus, their informed feedback. The exercises provide some
interesting feedback, in particular relating to the levels of
explanation offered by the mimic model with the support of
VA tools.

In order to evaluate the effectiveness of the explanatory
components, a combination of “over-the-shoulder” observa-
tion, post exercise de-briefs and questionnaires were used

to help measure levels of understanding, levels of confi-
dence in the system and situational awareness for the human
operators.

Considering the number of operators involved in the
validation experiments (which was held over three days in
June at the research premises of the Spanish Air Navigation
Service Provider – CRIDA), the analysis was limited to a
qualitative validation process. Nevertheless, the expertise of
the participants in the domain was very high so all feedback
was of high value.

The exercises provide some interesting feedback, in
particular relating to the levels of explanation offered by the
mimic model with the support of VA tools.

Operators were given two days to become acquainted
with tools, performing training exercises with manual
operation for resolving hotspots or with the help of
automation tools to identify hotspots, to resolve DCB
problems and explore solutions with the VA tools. In total
8 exercises were finally performed in manual mode (i.e. as
it is done today), in collaborative and in automation modes,
allowing deep dive into the advanced features provided by
the VA tools.

It must be noted that, as the validation was being
performed with humans, but at a very low technological

Fig. 16 Box plots for delay regulations and level capping measures
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Table 10 Results from the
M20190622-0708 model Scenario Training Final Average delay Delayed Average delay

Episodes Hotspots per flight Flights per delayed flight

20190705 no training 42.6 13.94 1798.7 51.75

20190705 500 40.3 13.97 1792.5 52.03

20190705 1000 39.4 13.60 1752.7 51.81

20190714 no training 23.7 12.43 1997.5 42.17

20190714 500 5.0 13.40 2078.1 43.63

20190714 1000 4.3 13.03 2082.2 42.42

readiness level, it was not required to perform tests or
gather metrics that would be essential at a later stage
in the development of the automation and VA tools (e.g.
certification and safety testing prior to the operational
deployment).

The main findings regarding these exercises are summa-
rized as follows:

• Users indicated that while it was very interesting to use
the VA tools to explore the highly detailed information
regarding solutions and explanations during the famil-
iarisation (humans’ training) processes, once scenarios
were being executed in an operational context, the user
tended to consult these features considerably less than
during the training.

• However, despite this general observation, it was noted
that when solutions developed by the automation
tools were highly complex, and based on solutions to
multiple constraints (rather than ‘one-by-one’ which is
the typical approach used by operators on a daily basis)
and for a much larger region of interest (the automation
tools solved DCB problems for all of Spain, whereas

the human operator would focus only on their own area
– e.g. Madrid Area Control Centre), then the operator
did tend to consult the more detailed VA explanatory
features to try to better understand why a given situation
had occurred (e.g. a flight may have received a measure
because, although it did not participate in any hotspot
in the initial problem state, because it was involved in
hotspots that emerged due to measures to other flights).

• Detailed VA features were very useful during familiari-
sation with the tools, but users pointed out that these
were less likely to be consulted in operational use:
Building trust on the automated system is crucial for its
operational use, and this mainly depends on the quality
of the solutions provided (which however has to be built
via the appropriate explainability facilities).

Regarding the modes of exercises, the main remarks are
as follows:

• Manual mode: It is very difficult to manually solve
all issues, even if one considers only the Madrid
airspace, since, too many manual processes were

Fig. 17 Box plots for M20190622-0708 results in scenario 20190714
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Fig. 18 Box plots for M20190622-0708 results in scenario 20190705

required. Problems would have been solved by the tools
that the NM uses today and more complex problems
were difficult to solve 100% manually. Smaller/simpler
overloads were able to be solved by the human operator
in an efficient manner.

• Collaborative mode: Operators were able to solve more
complex hotspots using proposed solutions. However
if only a subset of proposed solutions was selected,
then solutions were not always successful: This proves
the necessity of the measures in solutions, but also
the complexity of solutions and the need of solutions
traceability, as part of the explanations provided.

• Automation mode: Solutions proposed for most of
the problems and for low/medium overloads worked

efficiently. However, for high overload or overload for
a sustained period, solutions created very high delay. In
practice today heavy overloads are solved by additional
measures (e.g. airspace configuration changes).

Furthermore, operators indicated that:

• A higher level of interaction with the automation tools is
required, so as to be able to select a subset of measures
for some of the flights, review the situation and
proceed with additional solutions for those issues that
remain.

• More aggregated interpretations of agents’ decisions
would be beneficial and would help them to increase
their confidence to the solutions proposed, mastering

Fig. 19 Histogram of
M20190622-0708 distribution
of delays in 20190714
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Fig. 20 Histogram for
M20190622-0708 distribution of
unresolved hotspots in 20190714

the inherent complexity, as solutions may be due to
complex phenomena that are hard to be traced.

Overall, automation tools brought a shift to the operators’
paradigm for resolving DCB problems. Solutions proposed
by the automation tools were disruptive (in terms of the
solutions operators are used to, today) due to the spatial
and temporal extent in which the automation tools operate,
and due to the inherent complexity of the DCB process in
that scale of operations. Explanations at a fine granularity
and scale provide useful information that operators can use
offline (e.g. in the training process), given ample time. In the
operational process, interpretations should be aggregated at
a more appropriate level (this level needs to be investigated
and specified), facilitating comprehensibility, mastering of
complexity and tracing of solutions.

Table 11 Depth of SGT model

Models

Delay MM20190622 MM20190622 MM20190622 MM20190622

option -0703 -0704 -0705

0 25 28 35 35

1 27 29 31 33

2 24 26 30 32

3 25 28 32 34

4 26 29 32 34

5 25 27 31 33

6 25 27 33 34

7 24 26 31 32

8 28 31 33 33

9 26 30 35 35

10 26 27 29 31

10 Conclusions

In this work we address the challenging issues of
scalability and complexity towards advancing automation
in real-world multiagent settings with thousands of agents,
aiming to (a) compute qualitative solutions to congestion
problems that arise naturally in the Air Traffic Management
domain whenever demand of airspace use exceeds capacity,
resulting to “hotspots”; and (b) provide explanations
on how individual agents’ decisions jointly affect their
common setting.

Specifically, this paper (a) demonstrates how DQN can
be used to address scalability in complex large-scale multi-
agent settings, providing a policy model for agents to
jointly decide on different types of hotspot resolution
measures; (b) proposes the use of Stochastic Gradient Trees
to build interpretable models that mimic the decisions
of the well-trained DQN model, providing explanation
content for agents’ in fine granularity and scale; and (c)
proposes visualization methods and visual analytic tools for
rendering and exploring explanations content and solutions,
addressing the scale of the multi-agent task, and the
complexity of the problem.

Table 12 Accuracy of predictions achieved by models trained on
individual days

Day Mimic Model D D+LC

20190622 MM20190622 96.57 94.48

20190703 MM20190703 94.11 97.56

20190704 MM20190704 90.01 92.70

20190705 MM20190705 92.76 95.96

20190708 MM20190708 94.65 92.38

20190717 MM20190717 89.54 94.21
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Table 13 Accuracy of models trained gradually

Day Mimic Model D D+LC

20190622 MM20190622 96.57 94.48

20190703 MM20190622-0703 98.21 97.37

20190704 MM20190622-0704 95.77 94.01

20190705 MM20190622-0705 96.40 96.75

Major conclusions of this article is that multi-agent
DQN incorporating appropriate extensions and following
CTDE can scale up to the number of agents that operate
in an airspace, providing qualitative solutions to resolving
hostpots in heavy traffic days with mixtures of demand
measures. Furthermore, experiments show that DQN can
learn models that accumulate knowledge while being
trained gradually in different scenarios, to a certain extent:
these models do need further training towards refining
the learned policies for the needs of scenarios to which
they apply, balancing between training time and quality of
solutions offered. Further work on this, aims to (a) show
how these models can be learnt so as to accumulate new
knowledge successfully, without deteriorating performance
in scenarios to which they have already being trained,
(b) improve their generalization abilities to reduce further
the additional training needed before being applied to any
scenario, (c) further improve our results by incorporating
explicit inter-agent communication.

Regarding explainability, SGT prove to learn faithfully
the DQN policy, while accumulating knowledge success-
fully as they are gradually being trained to subsequent
DQN models: This allows building interpretable models
incrementally, without reducing the fidelity of the models
and the quality of explanations. Further work on this con-
cerns using SGT in an online manner, exploiting the trained
DQN incrementally, offering an inherently explainable deep
reinforcement learning method.

However, explainability should be improved, both in
providing explanation content, as well as in visualizing that
content, so as to provide interpretations in more coarse

Table 14 Accuracy of MM20190622-0705 to all scenarios

Day Mimic Model D D+LC

20190622 MM20190622-0705 92.76 93.00

20190703 MM20190622-0705 95.95 97.49

20190704 MM20190622-0705 92.55 92.08

20190705 MM20190622-0705 96.40 96.75

20190708 MM20190622-0705 94.18 92.11

20190717 MM20190622-0705 92.11 95.33

Table 15 Mean absolute error of SGT predictions

Models

Delay MM20190622 MM20190622 MM20190622 MM20190622

option -0703 -0704 -0705

0 1.27 1.85 1.27 2.53

1 1.04 1.93 0.85 3.21

2 0.94 1.44 0.73 2.49

3 0.94 1.67 0.79 2.51

4 0.98 1.61 0.82 2.38

5 1.08 1.86 0.86 3.11

6 1.04 1.75 0.86 2.77

7 1.05 1.83 0.91 2.75

8 0.92 1.46 0.82 2.34

9 0.97 1.90 0.85 2.67

10 0.91 1.86 0.73 2.77

granularity and at a large scale regarding spatial, temporal
and societal dimensions, explaining the complexity involved
in computing solutions without challenging the human
cognitive abilities to the extent that we do now.
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