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Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian
expression system for recombinant expression of therapeutic proteins in the
pharmaceutical industry. The development of high-yield stable cell lines requires
processes of transfection, selection, screening and adaptation, among which the
screening process requires tremendous time and determines the level of forming highly
productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major
question prior to industrial manufacturing. Cell line development (CLD) is one of the most
critical steps in the production of recombinant therapeutic proteins. Generation of high-
yield cell clones is mainly based on the time-consuming, laborious process of selection and
screening. With the increase in recombinant therapeutic proteins expressed by CHO cells,
CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic
principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation
and improvement of productivity, clonality and stability. With the development of modern
analysis and testing technologies, various screening methods have been used for CLD to
enhance the selection efficiency of high-yield clonal cells. This review provides a
comprehensive overview on preliminary screening methods for high-yield cell pool
based on drug selective pressure. Moreover, we focus on high throughput methods
for isolating high-yield cell clones and increasing the productivity and stability, as well as
new screening strategies used for the biopharmaceutical industry.

Keywords: Chinese hamster ovary cells, screening system, recombinant therapeutic protein, semi-solid medium,
high-yield clone

INTRODUCTION

Chinese hamster ovary (CHO) cells are one of the most commonly used host cells for the industrial
production of recombinant therapeutic protein drugs. Among the top 10 drugs in global sales in
2019, eight are biopharmaceuticals, and seven are monoclonal antibodies produced in CHO cells
(Walsh, 2018; Bhutani et al., 2021), mainly due to its ability to express various recombinant proteins
with a post translational modification pattern similar to that of the proteins from human cells
(Harcum and Lee, 2016). The genome data of CHO cells have a similar proportion of glycosylation-
related transcripts to human cells (Xu et al., 2011). The use of CHO cells can also avoid human virus
infection and further improve product safety.

The expression of recombinant therapeutic proteins for clinical and commercial production
requires the stable integration of gene of interest (GOI) into the CHO genome. The most common
approach is to randomly integrate GOI into the host genome as part of a plasmid and then screen
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transgenic cells (Noh et al., 2019). The homogenous levels of
protein expression between individual transfected cells are rarely
observed due to factors such as cell-to-cell heterogeneity,
difference in gene copy number and chromosomal
environment (West and Fraser, 2005; Lee et al., 2019). The
heterogeneity caused by random gene integration can be
alleviated by single-cell sorting, which contributes to the
consistency of product quality and manufacturing. Another
reason for single-cell sorting preference is that after
transfection and selection, high-yield clones appear
infrequently in heterogeneous cell populations (Lattenmayer
et al., 2007; Chusainow et al., 2009).

In addition to the unpredictable effects of random integration,
CHO cell lines and most immortalized cell lines are subjected to
highly clonal variation in genotypes and phenotypes (Pilbrough
et al., 2009; Lewis et al., 2013). This trait is not desirable in
industrial production because it complicates the screening of
sufficient clones to avoid heterogeneity. Given that the expression
of target protein consumes energy and resources from the host,
the growth of low-yield cell lines with different expression levels is
generally faster than that of high-yield cell lines, further leading to
a gradual decrease in their expression level (Zeyda et al., 1999).
Isolation and expanding individual high-yield cells into a
population of highly expressing cells with clonal properties are
necessary. Screening can take advantage of modern technology
and robotics; however, the development of cell line production is
still a time-, labor-, and capital-intensive effort that typically takes
6–12 months. Clonal screening and selection involve many
analytical screening techniques to ensure the selection of high-
yield clones that produce recombinant proteins with high titers,
good quality, and stability without productivity loss over time
(Ritter et al., 2017).

Therefore, advances in cell line development (CLD)
technology are critical to support the rapid development of
recombinant protein products. Improvements in development
processes and the ease of producing high-yield cell lines in
research conditions contribute to the rapid advancement of
biosimilars and innovative products. In the production of
innovative recombinant therapeutic protein drugs, shortening
the time to market is also beneficial for biopharmaceutical
manufacturers to maximize the profitability of the biologic
product during the limited patent exclusivity period. Advances
in CLD technology focus on the improvement of protein
expression and screening technologies for high-yield clones. In
this review, the advances in high-yield cell clone screening and
evaluation techniques in cell clone sorting are summarized and
assessed for the industrial production of therapeutic
protein drugs.

CELL POOL SELECTION MARKERS AND
SCREENING METHODS
Screening Systems Based on Metabolic
Pathways
The main challenge in CLD for recombinant protein production
is to generate and isolate rare high-yield clones in a short period

of time from thousands of low-yield or unstable clones. The two
most commonly used expression systems are based on metabolic
pathway screening methods to establish stable, high-yield
recombinant CHO cell lines: dihydrofolate reductase (DHFR)
system and glutamine synthetase (GS) system (Table 1). DHFR
catalyzes the conversion of folic acid to tetrahydrofolate, a process
required for the biosynthetic pathway that produces glycine,
purine, and thymidylate (GHT). The DHFR system can be
used in CHO cell mutant strains, such as DXB11 and DG44,
in which the DHFR gene is mutated or deleted. The growth of
such nutrient-deficient cell lines requires a medium containing
GHT or transfection of DHFR. In the DHFR system, GOI is
generally transfected into host cells with DHFR gene in the same
expression vector.

The transfected cells are cultured in the medium without
GHT, and the surviving cell pool contains GOI and DHFR
genes in their genomes. When the cell medium contains
methotrexate (MTX) (Figure 1), the dihydrofolate reductase is
inhibited, and the gene is amplified through feedback regulation.
All genes in the upstream and downstream range of 100–1,000 kb
are amplified accordingly (Urlaub et al., 1986). Therefore, GOI
can be amplified by inserting within the range of this site. The
DHFR system is widely used because of its high efficiency in gene
amplification. The first bottleneck in isolating high-yield cell lines
is the selection of clones with the best productivity and growth
rates from the amplified cell pool. These characteristics are partly
dependent on the copy number. Standard methods include
isolating individual clones by limiting dilution and cloning
cylinders (De et al., 2004; Quiroz and Tsao, 2016; Zhou and
Shaw, 2018). Assessment of the growth rate of each clone and the
productivity of target protein revealed that the process is time-
consuming and thus hinders the development of new
biopharmaceuticals. Two different strategies can be adopted
for selecting high-yield clones. The first approach involves
isolating individual clones from the first concentration level of
MTX selection, then placing each clone in a relatively high
concentration level of MTX selection, and finally isolating the
individual clones again. Subcloning can also be performed to
optimize homogeneity (Kim et al., 1998). The second strategy
involves pooling clones at each stage of MTX selection and
isolating single clones from the final MTX resistance library. A
study compared the effectiveness of the two strategies by
examining the antibody productivity of 30 parent clones and
10 parent cell pools after undergoingMTX amplification program
(Jun et al., 2005). High-yield clones were isolated from the cell
pool at an antibody titer of 5 μg/ml within 15 weeks. After
approximately 17 weeks, high-yield cell clone strains were
isolated from 30 parent clones, with the highest subclone
reaching a titer of 17 μg/ml. The individual cloning strategy
proved to be labor intensive and time consuming due to the
additional cloning steps, and the scheme was not improved by
incorporating MTX in the initial selection of transfectants. The
cell-pool strategy is less labor intensive, but the highest producers
are approximately one third of those isolated using the individual
cloning strategy. Therefore, a selection strategy based on
individual clones is favored for establishment of high-
producing CHO clones because it is more efficient to perform
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cell cloning at the initial selection stage of parental cell clones
(Imanaka and Aiba, 1981). The first-round pool selection at the
outset followed by LDC and the pool selection using higher
concentration MTX might give higher titers (Noh et al., 2013).

The GS system utilizes the GS gene as a selection marker. GS
synthesizes glutamine from ammonia and glutamic acid in cells,
which is then hydrolyzed by adenosine triphosphate (ATP) to
provide energy. L-methionine sulfoximine (MSX), a GS inhibitor,
was added into a culture medium without exogenous glutamine
(Figure 1). The results showed that the GS gene and its associated

target genes were amplified effectively, thus improving the
expression level of target genes. The advantages of this system
are as follows. 1) The CHO-K1 cell line with genetic defect is not
needed as the host cell, while GS-knockout cell line is a better
expression platform. 2) CHO-K1 cells are easy to culture and
grow faster. 3) Glutamine need not be added in the culture
medium, thus avoiding the problem of high ammonia level in
the culture system caused by glutamine decomposition, reducing
the difficulty of process control, improving cell fermentation
density, and prolonging cell survival time. Wild-type CHO

TABLE 1 | Common selection markers used in cell line development.

Selection markers Screening
reagents

Selection principle Concentration
range

DHFR MTX A folic acid antagonist that causes cytotoxicity by inhibiting DHFR activity and thus nucleic
acid synthesis

25–1000 nM

GS MSX Inhibits glutamine synthetase gene 25–500 μM
Puromycin acetyltransferase Puromycin Aminoglycoside antibiotics that block protein synthesis in mammalian cells by interfering

with ribosome function
10–50 μg/ml

Blasticidin deaminase Blasticidin A nucleoside antibiotic that specifically inhibits protein synthesis in prokaryotes and
eukaryotes by interfering with the formation of peptide bonds in ribosomes

5–50 μg/ml

Aminoglycoside
phosphotransferase

Geneticin Aminoglycoside antibiotics, one of the most commonly used resistance screening agents
for stable transfection

200–700 μg/ml

FIGURE 1 | Illustration of the typical development of a mammalian cell line for recombinant protein manufacturing.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 8584783

Yang et al. Screening for High-Yield Clones

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


cells have endogenous GS genes that can be selected by adding
MSX at low levels (Bebbington et al., 1992; Brown et al., 1992).
CHO-K1 cell line was first used in the GS system (Cockett et al.,
1990). GS-knockout cell lines are also developed to improve the
efficiency of cell line screening, and the use of the GS-knockout
CHO host cell line facilitates the rapid generation of high
producing clones (Fan et al., 2012; Noh et al., 2018). In recent
years, the genome editing tools including Clustered Regularly
Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-
associated protein 9 (Cas9) and zinc finger nucleases (ZFNs)
have been used to generate GS-knockout cell lines with desired
growth and recombinant protein expression characteristics (Grav
et al., 2017; Feary et al., 2021; Huhn et al., 2021). The DHFR
system requires a long time for gene amplification through the
gradual increase in MTX, whereas the GS system can achieve
sufficient expression levels through a round of selection and
amplification, thus reduce the total time required for cell line
generation (Barnes et al., 2000). The workflows and timelines for
DHFR and GS system are shown in Figure 2. In addition, the GS
system diminishes the accumulation of ammonia in the medium
because overexpressed GS catalyzes the conversion of glutamic
acid and ammonia to glutamine (Wurm, 2004).

The high expression of GS system depends on the existence of
MSX to a certain extent, but MSX is not conducive to industrial

production. Mutants with low activity were obtained through GS
modification. Hence, the CHO cell lines with low activity of GS as
the screening marker could efficiently express antibodies after
MSX removal (Lin et al., 2019). As an attenuated selective marker
produced by the CHO cell line, GS mutation R324C can
substantially increase the antibody production in the stable
transfection pool and obtain stable clones with high antibody
productivity (Lin et al., 2019). In addition to DHFR and GS
systems, other screening systems based on defects in different
metabolic pathways are currently being developed. In CHO cell
lines lacking the proline metabolic pathway function, the
pyrrolin-5-carboxylate synthase gene is applied as a selection
marker to allow the use of proline-free medium for selection (Sun
et al., 2020). CRISPR-Cas9 is employed to knock out the genes
encoding the last two steps of a bifunctional enzyme that catalyzes
the de novo synthesis of pyrimidines and purines (5-
aminimidazolium-4-formamide ribosylnucleotide transferase/
IMP cyclic hydrolase [ATIC], respectively). The survival of
these bistrotrophic cells depends on the availability of purine
and pyrimidine sources or the transfection and integration of the
open reading frame that encodes these two enzymes. One of these
double trophic deficiency forms is used to select a stable
transfector carrying the target protein. The transfected clones
could stably produce large quantities of recombinant proteins.

FIGURE 2 | The workflow and timeline for DHFR and GS system.
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This double trophic deficiency provides a rapid and effective
selection method for the separate or simultaneous transfer of
multiple target genes into CHO cells by using readily available
commercial mediums without purine and pyrimidine (Zhang
et al., 2020). Polyamine plays an important role in cell
proliferation, DNA replication, transcription, and translation
(Igarashi and Kashiwagi, 2021). Depletion of putrescine and
spermine in cells resulting in the stagnation of cell growth and
ultimately death. The CHO-K1 cells of a serum-free medium
might require supplementation of putrescine because these cells
cannot facilitate the polyamine production of the first kind of
enzyme, arginase, based on their phenotype. A proline-based
selection system was also constructed and could obtain stable and
high-yield cell lines by screening cells in the medium without
L-ornithine and putrescine (Sun et al., 2020).

Screening Systems Based on Exogenous
Resistance Genes
Another selection method is the use of antibiotic-based resistance
genetic markers that confer resistance to antibiotics, such as
Geneticin, Zeocin, Hygromycin B, and Puromycin (Capecchi,
1989) (Table 1; Figure 1). Resistance gene screening is usually
combined with traditional limited dilution method to obtain
monoclones, and high-yield clones are further identified by
ELISA and Western blot. The most common traditional
method for screening monoclones is the limited dilution
method, which requires multiple rounds of subclones to
ensure monoclonal properties. Given that the newly
transfected cells are highly heterogeneous, the cell density
must be increased in the first step to maximize the number of
cells within a single wells. Screening is usually performed in a 96-
or 384-well plate. In the first screening step of subclone, the newly
transfected cells undergo limited dilution at an average cell
density of 2,500 cells during initial plating (Borth et al., 2000).
After a period of pressure screening, the surviving cells grow and
form a cell population. A single cell population in the well is called
monoclonal cell. If the formation of monoclonal cells in the first
round is insufficient, then a second round subclone is selected
from the cells of the selected monoclonal in the first round. This
step remarkably reduces the heterogeneity of cells in the second
round. A stable monoclonal cell could then be obtained after a
period of pressure screening with a low plating density in the
second round. Although limited dilution can be used as an
effective method, its several limitations prevent it from being a
viable screening technique for high-yield clones. First, this
technique is a time-consuming and labor-intensive process
with a long screening cycle. For cell lines expressing non-
secreted proteins, the cells are usually permeabilized or
disrupted, ELISA can be performed, and downstream
experiments are required to determine the productivity of each
clone cell. The whole process can take up to 8 months due to the
considerable additional work required to fully characterize each
monoclonal cell line.

In recent years, the method of antibiotic resistance genes has
been successfully optimized for the selection of high-yield cell
lines. One approach is to weaken antibiotic resistance genes on

plasmids containing target genes (Bandaranayake and Almo,
2014), thereby allowing the selection of high-yield cell lines at
low doses of selective antibiotics and avoiding the problem of
slow cell growth that occurs in the presence of high antibiotic
doses (Sautter and Enenkel, 2005). Weak promoters, such as
herpes simplex virus (HSV) promoter, had been applied to
achieve this purpose (Niwa et al., 1991). Another approach is
to associate the target gene with the resistance gene through
polycistronic elements, such as the most commonly used internal
ribosome entry site (IRES) and 2A elements, to minimize non-
expressed clones and achieve stable monoclonal antibody
productivity without gene amplification (Ho et al., 2012; Ho
et al., 2013).

In addition, different antibiotic resistance genes have various
selection effects. Lanza et al. (2013) identified the order of
bleomycin > hypopycin B > neomycin > puromycin by
analyzing the expression of green fluorescent protein (GFP) in
two commonly used human cell lines. Although these simple
methods are useful and the materials are easily obtained,
antibiotic selection could reduce the rate of cell growth and
even result in morphological changes. Only a few reports
comprehensively compared the efficiency and effect of
different selection systems in CHO cells (Lanza et al., 2013;
Yeo et al., 2017). More advanced selection methods should be
developed to obtain additional high-yield cell lines.

SCREENING METHODS OF HIGH-YIELD
MONOCLONAL CELLS
Screening Methods Based on Fluorescence
Signals
Flow cytometry has rapidly become one of the most widely used
tools to select cells with desirable phenotypes. In particular,
fluorescence-activated cell sorting (FACS) classifies cells based
on the determined fluorescence level (Figure 1). One of the most
desirable features of flow cytometry is its high throughput
capability to analyze millions of cells per minute, thus saving
time, manpower, andmoney/resources (Kumar and Borth, 2012).
The sorting rate is determined by multiple factors, such as the size
and density of cells. In addition to being a tool for selecting highly
expressed variants, flow cytometry can also be used to analyze cell
growth andmetabolism, both of which can affect cell productivity
(Hinterkörner et al., 2007).

The expression level of the target protein must be
characterized by fluorescence signals to successfully utilize flow
cytometry. The available methods are generally divided into two
categories: 1) GOI co-expression with reporter gene whose
expression levels in different clones can be used to determine
GOI expression levels, and 2) detection of secreted GOI on or
near the surface of a single producing cell by fluorescently labeled
antibodies specific to GOI. Reporter-gene expression is usually
maintained at a lower level than GOI expression to reduce the
burden of reporter-gene expression on cells. This condition can
be achieved by using a defective promoter, a weak Kozak
sequence, or by placing internal IRES between the reporter
gene and GOI (Cha and Bentley, 2007). Common reporter
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genes include green fluorescent protein (GFP), yellow fluorescent
protein (YFP), and red fluorescent protein (RFP) (Sleiman et al.,
2010). GFP is toxic to some cells at high concentrations and
therefore reduces the growth and stability of generative cells
(Zeyda et al., 1999). Cell productivity is positively correlated with
the fluorescence intensity of GFPS65T, an eGFP mutant.
Compared with continuous MTX selection, three rounds of
separation (sorting is 2 weeks after each round of growth)
produce more than six times the productivity of cloning
(Meng et al., 2000). Although the time required is the same
for artificial and cell sorting, the workload is greatly reduced
because ELISA is not required for high-yield cell strain selection.
In addition, further selection pressure can be applied in
combination with cell sorting. This finding has been verified
in CHO cells that co-express the metallothionin–green
fluorescent protein fusion protein and target protein; due to
the combination of metallothionin-based gene amplification
with FACS, high-yield cell strains can be isolated within
4 weeks (Bailey et al., 2002).

Most biological drugs are monoclonal antibodies and have
heterotetramer structures composed of isomolar light and heavy
chain polypeptides. Hence, the efficiency of antibody assembly is
largely dependent on the expression ratio of these chains. The
ratio of heavy to light chains affects the final antibody production
titer. Therefore, selecting the cell lines with the optimal ratio of
heavy to light chains is crucial for monoclonal antibody assembly
(Schlatter et al., 2005). FACS assay based on heavy- and light-
chain assemblies provided insights into the optimal antibody
expression in CHO cells by first performing a two-color sorting of
green fluorescent protein and yellow fluorescent genes that fused
with recombinant antibody heavy- and light-chain genes,
respectively (Sleiman et al., 2010). Fluorescent fusion antibody
chains are co-expressed by IRES-based vectors. Dual fluorescent
clones selected by FACS showed a 38-fold increase in antibody
production within 12 weeks relative to that of their parent pool.

Another example of a fluoresce-based automated system
technology is the combination of cell growth in semi-solid
medium with automated fluorescence detection and screening
by automated cell pickers, such as clonal fluorescence microscopy
(Clonepix). Roy et al. (2017) developed a method to analyze the
expression levels of individual immobilized cells by growing cells
in semi-solid medium, providing the nutrients necessary for cell
growth, and adding fluorescently labeled antibodies to the surface
of the semi-solid medium. The cells must be characterized by flow
cytometry in the early cloning selection stage to identify cell lines
with high productivity potential and help eliminate unstable cell
lines. The unique combination of clonographic fluorescence
screening and flow cytometry methods contributes to the
efficient isolation of clone cell lines at high productivity within
15 weeks and their possible application to NS0 and CHO cells.
One of the greatest advantages of semi-solid medium technology
is that high-yield clones can be isolated using an automated cell
selector after productivity analysis by an imaging system. Hence,
the time and labor required to select high-expressing variants are
reduced, and the selection of high-yield cells is better than that in
traditional manual methods. Compared with sorting via flow
cytometry, the main advantage of this method is that the resulting

fluorescent signal is an integral part of the productivity during
clone development. In addition, flow cytometry is an indirect
measure of the secretory rate during clone sorting.

The Clonepix system detects fluorescence by adding
fluorescence-bound “clone detection” reagents (Figure 1). Hou
et al. (2014) used the CloneTable to develop stable, highly
expressed clones with specific productivity exceed 20 pg/cell/
day (pcd) after 4 weeks. CloneTable evaluates each clone based
on user-defined parameters such as size, shape, fluorescence, and
position. Among the 384 clones selected from 96-well plates, 104
were identified as having industry-relevant estimated
productivity, namely, higher than 20 pcd. This system (such as
tables and cloning cells based on fluorescence accelerometer) is
provided by the automation, and the cells can grow for 2–3 weeks
in the semi-solid medium without the fact of subculture. As a
result, the number of clones to be filtered is increased, and the
amount is lower than that in the traditional artificial selection.

Screening Methods Based on Site-Specific
Integration
The influence and heterogeneity of random integration sites of
target genes on protein expression is one of the important reasons
for increasing the workload of screening. Target gene integration
has the potential to reduce clonal variation and thus accelerate the
selection of high-yield CHO cell lines (Kelley, 2020; Sun et al.,
2020). Integrating target genes into preselected genomic sites
enables the predictable generation of isogenic cell lines with
consistent phenotypes and expression level (Grav et al., 2018).
After site-directed integration in mammalian cells was reported
in the late 1980s (Thomas and Capecchi, 1987) and early 1990s
(O’Gorman et al., 1991; Schlake and Bode, 1994), several methods
for targeting gene integration have been developed. These
methods utilized site-specific recombinases such as CRE, FLP,
and BXB1 for site recombination, Recombinase mediated cassette
exchange (RMCE), or programmable nucleases such as CRISPR/
Cas9 (Wirth et al., 2007; Turan et al., 2013; Hamaker and Lee,
2018). However, this strategy has not been used on an industrial
scale largely due to the low specific productivity of the target
protein resulting from the single-copy GOI integration and the
challenge of finding highly active transcription sites (hot spots) in
the genome (Baumann et al., 2017; Hamaker and Lee, 2018).

Several companies have published reports of using the RMCE
system to produce monoclonal antibodies. In 2013, Genentech
established a CRE based monoclonal antibody expression
platform for RMCE by screening transcriptional active sites in
the CHO genome (Crawford et al., 2013). Inserting a single
expression cassette with heavy and light chain genes can
produce stable cell lines for five different mAbs expression
levels with a repeatable qP of 3–4 pcd. Inserting two
monoclonal antibody expression cassettes into the same
genomic site doubles the specific productivity to a maximum
of 10 pcd. Pfizer developed FLP-based RMCE and BXB1-based
RMCE platforms for the expression of single-copy monoclonal
antibodies to the qP of 3 pcd (Zhang et al., 2015; Inniss et al.,
2017). In 2020, Genentech showed that in the RMCE system,
monoclonal antibodies can be expressed at a qP of 20–50 pcd by
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integrating multiple copies of heavy and light chains into a single
genomic site (Carver et al., 2020). qP can be improved by the site-
specific integration of multiple copies of the target gene at
multiple high transcriptional activity site (Sergeeva et al.,
2020). With the identification of many highly transcriptional
active sites, site-specific integration may be the most effective and
rapid method for the selection of high-yield clone cell lines.

Label-Free Screening Methods Based on
Cell Surface Display Technology
Screening methods using resistance genes or report gene
negatively affect the host cell metabolism. The introduced
gene, other than the target gene, will occupy the cell protein
synthesis resources, resulting in the decrease in target protein
expression. With the progress on instrumental analysis methods,
many high-yield clonal screening methods without labels have
been established.

By combining surface plasma resonance imaging (SPRI) and
self-sorting micropore technology, Abali et al. (2017) realized the
real-time monitoring, tracking, and quantification of antibody
secretion of a single cell without labeling and separated the
selected cells by pressing cells out of micropores using the
micropore position coordinates obtained by SPRI. The target
cells can be removed aseptically from the array of micropores for
further culturing. After overnight culturing, thousands of cells
can be screened out in hours rather than weeks.

Chakrabarti et al. (2019) used a simple living cell staining
method to detect mitochondrial membrane potential, a key
indicator of cell metabolic activity, for the identification of
cells with high productivity in the FACS step. The intensity of
the burst fluorescence signal is related to the titer of batch
culturing of producing clones, and high-yield clones are
selectively enriched via the cell sorting based on the optimal
ψM staining strength from the non-monoclonal cell pool. These
clones are phenotypically stable for the production of
recombinant proteins.

In addition to establishing stable CHO cell lines that produce
therapeutic recombinant proteins by antibiotic and/or metabolic
selection, Muralidharan–Chari et al. (2021) reported a new
technique, namely, PT Select, which utilizes siRNA to clone
upstream of GOI and generate functional PT Select-siRNAs
through ligation to achieve cell aggregation. Cells with stable
integration of GOI are selected and isolated from the cells without
GOI by transfecting CD4/siRNA gene regulated by PT Select-
siRNAs and using the variable expression of CD4 on the cell
surface. PT Select quickly establishes a cell pool with the same
stability and productivity as the pool generated by traditional
methods. This pool can be further used to monitor productivity
changes caused by clonal heterogeneity and identify single low-
yield cells.

Traditional static batch culturing screening is not related to
suspension batch culture used in production and therefore has
minimal predictive utility. Small batch screening of feedstock in
suspension culture is associated with the bioreactor process, but
the number of clones that can be manually screened is limited.
When combined with automated liquid handling, small culture

systems, such as shaken deep-well plates, offer an effective way to
screen many clones. Wang et al. (2018) developed a deep-well
plate culture platform with a shaking table to effectively screen
384 clones using the suspension fed-batch method. The set-up
was equipped with an automated liquid handling system that
integrates cell counting and protein titer measurement
instruments. Stirring speed and culture volume are the key
factors that correlate deep suspension culture with flask
culture. With this automated system, the number of clones to
be screened is five times more than using manual batch flask or
flask culture tube. Statistical analysis in this study showed that
384 is the optimal number of clones for screening, with a 99%
probability that six clones in the 95th productive percentile are
included in the screening process (Wang et al., 2018). Cell lines
with production levels greater than 6 g/L can also be identified.

Although most RNAs are spliced into transcripts that encode
secretory proteins, Aebischer-Gumy et al., 2020 described a
mammalian expression construct (SPLICELECT™) that allows
a portion of secretory proteins to be redirected to the cell surface
by using selective splicing. However, a weakly spliced donor site
produces a secondary transcript that encodes another C-terminal
transmembrane region. In their study, the cell surface in stable
cell lines is correlated with the levels of target secreted proteins
and heterodimer in the case of bispecific antibodies to regulate the
level of cell surface display and secretion in an independent
manner. In addition, the constructed antibody could be used
for the rapid screening of multiple antibody candidates in the
transient post-transfection binding test. On the basis of the
correlation between product quantity and quality of secretory
and membrane display products and the flexibility of the
constructed plasmid in terms of cell surface display/secretion
levels, SPLICELECT is a valuable tool with many potential
applications including industrial cell line development and
antibody engineering.

OTHER SCREENING METHODS

Novel cell line screeningmethodsmostly rely on high-throughput
technology to improve the screening efficiency. Moreover, several
high throughput methods for CLD are listed, and Tejwani et al.
(2021) give more details in the development of these technologies.

Cyto-Mine
In recent years, with the development of microfluidic technology,
the single cell separation by water-in-oil has become more and
more mature. It provides a completely different innovative
technology platform for improving the traditional method of
separating single cells. The sphere fluidics produced by Cyto-
Mine® is a high-throughput microfluidic single-cell analysis and
screening system, which uses the droplet wrapping technology to
quickly separate and wrap thousands of single cells in a short time
to form hundreds of skin liters of small droplets, making each
droplet an independent system for cell culture and detection of
single cells (Josephides et al., 2020). By detecting the expression
and secretion level of single cells, the cells with the highest
antibody expression level can be quickly detected and screened
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within a few hours, and then sorted into a separate well in the
culture plate. In the whole process, the cells are wrapped in
droplets to avoid the influence of shear force from the fluid, which
ensures a large number of valuable single cells are easier to form
monoclonal antibodies. In addition, the Cyto-Mine platform also
integrates high-speed imaging technology to collect images of
droplets flowing in microfluidic pipes. By analyzing the number
of cells in the droplet, it can automatically provide evidence for
screening the origin of monoclonal cells. The above processes are
integrated into one system, and the whole process only takes a few
hours. It can easily complete 1~2 rounds of screening processes in
one working day, thus greatly saving time and cost for
pharmaceutical discovery and production.

OSCAR
New technologies such as the OSCAR expression system have
emerged to provide faster development of high-yield stable cell
lines and reduce cost than traditional systems for accelerated
commercialization (Costa et al., 2012). Evaluation on the
monoclonal antibody in CHO-K1 cell line transfected with
OSCAR revealed that this technology is relatively quick,
simple, and has no negative effect on cell growth
characteristics. However, the value of this approach in the
biopharmaceutical industry remains to be explored.

Verified In-Situ Plate Seeding
Verified In-Situ Plate Seeding (VIPS) was developed by Solentim
and is combined with Cytena single cell printer instruments,
which combine cell seeding with microscopic imaging to ensure
the single cell deposition and origin of derived clones (Yim and
Shaw, 2018; Pekle et al., 2019). Compared with the limiting
dilution single-cell cloning workflow, this strategy dramatically
reduces the number of microtiter plates needed for the single-cell
cloning of industrial cell lines by combining single-cell printing
and plate imaging with manual image verification. Therefore, the
number of acquired and stored high-resolution images is reduced.

Beacon Platform
The Beacon platform from Berkeley Lights utilizes nanofluid and
opto-electropositioning technology for the culturing,
manipulation, and characterization of thousands of cells in
parallel on a single chip via software-controlled operations (Le
et al., 2018; Le et al., 2020; Tihanyi and Nyitray, 2020). Compared
with the FACS-enabled microtiter plate-based workflow, the
Beacon platform could generate comparable clonal cell lines
with reduced resources. Recently, Opto Cell Line Development
2.0 was developed by Berkeley Lights. It is used to screen and
select clones whose titer is 1.5–3 times higher than that selected by
traditional clone selection technology. From the moment the cells
are cloned into the NanoPen™ chamber, they can be intuitively
tracked through on-chip culture, measurement and clone
recovery for many days. The top level clones can be recovered

with more than 99% monoclonal assurance and an advanced
packet containing a separate visual record of all clones.

CONCLUSION AND FUTURE
PERSPECTIVES

In recent years, the progress in the field of life science has
continuously optimized the process of CLD. The key steps to
optimize the integrated CLD process are as follows: Set the
workflow and then use gene amplification methods for clonal
selection to select cell lines suitable for this workflow. The
synthetic vector technology is used to improve the expression
level of recombinant proteins. Although the selection of high-
yield clones remains a challenging task, the choice of optimal
cell lines has been simplified using more advanced
techniques. This selection process is important in the
continuous journey of unraveling the cellular mechanisms
necessary to achieve high-quality protein production. In the
future, more innovative screening methods will be explored
and developed.

It is worth noting that there is no one particular method
suitable for all cases. Each stage of the CLD workflow needs to be
optimized for a specific clone. The performance of cell lines in
large-scale bioreactors is another important consideration in their
application for the industrial production of recombinant protein
drugs. However, with the establishment of automatic cell biology
platform, the corresponding process can be optimized step by
step. This is also an effective way to reduce labor-intensive
processes, cost and risks. Yet, combining these automatic
models will help broaden our understanding and improve the
various screening systems used for the biopharmaceutical
industry. These powerful tools will bring valuable contribution
to the advance of high-yield cell clone screening and development
in biotechnology.
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