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Several brain disorders are characterized by abnormal neuronal synchronization. To
specifically counteract abnormal neuronal synchrony and, hence, related symptoms,
coordinated reset (CR) stimulation was computationally developed. In principle,
successive epochs of synchronizing and desynchronizing stimulation may reversibly
move neural networks with plastic synapses back and forth between stable regimes with
synchronized and desynchronized firing. Computationally derived predictions have been
verified in pre-clinical and clinical studies, paving the way for novel therapies. However,
as yet, computational models were not able to reproduce the clinically observed
increase of desynchronizing effects of regularly administered CR stimulation intermingled
by long stimulation-free epochs. We show that this clinically important phenomenon
can be computationally reproduced by taking into account structural plasticity (SP), a
mechanism that deletes or generates synapses in order to homeostatically adapt the
firing rates of neurons to a set point-like target firing rate in the course of days to
months. If we assume that CR stimulation favorably reduces the target firing rate of
SP, the desynchronizing effects of CR stimulation increase after long stimulation-free
epochs, in accordance with clinically observed phenomena. Our study highlights the
pivotal role of stimulation- and dosing-induced modulation of homeostatic set points in
therapeutic processes.

Keywords: coordinated reset neuromodulation, desynchronization, spike time-dependent plasticity, structural
plasticity, anti-kindling

INTRODUCTION

High-frequency deep brain stimulation (HF DBS) is the standard treatment of medically refractory
movement disorders such as Parkinson’s disease (PD) (Benabid et al., 1991; Krack et al., 2003;
Deuschl et al., 2006) and is also being tested in other psychiatric diseases (Cleary et al., 2015). HF
DBS aims to permanently deliver electrical charge-balanced pulses at high frequencies (>100 Hz)
to target areas such as the thalamic ventralis intermedius (VIM) nucleus or the subthalamic nucleus
(STN) through chronically implanted depth electrodes (Benabid et al., 1991, 2009). However, the
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precise mechanism of action of standard HF DBS is not
yet sufficiently understood (Johnson et al., 2008; Gradinaru
et al., 2009; Deniau et al., 2010). Standard HF DBS has acute
clinical (Temperli et al., 2003) and electrophysiological (Kühn
et al., 2008) effects, which are present only during stimulation.
A number of reversible as well as non-reversible adverse events
(AE) can arise from DBS treatment, which is itself an invasive
treatment; these can range from neurological AEs such as gait
disturbances and speech problems, to psychiatric AEs such as
depression (Baizabal-Carvallo and Jankovic, 2016; Buhmann
et al., 2017). Therefore, any DBS treatment regime should be
minimized in duration as much as possible, in order to also
minimize the AEs that can result (Buhmann et al., 2017).

Abnormal neuronal synchronization is a hallmark of PD
and may occur in different frequency ranges (Lenz et al.,
1994; Nini et al., 1995; Llinás et al., 1999; Brown, 2002).
Different stimulation protocols showed that trains of HF
DBS may in fact modulate synaptic plasticity (Shen et al.,
2003; Prescott et al., 2009; Milosevic et al., 2018). There
are several different mechanisms of synaptic plasticity, of
which spike-timing-dependent plasticity (STDP) is the most
well-known and widely accepted (see, e.g., Lisman, 2017).
STDP is a fundamental synaptic plasticity mechanism which
modifies synaptic strengths based on the relative timing of
pre- and postsynaptic spike pairs (Gerstner et al., 1996;
Markram et al., 1997; Bi and Poo, 1998, 2001; Song et al.,
2000). According to the STDP mechanism, the synaptic
strength is potentiated when the postsynaptic spike follows the
presynaptic spike; conversely, the synaptic strength is depressed
when the postsynaptic spike advances the presynaptic spike
(Markram et al., 1997).

Coordinated reset (CR) stimulation is a computationally
developed patterned multichannel stimulation (Tass, 2003a,b)
that employs STDP to induce long-lasting therapeutic
effects (Tass and Majtanik, 2006). CR stimulation specifically
counteracts abnormal neuronal synchrony by desynchronization
(Tass, 2003a,b), which causes a reduction of the rate of
coincidences and, mediated by STDP, a reduction of the
synaptic weights (Tass and Majtanik, 2006). Consequently, as
shown computationally, neuronal networks are shifted from
unfavorable attractors (with strong neuronal synchrony and
synaptic connectivity) to more favorable attractors (with weak
synchrony and reduced synaptic weights) (Tass and Majtanik,
2006). Accordingly, in neuronal network models a long-lasting
desynchronization can be achieved. The term long-lasting
desynchronization refers to desynchronization which exceeds
cessation of stimulation (see Tass and Majtanik, 2006; Manos
et al., 2018a; Kromer and Tass, 2020). Such effects have been
demonstrated pre-clinically and clinically in a variety of studies
(e.g., Tass et al., 2009, 2012a,b; Adamchic et al., 2012, 2013; Pfeifer
et al., 2021). For CR-DBS delivered to the STN, computationally
predicted desynchronizing effects (Tass, 2003a,b), cumulative
effects (Hauptmann and Tass, 2009) and long-lasting effects (Tass
and Majtanik, 2006) were verified in pre-clinical studies in a
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey
PD model (Tass et al., 2012b; Wang et al., 2016) as well as in a
proof-of-concept study in PD patients (Adamchic et al., 2014a).

In accordance with computational predictions (Popovych and
Tass, 2012; Tass and Popovych, 2012), CR stimulation can also
be realized by means of sensory stimulation modalities and
induce long-lasting desynchronization. In a proof-of-concept
study in patients with chronic subjective tinnitus, acoustic CR
stimulation caused a significant and sustained reduction of
tinnitus symptoms (Tass et al., 2012a) combined with a significant
reduction of abnormal neuronal synchrony (Adamchic et al.,
2012, 2013; Tass et al., 2012a), abnormal cross-frequency coupling
(Adamchic et al., 2014b) and abnormal effective connectivity
(Silchenko et al., 2013). In a study of PD patients, vibrotactile CR
(vCR) stimulation (Tass, 2017) delivered to the fingertips during
three consecutive days for 4 h per day caused improvements
in gait and bradykinesia for up to one month post-stimulation
(Syrkin-Nikolau et al., 2018). A case series in three PD patients
treated with daily regular or noisy vCR fingertip stimulation
during 6+ months revealed continuous improvement of PD
motor symptoms as assessed after medication withdrawal (i.e.,
off medication) (Pfeifer et al., 2021). Regular vCR uses periodic
stimulus delivery, whereas for noisy vCR stimulus onsets had a
moderate jitter in time (Pfeifer et al., 2021). In addition, in a
pilot study six PD patients received daily noisy vCR stimulation
during 3 months (Pfeifer et al., 2021). Motor evaluations and
at-rest electroencephalographic (EEG) recordings, performed off
medication before and after the 3-month vCR therapy, revealed a
statistically and clinically significant motor improvement along
with a significant decrease of cortical sensorimotor high beta
power (21–30 Hz). Both studies with sensory CR performed so
far (Tass et al., 2012a; Pfeifer et al., 2021) provide preliminary
evidence indicating that the effects of repetitively administered
acoustic as well as vibrotactile CR stimulation may increase
in the course of the treatment, in this way enabling longer
treatment pauses and reduced dosage regimens. However, in the
computational studies performed as yet, memory-type effects,
mediating an increase of CR efficacy with repetitive stimulation
delivery, have not been described. We hypothesize that structural
plasticity, acting on a slower time scale than synaptic plasticity
(Fauth and Tetzlaff, 2016), might play a role in modifying CR
effects in the course of repeated delivery of CR stimuli.

Apart from synaptic plasticity, structural plasticity also
appears to play an important role in PD. Structural plasticity
allows neurons to establish new or delete pre-existing synaptic
connections; this occurs via the extension or retraction of axons
and dendrites, or by modifying the number of axonal boutons
or dendritic spines (Butz et al., 2009). Changes in structural
connectivity and rewiring of connections is crucial for memory
formation (Xu et al., 2009) as well as for adaptive and maladaptive
processes in response to central and peripheral lesions of the
nervous system (Keck et al., 2008; Yamahachi et al., 2009;
Brown et al., 2010) and neurodegeneration (Deller et al., 2006).
A study of the gray matter value in the basal ganglia (BG)
of patients with symptomatic PD revealed that BG undergo a
form of progressive atrophy that increases with disease duration
and severity (Reetz et al., 2009). Furthermore, it was shown
that balance training induces morphometric changes in PD
patients (Sehm et al., 2014): a voxel-based morphometry revealed
performance improvement-correlated gray matter changes in
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the right anterior precuneus, left inferior parietal cortex, left
ventral premotor cortex, bilateral anterior cingulate cortex, and
left middle temporal gyrus as well as time-dependent gray matter
changes in the right cerebellum. In contrast, only learning-
dependent gray matter changes in the left hippocampus were
observed in healthy controls (Sehm et al., 2014). In a single PD
patient case study, it was shown that long-term HF DBS gave
rise to significant localized structural changes in sensory-motor,
prefrontal, limbic, and olfactory brain regions together with a
restoration of functional connectivity (van Hartevelt et al., 2014).
In addition, a computational analysis revealed that the observed
changes of structural weights are compliant with a hypothesized
Hebbian-like mechanism (van Hartevelt et al., 2015). For a more
extensive discussion on the role of structural plasticity in the
brain please see the corresponding section of the Supplementary
Material and van Ooyen and Butz-Ostendorf (2017).

Accordingly, we set out to computationally integrate a
structural plasticity mechanism into our modeling approach;
thus, in addition to STDP we also used the built-in structural
plasticity module (Diaz-Pier et al., 2016) of the NEST platform
(Bos et al., 2015). NEST is a simulator for neuronal modeling, and
one which can incorporate synaptic plasticity modules. Structural
plasticity has two main areas of application in NEST. The
primary purpose is to model the neurobiological phenomenon
of morphological transformations that a neuron undergoes over
time, leading to the creation or deletion of synapses. For a more
complete description of the model see Butz and van Ooyen (2013)
and for the details on the exact implementation see Diaz-Pier
et al. (2016). Specifically, the algorithm serves a homeostatic
purpose by self-generating or self-eliminating connections in
order to reach and maintain the target firing rate of the network.
New synapses are plastic, and their weight-values are drawn from
the same probability distribution defined in the initialization of
the simulation. In order to achieve this, the algorithm follows
a set of homeostatic rules which dictate how the connectivity
should be modified in order to achieve the desired levels of
electrical activity. The algorithm works at the single neuron level,
so that each neuron follows this rule independently. Contrary
to STDP, the structural plasticity mechanism allows connections
to be deleted and created between neurons, and not only alter
their weights. By combining both plasticity mechanisms, we
increased the sampling capacities and the plasticity potential
of the system to explore different connectivity configurations,
allowing long-term structural changes and short-term learning in
the same simulation.

We hypothesize that structural plasticity may modify long-
term effects of CR stimulation. Motivated by experimental
findings indicating an increased efficacy of sensory CR
stimulation in the course of the therapy (Tass et al., 2012a;
Pfeifer et al., 2021), we incorporate structural plasticity in our
computational model and consider different treatment scenarios,
depending on whether CR stimulation may induce changes of the
set point of structural plasticity. The efficacy of CR stimulation
after long pauses without stimulation may strongly increase
provided CR stimulation causes a reduction of the set point. The
computational approach presented here may provide predictions
that contribute to optimized and experimentally testable dosage

regimens, which specifically aim at modulating homeostatic set
points of structural plasticity mechanisms.

MATERIALS AND METHODS

The Terman-Rubin Neuron Model
The Terman and Rubin (Terman et al., 2002; Rubin and Terman,
2004) single-compartment conductance-based model is used for
the description of the neuronal activity of the individual STN and
globus pallidus external (GPe) neurons. The membrane potential
is given by the following equation:

cm
dv
dt
= −IL − IK − INa − IT − ICa − Iahp − Isyn + Istim + Inoise (1)

Spiking activity is caused by the sodium (Na+) and potassium
(K+) ionic currents INa, IK, IT, and ICa describe the low-
threshold T-type and high-threshold Ca2+ current, respectively.
Iahp represents a Ca2+-activated, voltage-independent after-
hyperpolarization K+ current and IL the leak current. In
addition, the STN and GPe neurons are influenced by synaptic
inputs Isyn. Surrounding brain areas contribute with Inoise while
there is an external stimulation current Istim (only in the STN
population) which models the deep brain stimulation (DBS).
Other ionic currents (in pA/µm2) are described by Terman et al.
(2002); Rubin and Terman (2004), and Ebert et al. (2014).

IL = gL [v− vL] (2)

IK = gKn4 [v− vK] (3)

IT = gTa3
∞ (v) b

2
∞ (r) [v− vCa] (4)

ICa = gCas2∞ (v) h [v− vCa] (5)

Iahp = gahp [v− vK]
[Ca]

[Ca]+ k1
(6)

d[Ca]
dt
= 0

(
−ICa − IT − kCa[Ca]

)
(7)

Subthalamic nucleus and GPe neurons are described by similar
equations and they differ only in a few parameter values (see
Supplementary Tables 1, 2) as well as in the form of the low
threshold Ca2+ current:

IT = gTa3
∞ (v) r [v− vCa] (8)

for the GPe neurons (i.e., the b2
∞ term is omitted). Moreover,

neurons are not identical, i.e., their reverse potential parameters
and ion channel maximum conductances are drawn from
Gaussian probability distributions with 10% standard deviation
around the mean value (except the parameter vL where
we draw values with 0.15% standard deviation). All the
mean parameter values and their units are summarized in
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Supplementary Tables 1, 2. The slowly operating gating variables
n, h, and r depend on time and voltage and their first-order
kinetics are governed by differential equations of the form:

dX
dt
= ϕX

[
X∞ (v)− X

τX (v)

]
, (9)

Where X : n, h, r with:

τX (v) = τ0
X +

τ1
X

1 + exp
[
−

v − θτ
X

oτ
X

] , (10)

where θτ is the voltage at which the time constant is midway
between its maximum and minimum values, and oτ is the slope
factor for the voltage dependence of the time constant. Activation
gating for the rapidly activating channels (m, a, and s) was treated
as instantaneous. For all gating variables X = n, m, h, a, r,
or s, the steady-state voltage dependence was determined using:

X∞ (v) =
1

1 + exp
[
−

v − θX
oX

] , (11)

where θX is the half activation (or inactivation) voltage for gating
variable X, and oX is the slope factor for that variable. For the T
current inactivation variable b, we used:

b∞ (r) =
1

1 + exp
[
r − θb
ob

] − 1

1 + exp
[
−

θb
ob

] , (12)

See Terman et al. (2002) and Rubin and Terman (2004) for more
information on the model and the variables’ units. One main
difference of our study compared to Ebert et al. (2014) is the
initialization of the STN synaptic weights. In Ebert et al. (2014),
the initial mean synaptic weight was set at w̄STN

ss = 0.018, in order
to tune the system at a strongly synchronized state. Here, we
chose a different approach. We set w̄STN

ss = 0.0025, at a much lower
value, and drove the system to a similar strongly synchronized
state by applying periodic stimulation (PS) to the STN neurons.

In our NEST implementation, which is based on NEST 2.10,
we have incorporated an additional feature which allows us to
enable and disable synaptic and structural plasticity. We have also
modified the topology module in order to allow plastic synapses
to be created. The Terman-Rubin neuron model (STN and
GPe populations) was implemented in the NESTML platform
(Plotnikov et al., 2016; Blundell et al., 2018; Perun et al., 2018).

The Network Model
Our network model consists of two interacting nuclei, the STN
and the GPe. The STN neuron population is linked with the
cortex in an excitatory manner while the GPe population is linked
with the striatum in an inhibitory manner, see Figure 1A. The
connectivity matrix of the STN-GPe network can be expressed as
the combination of several sub-networks:

W =
(
wss wgs
wsg wgg

)
(13)

Denoting the connectivity matrices for the STN-STN (ss), STN-
GPe (sg), GPe-STN (gs), and GPe-GPe (gg) sub-networks,

respectively. Each Wij value corresponds to the connection
strength between neuron i and j while self-connections
are excluded, i.e., Wii = 0, ∀i. Our neuronal network is a
weighted and directed graph, and hence, this matrix is not
necessarily symmetric.

The STN population projects long range excitatory
connections on the GPe population, while the GPe population
projects long range inhibitory connections to the STN neurons
(Shink et al., 1996). The connections between STN and GPe
were established following Baufreton et al. (2009) and using
connectivity values of 2% (i.e., 200 synapses per neuron,
connecting to 20 randomly chosen targets in the distant
population, respectively). Following Fujimoto and Kita (1993)
and Ebert et al. (2014), the transmission delay for connections
between the STN and the GPe was set to δsg = δgs= 4.0 ms.
Recent findings on the synaptic organization of the STN
population identifying its neurons as parallel processing units
(Steiner et al., 2019) might help to further refine computational
models of the BG.

Network and Neuron Coupling
Description
The network setup and 3D anatomical arrangement of the
neurons was introduced in Ebert et al. (2014) where a sample
of 10,000 STN and 10,000 GPe neuron coordinates was drawn.
The coordinates used for the 3D implementation originated from
magnetic resonance imaging (MRI) data taken from a PD patient
before DBS surgery (both STN and GPe coordinates are measured
in the left-brain hemisphere while there is no actual overlap
of the single neurons, Figure 1B). The rationale for choosing
equal size (# of neurons) for both populations (even though
the GPe area is larger than STN) is that the GPe has a lower
density of neurons than the STN (see Levesque and Parent, 2005).
The two populations form two ellipsoids of different size, inside
of which coordinates for the neuron positions are randomly
drawn. For more details on the 3D implementation with two set
of coordinates and ellipsoid dimensions and its motivation, we
refer to Ebert et al. (2014).

The general connectivity properties are largely based on the
values used and presented in Ebert et al. (2014), where 10,000
STN and 10,000 GPe neurons were considered [more details
regarding the parameter values can also be found in Gillies and
Willshaw (1998) and Holgado et al. (2010)]. The main difference
in this study is that we have considered a smaller in size neural
network (1,000 STN and 1,000 GPe neurons instead of 2 ×
10, 000) in order to trade-off between a large-scale model and the
corresponding computation time. Hence, the each STN neuron
extends connections to pss = 70% of the entire STN population
(instead of pss = 7% that was used for the large-scale system).
The connection probability between STN neurons at a certain

distance is given by the exponential function p(x) = e−
x/cd with

cd = 0.5 and x the Euclidean distance between neurons. This
probability is a non-negative function with values in the interval
[0, 1]. Note, it is not a probability density which would have an
integral equal to 1. The corresponding parameter values for the
inhibitory GPe neurons are pgg = 10% (instead of pgg = 1%

Frontiers in Physiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 716556

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-716556 September 1, 2021 Time: 12:12 # 5

Manos et al. Desynchronization With Synaptic and Structural Plasticity

FIGURE 1 | Network, synaptic, and structural plasticity setup. (A) Structure of the model network. Excitatory synaptic connections are shown in red (with arrows)
and inhibitory connections in blue (with squares). The connections whose synaptic weights do not vary in time are in solid lines. The red dashed line represents time
dependent connections between the subthalamic nucleus (STN) neurons, modified by spike time-dependent plasticity (STDP) and structural plasticity. The external
electrical stimulation delivered to the STN is indicated by the gray solid line. The Poissonian spike train input from the cortex to the STN is constantly active. (B) The
three-dimensional STN-GPe model (left brain hemisphere). Segmented MRI slices taken from a Parkinson’s disease (PD) patient prior to deep brain stimulation (DBS)
surgery. Each ellipsoid volume contains 1,000 randomly distributed point-like neurons. Note, neurons are not overlapping. (C) STDP rule for STN neurons. Synaptic
connection potentiation is highlighted in red and depression in blue. (D) Growth rate curves determining the rate of creation and deletion of synaptic elements in the
structural plasticity model for STN-STN connections (red) and STN-GPe connections (blue). The parameters which define the shape of the curve are the growth rate
νSP, which defines the peak of the curve, and the target firing rate ε. The light red band indicates the region where the model operates during the simulations
reported in this study. These Gaussian curves correspond to Eq. (19) which represents the change in synaptic elements dz/dt as a function of the firing rate FR(t). In
this case, the red line has a growth rate νSP of 0.00008 synaptic elements/ms and the blue line of 0.00002 synaptic elements/ms. The target firing rate ε in both
curves is 3.0 Hz. Finally, the minimal initial firing rate η is 0.0 for both curves.

that was used for the large-scale system), δgg = 4.0 ms and
cd = 0.63. The initial synaptic weights for both STN and GPe
connections are drawn from a Gaussian probability distribution
around a mean value w̄STN

ss = 0.0025 with standard deviation
σSTN

ss = 0.000125 (no distance dependence). The two structures
are connected to each other as the STN affects GPe via excitatory
input while the GPe exerts an inhibitory impact on the STN.
There is no distance dependence for their connectivity. We
adopted a probability connectivity (see Baufreton et al., 2009) of
20% (instead of 2% that was used for the large-scale system), i.e.,
200 fixed randomly picked synapses with transmission delay of
δsg = δgs = 6.0 ms for connections between the STN and the
GPe, as published in Fujimoto and Kita (1993) and Kita et al.
(2005). Their corresponding initial synaptic weights are drawn
again from a Gaussian probability distribution around a mean
value w̄STN

sg = 0.006 and w̄STN
gs = 0.003 with standard deviation

σSTN
sg = 0.0003 and σSTN

sg = 0.00015, respectively.
Using the aforementioned described parameter values, we

achieved a good agreement between the two networks of
different size concerning their dynamics, as assessed by

macroscopic quantities, degree of synchrony (as measured by
the order parameter throughout this study) and mean firing
rate, we adjusted all relative connections in a similar manner.
The comparison between the large network (2 × 10, 000
neurons) with the reduced size one (2 × 1, 000) can be found
in Supplementary Figure 1 showing similar overall system
evolution without any significant qualitative differences.

Synaptic Currents
The postsynaptic currents are described with α -functions (Dayan
and Abbott, 2000; Gerstner and Kistler, 2002):

α(t) =
t − tk
τ2

syn
e−

t−tk
τsyn , tk ≤ t < tk+1 (14)

Where tk denotes the spike time. The total synaptic input current
to a postsynaptic neuron i received from presynaptic neurons j is
then given by:

Isyn,i(t) =
∑
j

Wij
(
vi (t)− vsyn

)
α (t) , (15)
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Where Wij is the synaptic weight (coupling strength) between
presynaptic neurons j and the postsynaptic neuron i, and vsyn
is the reversal potential for excitatory or inhibitory ss, sg, gs,
and gg connections. Therefore, vsyn depends on the types of
connected neurons and on whether the connection is excitatory
or inhibitory. In our model, there exist four types of synapses
for ss, sg, gs, and gg connections. All values are given in
Supplementary Tables 1, 2.

Noise Inputs
Each GPe neuron receives external inhibitory input from the
striatum which is described by an additional constant negative
input current Iapp = −7.0 pAin Eq. (1) (note that for the
excitatory STN neurons Iapp = 0 pA) and external noise Inoise
described by Poissonian spike trains (form other surrounding
brain structures) with a frequency of fGPe

P = 40 Hz:

Inoise,i =

Nt∑
j=0

wnoise
(
vj,i (t)− vnoise

)
α (t) . (16)

Nt is an integer random variable following the Poisson
distribution Pλ

(
k
)
=

λk

k! e
−λ, with parameter given by the

simulated time interval λ = fPδ, where δ is equal to the time
resolution of the simulation (0.1 ms in our simulations). In a
similar manner, we model the excitatory input from the cortex
to all STN neurons with a frequency of fGPe

P = 20 Hz. Each
neuron receives a different random Poissonian spike train. These
noise frequency values are chosen with respect to the respective
STN and GPe relative firing rates, i.e., the mean firing rate
of GPe is about twice the one of the STN [see Ebert et al.
(2014) and references therein for motivation and justification].
The noise input synaptic weight is set at wnoise = 0.2 mS

/
cm2

while the time constants for the α -function are set at τnoise =

1.0 ms and the reversal potential is vnoise = 0 mV for both STN
and GPe neurons.

Spike-Timing-Dependent Plasticity
The synaptic coupling weights (wij) of the STN neurons evolve
dynamically and depend on the time difference (1tij = tfj −

tfi ) between the firing (onset) of the spikes of the post-
synaptic neuron and pre-synaptic neuron (denoted by tfi and
tfj , respectively). When 1tij > 0 the rule implements synaptic
potentiation due to causal relationships and when 1tij < 0 it
implements synaptic depression. We use the following STDP rule
as implemented in NEST:

1wij
(
1tij

)
=

λe−
|1tij |
τ+ , 1tij > 0

−λγe−
|1tij |
τ− , 1tij ≤ 0

, (17)

where τ− = 27.5 ms, τ+ = 12.0 ms (time constants for
the synaptic weight change of depression and potentiation,
respectively), λ = 0.002 (learning rate of the synaptic
connection) and γ = 1.4 is the ratio between depression
and potentiation in the synaptic learning rule (Figure 1C).

The (de)synchronized dynamics are stable with the above rule
and parameter values resulting in multistability. We restrict
the synaptic weights wss

ij (within the STN population) on the
interval [0, 0.02], in this way avoiding a non-physiological
unbounded increase or decrease. More detailed analysis and
parameter exploration of this particular STPD rule and its
motivation can also be found in Ebert et al. (2014).

Structural Plasticity
Using the structural plasticity framework in NEST, a network
will self-generate synapses in order to stably achieve a desired
profile of electrical activity, a measure that is experimentally more
easily accessible than detailed connectivity data. By progressively
and slowly changing the connections between neurons in the
network and the weight of these connections for all populations
simultaneously, the structural plasticity algorithm is able to
find a stable configuration with the desired firing rate profile.
The structural plasticity implementation in NEST is based
on the model proposed by Butz and van Ooyen (2013) and
described in technical detail by Diaz-Pier et al. (2016). In this
plasticity framework, neurons have contact points called synaptic
elements which increase or decrease in number according to
simple homeostatic rules. This rule is originally based on the
intracellular calcium concentration (Butz and van Ooyen, 2013;
Diaz-Pier et al., 2016) which is modulated by the network’s firing
rate. Synaptic elements typically represent axonal boutons and
dendritic spines. When new synaptic elements become available,
they can be used to create new synapses with other compatible
elements. If the contact points are eliminated, the synapses
formed earlier are destroyed. Connectivity in the network is
updated on a much slower timescale than the electrical activity of
neurons. In order to have a computationally efficient simulation,
connectivity in the network is updated between 100 and 1,000
times more slowly than the electrical activity in the neurons. The
homeostatic rules applied to the synaptic elements are intended
to keep the mean firing rate stable. The firing rate FR(t) is
calculated in NEST by each neuron following this equation:

dFR
dt
=

{
−

FR(t)
τSP
+β, if the neuron fires

−
FR(t)
τSP

, otherwise
, (18)

FR is the firing rate of the neuron which is directly proportional
to the internal calcium concentration of the neuron at any
point in time (Diaz-Pier et al., 2016), β is the calcium intake
constant which specifies the increment of the internal calcium
concentration every time the neuron spikes and τSP is the calcium
concentration decay time constant. This means that the firing rate
is internally calculated by NEST for each neuron model using a
low pass filtering technique on the spiking activity corresponding
to the instantaneous mean value of the firing rate. For more
details on how this calculation is performed as well as the impact
of the update interval and other structural plasticity parameters
in the evolution of the simulations see Nowke et al. (2018). The
firing rate is always calculated by NEST, even when structural
plasticity is not enabled. In NEST it is possible to use different
types of growth curves for the synaptic elements like Linear,
Gaussian, and Sigmoidal. Additionally, users can implement their
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own growth curves to match their specific questions. In the
current study, a Gaussian curve as defined in Figure 1D describes
the growth rate of connection points for neurons, i.e.:

dz
dt
= νSP

[
2e−

(
FR(t)−ξ

ζ

)2

− 1

]
, (19)

where z is the number of synaptic elements, ξ = η+ε
2 , ζ =

ε−η

2
√
ln2

, the maximum amplitude is the growth rate νSP, the target
firing rate ε is the right intersection with the x-axis and the
minimum firing rate η is the left intersection with the x-axis. In
our application there are no negative firing rates and η is omitted
from Figure 1D as we are only interested in the curve on the
positive side of the x-axis. Internally, each neuron has a count
of the number of connected synaptic elements (z_connected).
When z is higher than z_connected, new connections can be
made and when z is lower than z_connected, some connections
must be deleted. This will be done until z = z_connected for each
update in connectivity. For an analysis of the dynamical stability
caused by structural changes induced by structural plasticity in
other network models we refer to Nowke et al. (2018).

Spike time-dependent plasticity and structural plasticity act
on very different time scales. Let us consider the time scale if
only structural plasticity is turned ON, whereas STDP is turned
OFF. The growth rate of the structural plasticity mechanism
used in our simulations reflects a timescale of network formation
which corresponds to a timescale of days or weeks (Butz and
van Ooyen, 2013; Butz et al., 2014). Note, arbitrary units were
introduced in the structural plasticity model mechanism because
there is no exact experimental information about the speed of
creation or deletion of synapses in the brain regions of interest
available (Butz and van Ooyen, 2013; Butz et al., 2014). There are
experimental studies showing that the time it takes for boutons
and spines to form ranges from days to weeks, as shown, e.g.,
in the context of early development (Kirov et al., 2004). The
structural plasticity model is not dimensionless in time (Butz
and van Ooyen, 2013; Butz et al., 2014). However, due to the
lack of detailed experimental data the growth rate is not adapted
to experimentally pre-defined values. Rather, the growth rate in
this model of structural plasticity can be used to change the
speed at which effects in the structure of the network are visible
and it is chosen so that the total duration of the simulations,
with time-steps in milliseconds, do not require to sum up to
weeks, otherwise they would be computationally intractable. In
our simulations we have shown 20 min of simulation which do
not represent 20 min of biological time but a timescale of days
or weeks. However, the massive reduction of computation time
for the structural plasticity-induced dynamics is only possible if
STDP is turned OFF while structural plasticity is turned ON (see
below). Due to the pronounced structural changes induced in the
network by SP, it is necessary to split the simulation and keep
the STDP part separated from the SP part, in order to ensure
numerical accuracy in the results.

Coordinated Reset Stimulation
In order to model the invasive DBS electrical CR stimulation
delivered to the STN population, we consider short biphasic
current-controlled pulses as previously used in Ebert et al. (2014)
[see Cogan (2008) for original motivation]. In more detail, a
current pulse P(t) for stimulation of neuronal tissue consists of
a cathodal and an anodal phase with current amplitudes and
durations that result in an overall zero net charge for the entire
pulse (to guarantee charge-balance):

P (t) =


κ, tl ≤ t < tl + ω

−κ/ps, tl + ω ≤ t < tl + ω(1+ ps).
0, else

(20)

tl denotes the onset times of the current pulses, κ is the amplitude
and ω is the width of the cathodal pulse. ps determines the
duration and amplitude of the charge-balancing anodal pulse
part which prevents any permanent charge transfer into the
neuronal tissue that could possibly damage the tissue. In this
study, we used a fixed electrode position at the center of the STN
population which was found to be most adequate for optimal
CR stimulation performance in Ebert et al. (2014). In order to
model the electric field produced by the external stimulus, we
used the setup of a Medtronic DBS lead model 3389 which has four
separate cylindrical contacts made of a Pt-Ir alloy with a typical
length of 1.5 mm (Coffey, 2009). We used a specific equation
which adequately approximates the overall distance dependent
decay of stimulation strength as used in Ebert et al. (2014; see
also Richardson et al., 2003):

S
(
dil
)
=

1

dillc
√

1+ 4(dil/lc)2
, (21)

Where dil is the distance between neuron i and the location of
the stimulation contact l and lc is the length of the electrode
contacts. By setting dmin= 0.7 mm we avoid any singularity
that could occur at dil = 0. Hence, we prohibit possible neuron
coordinates within a cylindrical volume with 1.4 mm diameter
around the electrode axis.

We used M = 4 stimulation sites while all neurons receive
input from all four sites. Figure 2 shows an example of our CR
stimulation signal. During each stimulation period T =125 ms,
each site is activated via an electric burst only once, and
not at the exact same onset time with any other site. This
order of activation varies randomly in every cycle (during the
CR ON period). Three cycles of CR stimulation (ON-cycles)
were followed by two cycles without stimulation (OFF-cycles)
following Lysyansky et al. (2011) and Adamchic et al. (2014a).
The stimulation period within a burst is set at Tp =7.69 ms,
the CR stimulation amplitude κ = −3.3 is, the width of the
cathodal pulse ω= 200 µs and the duration and amplitude of the
charge-balancing anodal pulse ps = 8. The CR stimulation signal
delivered at neuron i from stimulation contact l is given by the
following equation:

Istim (t) =
M∑
l=1

S
(
dil
)
ρl (t) P (t) , (22)
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ρl (t) is an indicator function representing the spatiotemporal
activation of stimulation sites (set at 1 when the site is activated
and 0 otherwise). For more details on the CR stimulation setup
see Ebert et al. (2014).

Macroscopic Measurement
In order to measure the degree of neuronal synchronization
within the STN and GPe ensembles we use the order parameter
(Kuramoto, 1984; Daido, 1992; Tass, 1999):

R (t) =

∣∣∣∣∣∣N−1
∑
j

eiϕj(t)

∣∣∣∣∣∣ , (23)

Where i here denotes the unit imaginary unit
√
−1, ϕj (t) =

2π(t − tj,m)/(tj,m+1 − tj,m) for tj,m ≤ t < tj,m+1 is a linear
approximation of the phase of neuron j between its mth and (m+
1)th spikes at spiking times tj,m and tj,m+1. R(t) is influenced
by the synaptic weights, as the latter are time dependent due
to the STDP. The order parameter R measures the extent of
phase synchronization in the neuronal ensemble and takes values
between 0 (absence of in-phase synchronization) and 1 (perfect
in-phase synchronization).

RESULTS

Simulation Description and Protocols
We present the general simulation setups and protocol designs
we employed throughout this study.

• We start in a desynchronized state with sufficiently weak
synapses and large numbers of possible synaptic connections
within the STN population (i.e., large number of dendritic
spines) and corresponding firing rate of∼4 Hz.
• To generate a synchronized reference state, we deliver

sufficiently strong kindling-like PS to increase synaptic
weights, so that the network is shifted to a strongly synaptically
connected and strongly synchronized stable state. In several
model networks kindling is achieved more rapidly than anti-
kindling (Tass and Majtanik, 2006). The kindling process
is achieved by PS of comparably short duration (TPS =

2.5 min).
• The PS-induced synchronized state is stable, so that both

STN and GPe remain in a stable synchronized state after
cessation of PS.
• CR stimulation is then delivered to the network in the

synchronized state, which causes a desynchronization
and a reduction of its synchrony (as measured by the
order parameter).
• If CR stimulation is delivered for a sufficiently long

time, during the CR-off period the network relaxes to a
desynchronized state with down-regulated synaptic weights
but still a large number of possible synaptic connections (i.e.,
large number of dendritic spines).
• Up to this point STDP is active for STN neurons.
• From this point on, two options are being explored. The

system may either evolve only with STDP activated (Figure 3

and Supplementary Figure 2) or, alternatively, with structural
plasticity activated between CR intervals (Figures 4, 5 and
Supplementary Figures 1, 3, 4). In the latter case, we consider
different scenarios that evolve depending on whether the target
firing rate of the structural plasticity mechanism is modified by
CR stimulation.

This elementary stimulation protocol comprises a PS-induced
transition from a desynchronized to a synchronized state and
a CR-induced reverse transition. In this PS-CR sequence, PS
serves as a test stimulation assessing the network’s susceptibility
to synchronizing stimulation. We use different combinations
and variations of this elementary stimulation protocol. First,
to demonstrate reversibility, we simply repeat the same PS-CR
sequence again using the same CR-ON time period and the
exact same number of connections. Second, after the first PS-CR
sequence, we turn on structural plasticity in the desynchronized
state for a computational time interval corresponding to arbitrary
time units. In our implementation, STDP and structural plasticity
operate at different time scales simulating biological time which
ranges from milliseconds up to minutes when STDP is ON
and up to several days when structural plasticity is ON. It
is important to note that due to software constraints only
one of the two plasticity mechanisms is allowed to be ON
in a given time interval. Otherwise, the growth rate in the
structural plasticity model could not be used to change the
speed at which structural plasticity effects occur, which would
render the model computationally intractable. In this way, the
simulation does not mix the different physiological components
and effects, taking place on different time scales. The structural
plasticity model efficiently simulates relatively large biological
time intervals in feasible computing times. Furthermore, it allows
the system to evolve smoothly enough, maintaining its dynamical
stability during the synapse rewiring process. The simulated
structural plasticity period of approximately 20 min computing
time corresponds to a biological time that ranges from days
to weeks (Butz et al., 2014). This enables a slow dynamical
evolution of the network’s topology, governed by the structural
plasticity homeostatic rule with pre-defined or stimulation-
induced target parameters related to non-pathological neuronal
spiking rates. The subsequent second PS-CR sequence acts
like a probe, detecting PS-induced alterations of the network’s
synchronizability and desynchronizability.

In this study, we configured the structural plasticity
algorithm as follows: we use Gaussian growth curves and
set νSP =0.00008 synaptic elements/ms for the STN-STN
connections, νSP= 0.00002 synaptic elements/ms for the STN-
GPe connections and ε = 3.0 Hz for both pre-synaptic elements.
We note that the units of the growth rate νSP are defined here in
synaptic elements/ms of simulation time. Biologically realistic
values of the growth rate νSP would be at least two orders of
magnitude slower than the ones used in this manuscript. The
use of these higher values allows us to have faster changes in
the connectivity while keeping the normal simulation step of
NEST and reduce the simulation time representing the structural
changes which would be observed in extended biological times.
This setup is meant to drive the target STN firing rate toward a
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FIGURE 2 | Temporal evolution of coordinated reset (CR) simulation signals. Successive 3 ON and 2 OFF cycles are indicated by vertical dashed lines and the
temporal distance between two successive vertical lines correspond to the period T of each cycle. Each stimulation site is activated exactly once during an ON
cycle, where the sequence of activation across stimulation sites is random.

non-pathological rate of about 3.0 Hz. In our implementation,
structural plasticity is applied only to excitatory connections
originating from the STN population (see “Materials and
Methods” section for a detailed description). The growth rate has
positive values because the synapses are excitatory. The curve
specifies that when neurons have a firing rate higher than 3.0 Hz,
synapses will be deleted; if neurons have a firing rate lower
than 3.0 Hz, synapses will be created. Rewiring occurs when
a synaptic element is deleted together with its corresponding
synapse, but the matching synaptic element in the other neuron
remains available for a new connection with a new matching
element. We provide a rewiring factor in the form of Gaussian
curves for the post-synaptic elements of both connections of
νSP= − 0.005 synaptic elements/ms. This relatively higher
value of νSP compared to the ones in the pre-synaptic growth
curves allows the formation of several potential new contact
points to which deleted connections can be rewired. In our
study, we observed a firing rate of approximately 3.6 Hz at
the moment structural plasticity is enabled after each PS-CR
sequence. Note, the firing rate is the STN network’s actual firing
rate which is measured by the structural plasticity algorithm
and taken into account for the generation/deletion of synaptic
elements, based on the structural plasticity homeostatic rule.
The chosen configuration assumes that as a result of a CR epoch
the target firing rate of the STN population is reset to 3.0 Hz,
which reflects a “healthy” firing rate. This means that during
the simulation, synapses will slowly be deleted until the desired
3.0 Hz target is reached. We have experimented with a broad
range of parameter combinations before choosing these values.
The results discussed here use a configuration within a range
of parameters which show memory effects, see Supplementary
Material for more details. The major rationale was to design
a structural plasticity mechanism whose time evolution causes

sufficient synaptic deletion in order to impact on the network’s
macroscopic dynamics (as measured by the order parameter)
within computationally feasible times.

As already mentioned, the structural plasticity algorithm
measures and takes into account the current STN firing rate
and modifies the synaptic connectivity until the target (3.0 Hz)
is reached. With the selected parameters, on each period of
simulation with structural plasticity approximately 5.33% of the
total STN-STN connections and 4.8% of the total STN-GPe
connections are effectively deleted. We then apply a second,
identical PS-CR sequence or a modified PS-CR sequence. To this
end, we either keep the same CR-ON period or gradually shorten
it to 6 and 5 min. After a sufficient amount of time STDP does no
longer change the order parameter and mean firing rate. Based
on a series of simulations it turned out that a 10 min post-CR
window with STDP ON is sufficient for the network to attain a
stable state as characterized by stable order parameter and firing
rate. We then turn on structural plasticity and turn off STDP,
since an increased growth rate is required to speed structural
plasticity simulations up to achieve feasible computation times.

Repeated Delivery of PS-CR Sequences
With STPD Only
Anti-kindling requires CR stimulation to be delivered at sufficient
amplitude and duration (Tass and Majtanik, 2006; Hauptmann
and Tass, 2009; Popovych and Tass, 2012; Ebert et al., 2014).
Figure 3A shows the overall desynchronization effect for
sufficiently strong CR stimulation amplitude κ = −3.3 (see
Ebert et al., 2014 for details). We synchronize and desynchronize
the network repetitively by delivering three PS-CR sequences
(see “Results” Section: Simulation Description and Protocols).
The network starts in a desynchronized state, and then gets
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FIGURE 3 | Periodic Stimulation (PS)-CR sequences without structural plasticity. (A) Time evolution of the order parameter R(t) averaged over a sliding window
(10 ms) for STN (red solid line) and GPe (blue solid line) neurons. (B) Spiking rates for STN and GPe neurons for three identical CR periods. Light blue bands denote
the PS (2.5 min) intervals and light gray the CR intervals (10 min). STDP is active throughout the entire trial. The synchronization-desynchronization process caused
by the first PS-CR sequence is repeated by the two subsequent PS-CR sequences, indicating its reproducibility in the absence of PS. (C) PS-CR sequence with one
long CR epoch followed by two PS-CR sequences with insufficient CR duration (6 and 5 min, respectively) without structural plasticity.

synchronized by PS. PS epochs are highlighted by light blue
color bands, ranging from tPSstart = 2 min to tPSstop = 4.5 min.
After PS delivery the network first evolves spontaneously; that
is, without further stimulation. Next, the PS-CR sequence is
completed by administration of CR stimulation. CR epochs are
indicated by light gray color bands, ranging from tCRstart = 7 min
to tCRstop = 17 min. A 10 min CR epoch is considered a “long” CR
period. Subsequently, the network again evolves spontaneously,
thereby remaining in a desynchronized state. Afterward, two
more PS-CR sequences are delivered. Note, at the beginning
of each PS-CR sequence, we reset the time back to zero, while
the simulation proceeds in a continuous manner. Resetting

the time scale is performed in order to facilitate successive
comparisons with altered plasticity mechanisms and/or CR
stimulation durations. In Figure 3B, we show the corresponding
time evolution of the spiking rates of the STN (red curve) and
GPe (blue curve) neurons, starting at ∼4 Hz/∼8 Hz (healthy
model state), increasing to ∼15 Hz/∼21 Hz (pathological model
state) and up to ∼23 Hz/∼34 Hz (during the CR epoch) and
decreasing back to ∼4 Hz/∼8 Hz (after the PS-CR sequence,
in the healthy model state). This process is repeated for each
of the three PS-CR sequences in a reproducible manner, based
on the macroscopic quantities used for assessment of overall
synchrony and mean spiking rate. In the Supporting Information
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FIGURE 4 | Three identical PS-CR sequences, with structural plasticity with 3.0 Hz target firing rate. (A) A sliding window of 100 simulation time steps at each
different epoch when STDP or structural plasticity was active for STN (red solid line) and GPe (blue solid line) neurons and the average value for the whole network
(cyan solid line). The horizontal back dot-dashed lines indicate the plateaus’ gradual decrease of the level of synchronization degree after each SP period interval.
The vertical black dot-dashed depict the gradual improvement of the CR’ performance after each consecutive stimulation and SP cycle. The lines’ respective
location is set at the beginning of the plateaus immediately after the initial sharp decrease. The equally sized horizontal red lines and the circle are used to provide a
visual aid to this effect. (B) Spiking rates for STN and GPe neurons, respectively. PS, CR, STDP, and structural plasticity activation interval period. The color coding
and time units are defined in the legends of panels (A,C). (C) Time course of the total number of synaptic excitatory connections in the STN population.

Section, we present a similar simulation with three PS-CR
sequences with insufficiently strong CR stimulation amplitude
(κ = −2.0) (Supplementary Figure 2); despite appropriate
stimulation duration, the administered CR stimulation is not
sufficient to desynchronize the STN-GPe circuit. The transient
behavior of all macrovariables, STN R(t), GPe R(t) as well as
STN and GPe mean firing rates, during the CR epoch depends on
model parameters, e.g., on the plasticity ratio between depression
and potentiation γ -value and CR stimulation intensity κ -value.
For instance, for smaller γ -values (e.g., γ.1.3 and fixed κ =

−3.3) and identical CR stimulation duration there is no re-
increase of the order parameter of GPe.

In general, in stimulated neural networks with STDP the
values of macrovariables, such as order parameter R(t), mean
synaptic weight, mean firing rate, may substantially depend on
whether stimulation is ON and specifics of stimulus parameters
and protocols (Manos et al., 2018a,b). In the PS epoch vs. the
pause between the PS and the CR epoch the system approaches
stable states that differ with respect to their order parameters and
mean firing rates. In the model under consideration, depending
on model and stimulus parameters different transients may
occur. We do not have a theory or mechanistic explanation for
the transitory decrease and re-increase of GPe R(t) observed for
the parameters under consideration.
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FIGURE 5 | Periodic Stimulation-Coordinated Reset sequence with long CR epoch followed by two PS-CR sequences with reduced CR duration, with structural
plasticity (SP) with 3.0 Hz target firing rate. (A) A sliding window of 100 simulation time steps at each different epoch when STDP or structural plasticity was active
for STN (red solid line) and GPe (blue solid line) neurons and the average value for the whole network (cyan solid line). (B) Spiking rates for STN and GPe neurons,
respectively. PS, CR, STDP, and structural plasticity activation interval period color coding and units are defined in Figure 3.

Next, we consider the impact of insufficiently short CR epochs
(Figure 3C). To this end, the first PS-CR sequence with sufficient
CR duration (10 min) is followed by two PS-CR sequences with
insufficient CR duration (5 and 6 min, respectively). The short
CR epoch does not cause a full-blown desynchronization. Rather,
it shifts the network to a stable state with somewhat reduced
synchronization. The effects of the second PS-CR sequence are
reproduced by the third PS-CR sequence. This illustrates that the
STN-GPe network is multistable. Apart from a fully synchronized
state and a fully desynchronized state, we observe stable states
with intermediate levels of synchronization. The short CR epochs
only shift the network to such an intermediate state, not to a fully
desynchronized state.

Impact of Structural Plasticity on Three
PS-CR Sequences
To study whether structural plasticity effects may accumulate
despite interspersed PS-CR sequences, we administered three
identical PS-CR sequences with long CR epochs and keep the
target firing rate at 3.0 Hz (Figures 4A,B). Here, we also
present the average (combined STN and GPe populations) order
parameter value for the whole network is shown by the cyan
solid line. The horizontal black dot-dashed lines indicate the
plateaus’ gradual decrease of the level of synchronization degree
after each structural plasticity period interval. In addition, lower

levels of the order parameters and mean firing rates are reached
faster during the third CR epoch compared to the second CR
epoch, indicating cumulative structural plasticity effects. The
vertical black dot-dashed depict the gradual improvement of
the CR’ performance after each consecutive stimulation and SP
cycle. The lines’ respective location is set at the beginning of the
plateaus immediately after the initial sharp decrease. The equally
sized horizontal red lines and the circle are used to provide a
visual aid to this effect. The time course of the total number of
synaptic excitatory connections in the STN population is shown
in Figure 4C.

The cumulative effect of structural plasticity is further
illustrated by delivering one PS-CR sequence with long CR epoch
(10 min) followed by two PS-CR sequences with shorter CR
duration (5 and 6 min) (Figure 5). We observe the same stepwise
decrease of the post-PS STN synchronization (Figure 4A) and
firing rates (Figure 5B). During the third CR epoch STN and
GPe synchronization reaches lower levels and approaches steady
state levels more rapidly compared to during the second CR
epoch (Figure 5A).

Several model parameters are drawn from Gaussian
distributions (see Supplementary Material). To check whether
the model’s dynamics is robust with respect to variations of
these parameters, for all relevant findings we have run several
simulations, even if we presented only one. In fact, a relevant
limitation of the structural plasticity model mechanism used

Frontiers in Physiology | www.frontiersin.org 12 September 2021 | Volume 12 | Article 716556

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-716556 September 1, 2021 Time: 12:12 # 13

Manos et al. Desynchronization With Synaptic and Structural Plasticity

in our manuscript is its computational cost which is
even demanding for the JURECA supercomputer center
at Jülich Research Center. To illustrate the robustness of
our findings, we ran 20 random initializations for the
simulation with structural plasticity and one PS-CR period (see
Supplementary Figure 4).

Structural plasticity with sufficiently small target firing
rate reduces the maximum values of STN synchronization.
This is because the maximally achievable synchronization,
as assessed by the order parameter, depends on the number
of excitatory synapses. The more excitatory synapses can
attain maximum connectivity values the greater the order
parameter, see, e.g., Taylor (2012) and Townsend et al.
(2020) and references therein. For illustration, let us consider
the effect of a plain removal of a fraction of randomly
selected STN-STN connections after initializing the network
in a synchronized state (Supplementary Figure 5). To
this end, we initialized our model in a synchronized state
by delivering PS, with STDP turned ON and structural
plasticity permanently turned OFF. We then turn off
STDP, randomly deleted between 5 and 20% percentage
of the excitatory STN-STN connections and evaluated the
amount of synchronization in a 2 min time window. With
increasing percentage of deleted STN-STN connections the
amount of STN synchronization continuously decreases
(Supplementary Figure 5).

DISCUSSION

This is the first computational study investigating the impact
of structural plasticity on the outcome of CR stimulation.
We implemented structural plasticity in a STN-GPe network
with plastic STN-STN synapses governed by STDP. In the
absence of structural plasticity, repeated administration of
PS-CR sequences leads to reversible transitions between
desynchronized and synchronized states (Figures 3A,B). By
the same token, delivering PS-CR sequences with CR epochs of
insufficient duration causes transitions between synchronized
states of different amount of synchrony (Figure 3C and
Supplementary Figure 2). To date, changes of susceptibility
to CR stimulation after stimulation-free pauses have not been
tested in computational studies. However, such memory-like
phenomena were previously observed in a clinical study with
vibrotactile CR stimulation (Pfeifer et al., 2021) and acoustic
CR stimulation (Tass et al., 2012a). In general, effects of this
kind may allow the further reduction of the total stimulation
duration when designing therapeutic treatment regimes. In an
example such as DBS, this could further reduce the occurrence
or severity of AE in treated patients, which could significantly
improve their quality of life. It is not straightforward to relate
our measures, such as the order parameter, to clinical outcome
scores. However, it was shown that CR-DBS-induced changes of
UPDRS motor score (normalized to baseline) were significantly
correlated with changes of peak beta power of the local field
potential (LFP) (normalized to baseline) measured by the very
STN contacts used for stimulation (Adamchic et al., 2014a).

This correlation was obtained off medication, i.e., after proper
withdrawal of Parkinson’s medication. Furthermore, Pfeifer et al.
(2021) revealed that after 3 months of vCR therapy the off
medication high beta band power in the sensorimotor cortex
decreased significantly. Hence, after 3 months of vCR the
sensorimotor cortex’ ability to resynchronize after profound
medication withdrawal was limited. The 3-month interval
corresponds to clinical findings obtained in a study with pre-
defined timing of clinical visits (Pfeifer et al., 2021) and,
hence, can only provide a first time scale approximation.
The approximative 3-month time scale is also in agreement
with findings obtained in a clinical proof of concept study
with acoustic CR stimulation for the treatment of tinnitus
(Tass et al., 2012a).

Main Findings and Conclusion
The goal of our study was to demonstrate that clinically observed
phenomena can be reproduced by incorporating structural
plasticity as opposed to taking into account STDP alone. Our
model qualitatively reproduces previously observed memory-
like phenomena (Tass et al., 2012a; Pfeifer et al., 2021) if we
assume that CR stimulation epochs cause a reduction of the target
firing rate. Comparable memory effects of previous treatment
sessions come into play when structural plasticity is activated with
appropriate target firing rates (Figures 4, 5). On one hand, the
PS epochs in the PS-CR sequences may serve as a standardized
model process accounting for detrimental influences on patients
during stimulation-free intervals, leading to a re-increase of
symptoms (see Tass et al., 2012a). On the other hand, the PS
epochs may be considered as standardized probes, enabling the
testing of the network’s resistance to synchronizing stimulation
protocols. Furthermore, we showed that simulation setups which
account only for STDP (Figure 3) are not able to exhibit this
type of cumulative effect observed in clinical trials, acting on time
scales of months (see, e.g., Figure 8 in Pfeifer et al., 2021).

In this study we have taken into account STDP and structural
plasticity by two separate mechanisms. STDP changes synaptic
weights according to the timing relationship of the corresponding
pre- and postsynaptic neurons on a fast time scale (Gerstner
et al., 1996; Markram et al., 1997; Bi and Poo, 1998, 2001;
Song et al., 2000; Ebert et al., 2014), whereas structural plasticity
adapts the single neuron’s firing rate to a target firing rate by
creating and deleting synapses on a slow time scale (Butz and
van Ooyen, 2013; Diaz-Pier et al., 2016), as discussed above. So
far, in other modeling studies certain types of structural plasticity
mechanisms and STDP were simultaneously implemented at
a more theoretical level, making connections to Hamiltonian
sampling (Yu et al., 2016) or Bayesian inference mechanisms
(Kappel et al., 2015). In contrast, in our study, we separated
the two mechanisms for computational convenience, efficiency
and performance, since in a first approximation we assume that
no new synapses will be created or pre-existing synapses will
be deleted during the short long CR epochs. In contrast, we
simulate the slow structural plasticity effects initiated by the brief
CR epochs. However, in future studies firing pattern-dependent
mechanisms such as STDP may also be included in the structural
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plasticity model in order to account for selective, firing pattern-
guided creation or deletion of synapses (Clopath et al., 2010;
Legenstein and Maass, 2011; Perin et al., 2011; Zheng et al., 2013).
The actual structural plasticity model will certainly impact on the
design of optimal stimulation patterns which cause long-lasting
desynchronization by therapeutic synaptic rewiring, achieved by
adequately controlling collective firing patterns as well as firing
rates. Note, in our model we incorporated plasticity mechanisms,
STDP and structural plasticity, in the directly stimulated target
area, the STN, only.

The numerically implemented SP mechanism in our
simulations provides a plausible explanation of the physiological
memory-like effects. However, this approach requires an
appropriate parameter tuning in order to demonstrate such
effects within computationally reasonable time scales. Assuming
that the target firing rate is sufficiently low (3.0 Hz),
characterizing a healthy STN firing state, structural plasticity
continuously down-regulates the firing rate by deleting excitatory
synapses. Consequently, during the PS epoch the STN re-
synchronization is less pronounced and does not reach the
initial levels observed by the first PS epoch (Figure 4A). The
level of synchronization of the GPe network, which provides
an inhibitory output, during and directly after the PS epoch,
does not change substantially compared to the first PS epoch
(Figure 4A). However, during the subsequent CR epoch the
desynchronization of STN and GPe are both accelerated in a
similar manner compared to the first CR epoch (Figure 4A).
Accordingly, a long-lasting desynchronization of STN and GPe
can be achieved by means of a considerably shorter CR epoch
(Figure 4A). An important prerequisite of the structural plasticity
effect is that after the CR epoch the STN firing rate relaxes to
a value (3.6 Hz) sufficiently close to the structural plasticity’s
target firing rate (3.0 Hz). This enables structural plasticity to
take over efficiently and down-regulate the number of excitatory
connections within the STN, together with the firing rate using
the homeostatic rule. The choice of a Gaussian curve in the
structural plasticity model employed in this study (Bos et al.,
2015; Diaz-Pier et al., 2016) was motivated by experimental data
(Lipton and Kater, 1989; Al-Mohanna et al., 1992) which suggests
that the generation of new spines starts slowly when the activity
in the neuron is low and progressively increases to a maximum.
Then it starts to decay until a homeostatic equilibrium is reached
(Butz and van Ooyen, 2013). During development the degree
of plasticity during critical periods also increases slowly until a
maximum level, and then decreases until a degree of maturity
is achieved (see box 1 in Hensch, 2005). Note, a reduction of
approximately 5.76% of STN-STN connections together with the
rewiring of connections during the structural plasticity epoch are
sufficient to increase the network’s resistance to PS and also its
increased susceptibility to CR stimulation; thus, the structural
plasticity effects accumulate, even though intersected by a PS-CR
sequence (Figure 5).

In this study with our novel NEST based code, we combine
the power of structural and synaptic plasticity providing
a modeling test environment that enables us to capture
memory-like phenomena of susceptibility to CR stimulation.
From the modeling and simulation perspectives, there are

several challenges related to this setup; the most significant
is that simulations of detailed networks are computationally
demanding, especially when the two types of plasticity are
involved. This is mainly due to the variations in the transmission
and generation of spiking events in the network, as well
as the additional calculations that take place at the synapse
level. Simulations of the size that we report in this study
can have a simulation to real time factor of about 10–
20. This means that simulations of 1 s take 10–20 s to
be simulated computationally. Accordingly, exploring slow
structural plasticity induced changes of a simulated network
within 1 month of biological time, could take a normal simulation
of up to several (∼20) months duration. Obviously, such a
scenario is significantly resource-intensive. In contrast, using our
NEST simulations, we can accelerate the effects of structural
plasticity so that simulations can be reduced from months
to a couple of hours. With this solution, we are able to
simulate at feasible computing times both the synaptic plasticity,
which takes place during PS and CR epochs, followed by a
stabilization period and the subsequent activation of structural
plasticity, running at reasonably high speed by means of an
accelerated model. During this accelerated simulation period,
we disable synaptic plasticity in order to avoid inconsistencies
that would be induced due to the fact that the model
operates at different time scales. By combining both types of
plasticity in such a temporally interleaved way, we are able to
explore the immediate stimulation-induced effects of synaptic
plasticity as well as the long-term effects mediated by structural
plasticity within a single consistent, efficient, and tractable
simulation model.

Future studies could be designed to investigate the
development of desynchronizing stimulation protocols that
are adapted to specific ranges of target firing rates. It is
therefore crucial to understand stimulation-induced changes
of the firing rate. In fact, with very few exceptions (see, e.g.,
Lysyansky et al., 2011), the vast majority of computational
studies devoted to CR stimulation to date have not focused
on stimulation-induced changes of the firing rate. Our study
highlights that not only the CR epochs may be crucial for the
long-term stimulation outcome; to the best of our knowledge,
our study is the first to also demonstrate that pauses in
between effective CR epochs also play an active and critical
role. CR stimulation and, in general, all kinds of efficient
desynchronizing stimulation protocols may initiate STN-GPe
circuits in favorable states, so that structural plasticity makes
networks more susceptible to desynchronizing stimulation over
time. In a previous computational study in a neural network with
STDP, but no structural plasticity, it was shown that spaced CR
stimulation (i.e., CR stimulation intermingled with sufficiently
long stimulation-free pauses) may significantly improve efficacy;
this is particularly important if CR stimulation is delivered
at otherwise ineffectively weak intensities (Popovych et al.,
2015). Together with our current study, this illustrates the
importance and active role of pauses in therapeutic processes
employing plasticity principles. Stimulus-free intervals should
not just be considered periods without intervention. Rather
they may be an integral part of a therapeutic process enabling
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and potentiating stimulus effects which should be adequately
addressed by dose-finding studies. In future studies we plan
to incorporate plasticity mechanisms in additional brain areas.
However, given the huge amount of computation time required
to networks with STDP and structural plasticity, one might
modify and further adapt structural plasticity model mechanisms
to given high-performance computing architectures.

In summary, in our proof of concept-like computational
study we added structural plasticity to an existing STN-GPe
model which, so far, only comprised STDP in the STN (Ebert
et al., 2014). The STN is an excitatory population (Shink et al.,
1996). To model STDP for STN’s efferent excitatory synapses,
we have used a standard STDP model which has been used in
numerous other studies (see, e.g., Gerstner et al., 1996; Gerstner
and Kistler, 2002; Dan and Poo, 2004; Sjöström et al., 2008).
In future studies both structural plasticity and STDP should
also be taken into account for the GPe. Unlike STN, GPe is an
inhibitory population (Shink et al., 1996). The structural plasticity
mechanism used in this manuscript (Butz and van Ooyen, 2013;
Butz et al., 2014) can also be applied to inhibitory synapses.
However, to model STDP in inhibitory synapses, appropriate
rules of rules of inhibitory STDP have to be taken into account
(Vogels et al., 2013).

CODE AND SCRIPTS AVAILABILITY

The NEST version used for the simulations presented in this
manuscript can be found here: https://github.com/sdiazpier/
nest-simulator.git (branch dbs_sp) and the model scripts can be
found in this repository: https://github.com/sdiazpier/dbs_sp.git.
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