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ABSTRACT 24 

Background: Traditional ECG criteria for left ventricular hypertrophy (LVH) have low 25 

diagnostic yield. Machine learning (ML) can improve ECG classification. 26 

Methods: ECG summary features (rate, intervals, axis), R-wave, S-wave and overall-27 

QRS amplitudes, and QRS/QRST voltage-time integrals (VTIs) were extracted from 12-lead, 28 

vectorcardiographic X-Y-Z-lead, and root-mean-square (3D) representative-beat ECGs. Latent 29 

features were extracted by variational autoencoder from X-Y-Z and 3D representative-beat 30 

ECGs. Logistic regression, random forest, light gradient boosted machine (LGBM), residual 31 

network (ResNet) and multilayer perceptron network (MLP) models using ECG features and sex, 32 

and a convolutional neural network (CNN) using ECG signals, were trained to predict LVH (left 33 

ventricular mass indexed in women >95�g/m², men >115�g/m²) on 225,333 adult ECG-34 

echocardiogram (within 45 days) pairs. AUROCs for LVH classification were obtained in a 35 

separate test set for individual ECG variables, traditional criteria and ML models. 36 

Results: In the test set (n=25,263), AUROC for LVH classification was higher for ML 37 

models using ECG features (LGBM 0.790, MLP 0.789, ResNet 0.788) as compared to the best 38 

individual variable (VTIQRS-3D 0.677), the best traditional criterion (Cornell voltage-duration 39 

product 0.647) and CNN using ECG signal (0.767). Among patients without LVH who had a 40 

follow-up echocardiogram >1 (closest to 5) years later, LGBM false positives, compared to true 41 

negatives, had a 2.63 (95% CI 2.01, 3.45)-fold higher risk for developing LVH (p<0.0001). 42 

Conclusions: ML models are superior to traditional ECG criteria to classify—and predict 43 

future—LVH. Models trained on extracted ECG features, including variational autoencoder 44 

latent variables, outperformed CNN directly trained on ECG signal. 45 

 46 
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Keywords: Left ventricular hypertrophy, LVH, machine learning, deep learning, artificial 47 

intelligence, electrocardiogram, ECG, variational autoencoder.  48 

 49 

Abbreviations:  50 

ECG, electrocardiogram 51 

LVH, left ventricular hypertrophy 52 

ML, machine learning 53 

AI, artificial intelligence 54 

MLP, multilayered perceptron 55 

LGBM, light gradient-boosting machine 56 

AUROC, area under the receiver operator characteristic curve 57 

VAE, variational Autoencoder 58 

LVMi, left ventricular mass indexed 59 
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INTRODUCTION 60 

Left ventricular hypertrophy (LVH) refers to increased left ventricular mass, characterized by an 61 

increase in left ventricular wall thickness and/or enlargement of the left ventricular cavity. This 62 

is often secondary to pathological or physiological stressors such as chronic hypertension, 63 

valvular heart disease, athletic training, or genetic conditions. LVH is associated with over a 64 

two-fold increase in cardiovascular morbidity and all-cause mortality (1). Early detection and 65 

initiation of pharmacological treatment, along with lifestyle modifications, have been associated 66 

with improved outcomes (2).  67 

Transthoracic echocardiography is the standard-of-care for the diagnosis of LVH. 68 

However, despite its non-invasive nature and widespread utilization, universal screening for 69 

LVH using echocardiography even in high-risk groups, such as those with hypertension, is not 70 

cost-effective (3,4).  71 

Electrocardiography (ECG) is an affordable, widely accessible, and frequently used 72 

diagnostic tool for cardiovascular screening. Often considered an extension of the cardiovascular 73 

physical examination, it is estimated that over 100-300 million ECGs are performed annually in 74 

the United States (5). Several criteria for 12-lead ECG diagnosis of LVH have been published 75 

over many decades, mainly based on the magnitude of QRS voltages in various—especially 76 

precordial—leads. However, these criteria have poor sensitivities in detecting LVH, making 77 

them unsuitable for standalone ECG screening (6-8). In a 2023 consensus statement, the 78 

International Society of Electrocardiology and the International Society for Holter Monitoring 79 

and Noninvasive Electrocardiology highlighted the need for a paradigm shift in ECG-based LVH 80 

diagnosis (9). The statement emphasized the limitations of traditional ECG criteria and discussed 81 

the potential of artificial intelligence (AI)-driven approaches for LVH detection.  82 
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Machine learning (ML) can reduce reliance on human interpretation and yet increase the 83 

diagnostic accuracy of ECG (10,11). Several ECG-based ML models have been developed for 84 

detecting LVH, with varying sensitivities and specificities (12). Many of these studies use 85 

convolutional neural network (CNN) deep learning architecture to train models using ECG 86 

signals often with fewer than 10,000 training ECGs. Given that each 12-lead 10-second ECG 87 

signal at 500 Hz consists of 60,000 data points, using such a high-dimensionality input for ML 88 

training with a limited number of samples can result in overfitting and reduced generalizability 89 

(13-15). On the other hand, non-neural network ML architectures—such as logistic regression, 90 

random forest, gradient boosted machine—are not suited to use high-dimensional ECG signal 91 

data as input and are usually limited to using extracted ECG features with potential loss of 92 

diagnostic information (15). 93 

To mitigate these limitations—while preserving the advantages of deep learning—we 94 

developed a variational autoencoder (VAE) that can encode 0.75-sec-representative-beat from 95 

either X-Y-Z-lead or root-mean-squared ECG into 30 variables (15-17). These VAE latent 96 

encodings retain the ECG morphological information and can reconstruct back the ECG signal 97 

with high fidelity. In this study, we aimed to train and test different ML models using extracted 98 

ECG features including the latent encodings or the ECG signal to classify LVH from the 99 

representative-beat ECG. 100 

 101 

METHODS 102 

Patient selection and data retrieval: An automated retrospective retrieval of records was 103 

performed from our clinical database at the University of Kansas Medical Center between May 104 

2010 and Jan 2022 to search for ECG and echocardiogram performed on the same patient within 105 
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45 days of each other. Echocardiograms-ECG pairs with echocardiographic left ventricular mass 106 

index (LVMi) >95 g/m2 for females and >115 g/m2 for males were labelled as ‘LVH’ while rest 107 

of the pairs were assigned to the ‘no LVH’ group (15). The study was conducted under an 108 

approval from the Institutional Review Board.  109 

Data extraction: ECGs were acquired with Philips 12-lead ECG machines. The 12-lead 110 

ECG 10-second and 1200-ms-representative-beat signals along with standard features like heart 111 

rate, PR interval, etc. were exported to a research SQL data server. Echocardiograms were 112 

standard clinical studies performed for clinical indications both as outpatient and inpatient 113 

evaluations. Individual echocardiogram numeric variables including diastolic measurements of 114 

left ventricular internal diameter (LVIDd), interventricular septum (IVSd) and posterior wall 115 

(PWd) from 2D parasternal long-axis view were extracted using a backend query in HERON 116 

(Healthcare Enterprise Repository for Ontological Narration), a search discovery tool that 117 

facilitates searches on various hospital electronic data sources (18,19). The query results were 118 

recombined using medical record number, encounter number and study date to generate back the 119 

list of variables belonging to each echocardiogram study. Left ventricular mass was calculated 120 

using the American Society of Echocardiography recommended formula: 0.8 × 1.04[(LVIDd + 121 

IVSd + PWd)3 and indexed to body surface area (20). 122 

ECG processing: The details of ECG processing performed using Python are provided in 123 

prior publications (15,21,22). In summary, vectorcardiographic X-Y-Z-lead ECGs were 124 

constructed from 12-lead ECGs using Kors’ matrix (23). Using these orthogonal X, Y, Z leads, 125 

the root-mean-square (RMS or 3D) ECG was constructed. Voltage-time integrals (VTIs) were 126 

obtained by the integration of the instantaneous voltage over the duration of QRS (VTIQRS) or 127 

QRS-T (VTIQRST). 128 
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Traditional Criteria and Univariable Models: Based on review of literature, we selected 5 129 

widely used ECG-based LVH diagnostic criteria for comparison, i.e. Peguero-Lo Presti criteria 130 

(max S + Sv4), Cornell voltage (RavL + Sv3), Cornell voltage-duration product (VDP), Sokolow-131 

Lyon criteria (SV1 + max R (V5 or V6)), and Gubner-Ungerleider critera (RI + SIII). We also selected 132 

3 ECG variables for comparison namely QRS duration, amplitudeQRS-3D, and VTIQRS-3D 133 

(21,22,24). The latter 2 were calculated off the QRS from the RMS/3D ECG. 134 

Variational Autoencoder: We trained a variational autoencoder (VAE) on 1.18 million 135 

unlabeled ECG signals to encode a 0.75-sec segment centered on the representative beat ECG 136 

signal into 60 variables (30 variables for X, Y, Z leads and 30 for RMS of these leads). The VAE 137 

has a dual neural network architecture with the encoder taking the ECG input and outputting 30 138 

latent variables, and the decoder inputting the 30 latent variables and outputting the ECG signal. 139 

The network is rewarded in training to encode the signal such as to learn accurate reconstruction 140 

of the original signal from the latent variables alone. Our VAEs are able to reconstruct the 141 

original signal back from the latent variables with high fidelity (16,17,25). The X-Y-Z-lead and 142 

RMS/3D representative-beat ECGs included in this study were processed using these 2 VAEs to 143 

generate latent encodings or variables. 144 

ECG Features: The following features were available for ML model training: 145 

• Summary features like heart rate, PR interval, QRS duration, corrected QT interval (26), 146 

frontal plane QRS axis, etc.  147 

• From 16 leads—each of 12-leads, 3 X-Y-Z-leads and 1 RMS ECG—we obtained QRS 148 

amplitudes, VTIQRS, VTIQRST, R-wave amplitudes, S-wave amplitudes. 149 

• 30 latent variables each from VAEs trained to reconstruct the X-Y-Z-lead and RMS 150 

representative-lead ECGs. 151 
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• Sex 152 

Model Training and Testing: Approximately 10% of the medical record numbers in the 153 

dataset were withheld as the testing set, and remainder used for model training (Figure 1). We 154 

trained the following ML architectures on the training set – logistic regression, random forests, 155 

light gradient boosted machine (LGBM), residual neural network (ResNet), multilayered 156 

perceptron (MLP) and CNN. The CNN was trained on the representative-beat X-Y-Z-lead ECG 157 

signal, and the other 5 ML models trained on the extracted ECG features (as above) plus sex. Sex 158 

was provided to the models as the definition of LVH is sex specific. The results are reported 159 

from the performance of the trained models in the holdout test set. We also report the models’ 160 

performance in 4 subgroups based on intraventricular conduction – QRS duration <120 ms, 161 

typical right bundle branch block (RBBB, QRS duration ≥120), typical left bundle branch block 162 

(LBBB, QRS duration ≥120 ms), and interventricular conduction delay (IVCD, QRS duration ≥ 163 

120 ms but not meeting either RBBB or LBBB criteria). American Heart Association-American 164 

College of Cardiology Foundation-Heart Rhythm Society criteria for bundle branch blocks were 165 

used (27).  166 

Statistical analysis: Continuous variables are reported as mean ± standard deviation, and 167 

categorical variables as percentages. Comparisons were made using Student’s t-test for 168 

continuous variables and χ2-test for categorical variables. Statistical analysis was conducted in 169 

Python version 3.12.7 and 2-tailed p-value of less than 0.05 was considered statistically 170 

significant. 171 

 172 

 173 

 174 
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RESULTS  175 

Patient characteristics: A total of 250,596 ECG-echocardiogram pairs were included, with 176 

149,612 (59.7%) pairs belonging to females. The mean age of the overall population of ECG-177 

echocardiogram samples was 63.8 ± 15.3 years. In the training sets, 40,839 (28.2%) of the 178 

female samples and 23,309 (24.3%) male samples had LVH on echocardiography. The testing 179 

set consisted of 25,263 ECG-echocardiogram pairs. In the testing set, 4470 (27.8%) female 180 

samples and 2672 (24.6%) male samples had LVH. The detailed distributions of the ECG and 181 

echocardiographic variables in the testing set are shown in Table 1 and for the training set in 182 

Supplementary Table 1. The testing samples were divided into 4 subgroups i.e. narrow QRS 183 

<120 ms (n= 215,228), typical RBBB (n=24,800), typical LBBB (n=13,893), and IVCD 184 

(n=13,714).  185 

LVH classification models: The testing set performance of the 3 univariable models, 5 186 

traditional criteria and the 6 ML models is summarized in Table 2 and Supplementary Table 187 

2A-D.  188 

Univariable models: Amongst the linear univariable models, VTIQRS-3D was the best 189 

predictor of LVH in the overall population, with an AUROC 0.677. Further, VTIQRS-3D 190 

performed the best in all subgroups except in typical LBBB (narrow QRS 0.659, RBBB 0.674, 191 

LBBB 0.585, IVCD 0.578). In typical LBBB, amplitudeQRS-3D performed the best, with an 192 

AUROC 0.590.  193 

Traditional criteria: Overall, the performance of traditional ECG criteria for predicting 194 

LVH was poor, with AUROCs ranging from 0.507 to 0.647. Cornell VDP was the best 195 

performing criteria overall and in narrow QRS subgroup (overall 0.647; narrow QRS 0.643). In 196 
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other subgroups, Peguero-Lo Presti criteria performed the best (RBBB 0.598, LBBB 0.572, 197 

IVCD 0.578). In general, these criteria performed better in females as compared to males.  198 

ML Models: All ML models outperformed the traditional criteria and univariate models. 199 

LGBM (AUROC 0.790), MLP (0.789) and ResNet (0.788), which were trained on ECG features 200 

including VAE latent encodings and sex, were the best performing models in the overall 201 

population. The CNN model, which was trained on the raw ECG signal alone, demonstrated an 202 

AUROC 0.767. The ROC curves, separately for females and males, for the top 4 ML models vis-203 

à-vis the best univariable and best traditional criteria are plotted in Figure 2.  204 

When evaluated in the 4 ECG subgroups by intraventricular conduction, models with 205 

highest AUROCs were LGBM in narrow QRS (0.785), MLP in RBBB (0.778) and LBBB 206 

(0.698) and ResNet in IVCD (0.720). The ROC curves of the best model each amongst 207 

univariable, traditional criteria and ML for each of the 4 subgroups separately for females and 208 

males is shown in Figure 3 and 4.  209 

Linear analysis of LGBM prediction probabilities: LVMi was plotted against the 210 

prediction probabilities output generated by LGBM model for females and males as shown in 211 

Figure 5. A strong linear trend between prediction probabilities and LVMi can be noted for both 212 

females and males (respectively R2 0.851 and 0.833, or correlation coefficient ρ 0.922 and 0.913). 213 

Longitudinal analysis of LVH negatives: Among false positives and true negatives 214 

produced by the LGBM model in the testing set, we searched for the ECG-echocardiogram pairs 215 

where a follow-up echocardiogram >1 year and closest to 5 years later was available for further 216 

analysis. We used a 2x2 table to compare the development of LVH in 161 false-positive as 217 

compared to the 1,019 true-negative samples. On mean follow-up of 3.9 ± 1.8 years, 54/161 218 

(33.5%) patients in false-positive group, and 130/1019 (12.8%) patients in true-negative group 219 
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developed LVH. The risk ratio for development of LVH was 2.63 (95% CI 2.01, 3.45) in false-220 

positives compared to true-negatives from the LGBM model (Table 3). 221 

 222 

DISCUSSION 223 

To the best of our knowledge, this is the largest evaluation of ECG criteria and ML models for 224 

predicting LVH till date. We have applied the innovative framework of using DL-based latent 225 

space ECG encodings for building ML models, which allows simpler models to make accurate 226 

predictions without overfitting.  227 

Salient findings: First, traditional ECG-based criteria demonstrate suboptimal 228 

performance in diagnosing LVH, with the Cornell VDP showing the highest accuracy among 229 

them (AUROC 0.647). Second, univariable models including QRS duration, amplitudeQRS-3D, 230 

and VTIQRS-3D were at par or better than traditional criteria for the diagnosis of LVH , with 231 

VTIQRS-3D achieving the best overall results (AUROC 0.677). Third, ML models outperform both 232 

traditional and univariable models, with LGBM models demonstrating the highest performance 233 

in our study (overall AUROC 0.790). Last, the performance of traditional, univariable, and ML 234 

models vary across sex and QRS morphologies. Further, the LGBM model trained on ECG latent 235 

encodings and features successfully captured the underlying trend of LVMi, showing strong 236 

correlation and predicting future development of LVH.  237 

Univariable models: Previous studies have demonstrated the utility of linear univariable 238 

predictors of LVH, such as QRS duration and QRS-VTIs (22,31). In our analysis, we evaluated 239 

QRS duration, amplitudeQRS-3D, and VTIQRS-3D for predicting LVH across various subgroups. Our 240 

findings indicate that these measures generally outperform traditional LVH criteria. Among them, 241 

VTIQRS-3D emerged as the best overall criteria, except in the typical LBBB subgroup, where 242 
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amplitudeQRS-3D was superior. Similar to Cornell VDP, VTIQRS-3D incorporates both QRS voltage 243 

and duration. Since VTIQRS-3D is calculated from the reconstructed 3D-orthogonal leads, 244 

ostensibly, it captures the QRS complex more comprehensively as compared to Cornell VDP, 245 

which uses information from a pair of 2-D leads (V3 and aVL).  246 

Traditional ECG criteria: As demonstrated in previous studies, our analysis reaffirmed 247 

the poor discrimination of LVH offered by standard electrocardiographic criteria using a large 248 

dataset (28,29). Unlike other voltage-based rules, Cornell VDP, which emerged as the best 249 

overall criterion, accounts for both QRS voltage and duration in its calculation. Both of these 250 

parameters are affected in LVH (30). In the subset of ECGs with conduction abnormalities 251 

(RBBB, LBBB, and IVCD), Peguero-Lo Presti criteria performed better than Cornell VDP. 252 

Although the difference in performance was marginal, if this trend is real, it could be explained 253 

by obfuscation of LVH-related changes in QRS duration due to QRS prolongation inherent to 254 

conduction delays. However, this cannot be verified in our study. Notably, compared to the 255 

combined population, individual criteria generally performed better in females and males 256 

separately. This underscores the importance of using different cut-off values for females and 257 

males, recognizing the sex-based differences in ECGs and definition of LVH. (28,29).  258 

ML models: We tested several ML architectures for LVH prediction, including simple 259 

models (LR), tree-based models (RF, LGBM), and neural networks (ResNet, MLP, and CNN). 260 

The LGBM model demonstrated the best overall performance (AUROC 0.790), with AUROCs 261 

comparable to those of the MLP (0.789) and ResNet (0.788) models. The performance of all the 262 

models was worse in the subgroups with conduction abnormalities. MLP was the best 263 

performing model in typical RBBB and LBBB subgroups (0.778 and 0.698) while ResNet 264 
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performed the best in the IVCD subgroup (0.720). Nevertheless, it is important to note that the 265 

differences in the performance these models were only marginal.  266 

We further evaluated the interpretability and physiological relevance of the LGBM model. 267 

First, we plotted the prediction probabilities from this model against LVMi, which showed a 268 

strong linear positive correlation, suggesting that the model captures meaningful physiological 269 

patterns rather than artificial class boundaries. Second, we analyzed the false positives produced 270 

by this model for future development of LVH, finding that the false positives were more than 2.5 271 

times as likely to develop LVH in the future compared to true negatives. This indicates that the 272 

model captures underlying ECG abnormalities even before patients meet the criteria for overt 273 

LVH diagnosis.  274 

Previous literature: In a recently published study from China, Zhu et al. used a large 275 

dataset comprising of over 90,000 ECGs to create deep learning multilabel classifier algorithms. 276 

They achieved AUROCs ranging from 0.78-0.92 using their 12-lead model, and showed that a 277 

reduced 4-lead model using lead I, aVR, V1 and V5 had equivalent performance (32). In a 278 

Taiwanese study, Liu et al. developed a deep learning model for predicting LVH using 279 

approximately 23,000 training samples (33). They achieved high AUROCs ranging from 0.83-280 

0.89 across different testing sets. However, the definition of LVH used in this study was different, 281 

using LV mass >186 g for females and >258 g for males. In a South Korean study, Kwon et al. 282 

developed an ensemble deep neural network + CNN model using approximately 36,000 training 283 

samples, combining information from ECG signal, ECG features, and patient demographics (34). 284 

While using higher cut-off values for LVMi (109 g/m2 females and 132 g/m2 males), their model 285 

achieved AUROCs ranging from 0.87-0.88 in testing sets.  286 
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In a study from Massachusetts General Hospital, Haimovich et al. create ML models for 287 

predicting LVH in specific disease populations like cardiac amyloidosis, hypertrophic 288 

cardiomyopathy, aortic stenosis, and others using a total of 34,258 training samples (35). Similar 289 

to our approach, they used a pretrained deep learning model to produce latent encodings and 290 

trained a simpler classifier for LVH classification although they used full 10-second ECG signal 291 

instead of representative beat ECG. Their model achieved AUROCs ranging from 0.69 to 0.96 in 292 

various subgroups. Khurshid et al. used data from the UK Biobank to create a CNN model 293 

trained on 32,000 samples and achieved AUROCs ranging from 0.62 to 0.65 in predicting LVH.  294 

Owing to heterogeneity in study populations, data structures, and labels for LVH, it is difficult to 295 

evaluate the performance of models across studies. Nonetheless, the AUROCs attained by ML 296 

models in our study are comparable to previous work.  297 

Limitations: Our work is best understood in the context of its limitations. Both training 298 

and testing sets for the models were from a single center, and these models might have sub-299 

optimal performance when generalized to other datasets. Further, since the median beat ECGs 300 

were derived from a proprietary system, additional steps may be required in processing ECGs 301 

from other systems. Additionally, to calculate ECG parameters for traditional criteria and 302 

univariate models, automated feature extraction was done, which might not be as accurate as 303 

expert-created labels.  304 

 305 

CONCLUSIONS 306 

Traditional voltage-based criteria for ECG diagnosis have poor diagnostic performance. Simple 307 

univariable models, especially VTIQRS-3D, perform better than the traditional criteria. ML 308 

techniques can significantly enhance the accuracy of ECG-based diagnosis of LVH over both 309 
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traditional voltage-based criteria and univariable models. Dimensionality reduction of ECG 310 

using variational autoencoder can facilitate utilization of non-deep learning ML architectures, 311 

which may otherwise struggle with high dimensionality of ECG data. Further external testing 312 

and testing is needed for clinical utilization of these ML models. 313 

 314 
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TABLE LEGENDS  324 

Table 1. Patient characteristics of the testing set.  325 

Table 2. Model performance for LVH prediction in the entire testing set. Area under receiver-326 

operating characteristic curve (AUROC) and sensitivity at specificity fixed at 0.75 are provided. 327 

 328 

Table 3. Comparison between presence of LVH on subsequent echocardiogram (>1 year and 329 

closest to 5 years after index echocardiogram) in false positives versus true negatives of LVH 330 

LGBM model in testing set 331 

FIGURE LEGENDS  332 

Figure 1. Data pipeline for model training and testing 333 

Figure 2. ROC curves from the entire testing set for males (left panel) and females (right panel).  334 

Figure 3. ROC curves for subgroups of testing set in females, narrow QRS (top left), typical 335 

right bundle branch block (RBBB, top right), typical left bundle branch block (LBBB, bottom 336 

left), intraventricular conduction delay (IVCD, bottom right).  337 

Figure 4. ROC curves for subgroups of testing set in males, narrow QRS (top left), typical right 338 

bundle branch block (RBBB, top right), typical left bundle branch block (LBBB, bottom left), 339 

intraventricular conduction delay (IVCD, bottom right) 340 

Figure 5. Scatterplots of echocardiographic left ventricular mass indexed (LVMi) plotted against 341 

prediction probabilities from the LGBM model for females (left panel) and males (right panel). 342 

  343 
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Table 1. Patient characteristics of the testing set.  461 

 
Females Males 

No LVH LVH p No LVH LVH p 

n (%) 
10782 

(71.6%) 
4268 (28.4%)  7466 (73.1%) 2747 (26.9%)  

Age (years), 
mean±S.D. 

61.6 ± 16.6  67.4 ± 16.1  < 0.0001 63.2 ± 14.9 67.0 ± 13.6 < 0.0001 

QRS duration (ms), 
mean±S.D. 

96.1 ± 23.3 108.6 ± 27.8  < 0.0001 104.8 ± 25.0  123.6 ± 33.2 < 0.0001 

Frontal plane QRS 
axis (°), mean±S.D. 

28.5 ± 53.1 20.3 ± 66.3 < 0.0001 24.2 ± 58.7 24.9 ± 82.3 < 0.0001 

AmplitudeQRS-3D 
(µV), mean±S.D. 

938.7 ± 405.5 
1128.9 ± 

525.5 
< 0.0001 975.1 ± 416.6 1147.5 ± 525.1 < 0.0001 

VTIQRS-3D (nVs), 
mean±S.D. 

30507.8 ± 
16684.7 

42976.0 ± 
24444.6 

< 0.0001 
34575.5 ± 
17143.0 

49621.2 ± 
25866.2 

< 0.0001 

QTc (ms), 
mean±S.D. 

431.6 ± 40.1 450.0 ± 45.5 < 0.0001 433.5 ± 43.2 458.9 ± 49.5 < 0.0001 

LVEF (%), 
mean±S.D. 

57.7 ± 10.3 50.9 ± 15.6 < 0.0001 54.4 ± 12.4 43.7 ± 17.5 < 0.0001 

LV mass index 
(g/m2), mean±S.D. 

70.2 ± 14.2 122.6 ± 224.6 < 0.0001 83.2 ± 17.7 150.2 ± 192.3  < 0.0001 

ECG-defined 
subgroups 

  <0.0001   <0.0001 

Narrow QRSa  9279 (86.1%) 3091 (72.7%)  5836 (78.5%) 1556 (56.8%)  
Typical RBBBb 664 (6.2%) 439 (10.3%)  902 (12.1%) 530 (19.4%)  
Typical LBBBb 434 (4.0%) 375 (8.8%)  253 (3.4%) 296 (10.8%)  
IVCDb 404 (3.7%) 346 (8.1%)  448 (6.0%) 356 (13.0%)  

 462 
RBBB, Right Bundle Branch Block; LBBB, Left Bundle Branch Block; IVCD, Intraventricular 463 
Conduction Delay  464 
aQRS duration <120 ms, bQRS duration ≥120 ms 465 
  466 
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Table 2. Model performance for LVH prediction in the entire testing set. Area under receiver-467 

operating characteristic curve (AUROC) and sensitivity at specificity fixed at 0.75 are provided.  468 

Testing set 

Combined 
(n=25,263) 

Females 
(n=15,050) 

Males 
(n=10,213) 

AUROC Sensitivity* AUROC Sensitivity* AUROC Sensitivity* 

Univariable modelsa       

� QRS duration 0.648 0.462 0.651 0.452 0.667 0.46 

� AmplitudeQRS-3D 0.601 0.389 0.602 0.395 0.603 0.388 

� VTIQRS-3D 0.677 0.515 0.671 0.504 0.699 0.543 

Traditional criteria       

� Peguero-Lo Presti voltage 
(max S + SV4) 

0.626 0.384 0.634 0.392 0.623 0.377 

� Cornell voltage (RavL + 
SV3) 

0.617 0.388 0.631 0.413 0.603 0.352 

� Cornell VDP 0.647 0.419 0.657 0.425 0.644 0.401 

� Sokolow-Lyon voltage 
(SV1 + max R (V5 or V6)) 0.507 0.283 0.514 0.31 0.502 0.264 

� Gubner-Ungerleider 
voltage (RI + SIII) 

0.541 0.317 0.560 0.334 0.511 0.295 

ML models       

� Logistic regressionb 0.764 0.647 0.759 0.634 0.771 0.656 

� Random forestb 0.772 0.654 0.766 0.646 0.783 0.679 

� Light gradient boosted 
machineb 0.790 0.687 0.787 0.677 0.796 0.703 

� Residual networkb 0.788 0.684 0.783 0.674 0.796 0.693 

� Multilayered perceptron 
networkb 0.789 0.686 0.784 0.676 0.796 0.702 

� Convolutional neural 
networkc 0.767 0.638 0.773 0.646 0.769 0.644 

* At specificity 0.75 469 
a Logistic regressions 470 
b Input of 117 ECG statistics like QRS duration, heart rate etc. and 60 variational autoencoder latent 471 
variables from ECG representative beat and sex 472 
c Input of representative-beat ECG signal (X, Y, Z leads) 473 

474 
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Table 3. Comparison between presence of LVH on subsequent echocardiogram (>1 year and 475 

closest to 5 years after index echocardiogram) in false positives versus true negatives of LVH 476 

LGBM model in testing set 477 

 

Follow-up 
echocardiogram Total Risk Risk Ratio p 

No LVH LVH     

True 
negatives 

889 130 1,019 0.13 Ref. - 

False 
positives 

107 54 161 0.34 2.63 (2.01-3.45) <0.0001 

Total 996 184 1,180 - - - 

 478 
  479 
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Figure 1. Data pipeline for model training and testing  480 

 481 
  482 
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Figure 2. ROC curves from the entire testing set for males (left panel) and females (right panel).  483 

 484 
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Figure 3. ROC curves for subgroups of females in testing set, narrow QRS (top left), typical 486 
right bundle branch block (RBBB, top right), typical left bundle branch block (LBBB, bottom 487 
left), intraventricular conduction delay (IVCD, bottom right).  488 
c 489 
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Figure 4. ROC curves for subgroups of males in testing set, narrow QRS (top left), typical right 491 
bundle branch block (RBBB, top right), typical left bundle branch block (LBBB, bottom left), 492 
intraventricular conduction delay (IVCD, bottom right)  493 
  494 
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Figure 5. Scatterplots of echocardiographic left ventricular mass indexed (LVMi) plotted against 495 
prediction probabilities from the LGBM model for females (left panel) and males (right panel).  496 
 497 
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