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Low back pain is tightly associated with intervertebral disc degeneration (IVDD) and
aberrant nucleus pulposus (NP) is a critical cause. miRNAs N6-methyladenosine (m6A)
modification accounts for the TNF-α-induced senescence of NP cells. The aim of
this study was to investigate whether m6A modification regulates TNF-α-mediated cell
viability, cell cycle arrest, and cell senescence and how it works. The results showed that
METTL14 expression positively correlated with m6A and TNF-α expression in HNPCs.
The knockdown of METTL14 led to the inhibition of the TNF-α-induced cell senescence.
METTL14 overexpression promoted cell senescence. METTL14 regulated the m6A
modification of miR-34a-5p and interacted with DGCR8 to process miR-34a-5p. The
miR-34a-5p inhibitor inhibited the cell cycle senescence of HNPCs. miR-34a-5p was
predicted to interact with the SIRT1 mRNA. SIRT1 overexpression counteracted the
miR-34a-5p-promoted cell senescence. METTL14 participates in the TNF-α-induced
m6A modification of miR-34a-5p to promote cell senescence in HNPCs and NP cells of
IVDD patients. Downregulation of either METTL14 expression or miR-34a-5p leads to
the inhibition of cell cycle arrest and senescence. SIRT1 mRNA is an effective binding
target of miR-34a-5p, and SIRT1 overexpression mitigates the cell cycle arrest and
senescence caused by miR-34a-5p.

Keywords: N6-methyladenosine, IVDD, miR-34a-5p, cell senescence, SIRT1

INTRODUCTION

Lower back pain (LBP) is the most common chronic pain that affects at least 80% of Americans in
their lifetime (Freburger et al., 2009). In general, LBP can be caused by a muscle sprain or strain
injury as well as certain diseases, including spinal cord cancer, ruptured or herniated disc sciatica
arthritis, kidney infections, and spine infections. It has been revealed that LBP is strongly associated
with intervertebral disc degeneration (IVDD) and degenerative disc disease is identified to be the
main cause of LBP (Luoma et al., 2000; Morgan et al., 2014). However, despite some reports of
treatment to mitigate the pain and symptoms, no effective therapeutic regimen toward IVDD has
been established considering that LBP is multifactorial (Froud et al., 2014).
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Intervertebral disc mainly comprises of inner nucleus
pulposus (NP) and surrounded annulus fibrosus, in which NP
is the inner core of the vertebral disc (Pattappa et al., 2012).
Comprised of a jelly-like material mainly formed by water and
a loose collagen fiber network, NP is essential to maintain
intervertebral disc height and mechanical properties (Frost et al.,
2019). NP is also characterized to be responsible for controlling
the synthesis and decomposition of the NP extracellular matrix
(ECM) (Hwang et al., 2014). Moreover, abnormal apoptosis of
NP cells (NPCs) is correlated with the pathology of IVDD. The
degeneration was mainly manifested by the apoptosis of NP cells,
in which the levels of cleaved caspase-3 and Bax were upregulated
while the expression of Bcl-2 was downregulated (Kepler et al.,
2013; Jiao et al., 2018; Li Z. et al., 2019). Aberrant apoptosis and
senescence of NP cells play significant roles in the process of
IVDD (Zhao et al., 2006; Jiang et al., 2013; Chen et al., 2018).
During the apoptosis of NPCs, tumor necrosis factor (TNF)-
α represents a key pro-inflammatory cytokine to promote the
induction of apoptosis (Xie et al., 2019). Thus, TNF-α has been
commonly recognized as a contributor to IVDD (Wang et al.,
2017). Additionally, researchers have unveiled the role of TNF-
α in the premature senescence of rat NP cells (Li P. et al., 2017).
Through the PI3K/Akt signaling, TNF-α promoted senescence of
NP cells.

Non-coding RNAs (ncRNAs), including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs, have critical contributions to IVDD (Li et al., 2018;
Zhu et al., 2019; Xiang et al., 2020). They participate in the
regulation of the proliferation of human NP cells (HNPCs) and
the synthesis of ECM as well as the degradation-regeneration
balance of the ECM in IVDD. Recently, a comprehensive analysis
of altered methylation level of miRNA and lnRNAs in IVDD
patients was conducted, which verified that N6-methyladenosine
(m6A) methylation was one of the most abundant internal RNA
modifications in IVDD (Wang X. et al., 2020). A growing number
of studies have characterized the critical role of mRNA m6A
modification in human diseases (Weng et al., 2018; Han et al.,
2019; Han et al., 2020). However, the role of this modification in
the pathogenesis of IVDD is fully mysterious. Additionally, the
silent mating type information regulator 2 homolog-1 (SIRT1)
played a protective role in IVDD and preserves the normal NP
cell phenotype (Zhang et al., 2011; Feng et al., 2016; Wang Y.
et al., 2020). The mechanism behind has not been explicated yet.
In this study, we report the Methyltransferase like (METTL)14-
dependent m6A methylation of miR-34a-5p in IVDD patients.
Through regulating the processing of miR-34a-5p that targeted
SIRT1, METTL14-dependent m6A methylation promoted the
TNF-α-induced cell senescence of human NP cells (HNPCs).
Our research provided novel insights into the mechanism of
IVDD development.

MATERIALS AND METHODS

Clinical Sample Collection
The study was approved by the medical ethics committee of
The Affiliated Shanghai General Hospital of Nanjing Medical

University and was conducted in accordance with the Declaration
of Helsinki. Written informed consents were obtained from
all participants. From March 2015 to April 2018, degenerative
nucleus pulposus (NP) samples were collected from 30 patients
with intervertebral disc degeneration (IVDD) of low (0–3),
moderate (4–6), and high (8–10) degenerative grades (n = 10
per group) using the Rutgers score (Nakazawa et al., 2018),
who underwent operations at The Affiliated Shanghai General
Hospital of Nanjing Medical University. Normal NP samples
were collected as controls from ten volunteers. The NP tissues
were prepared using the culture medium followed by washing
with phosphate-buffered saline under sterile conditions. The
prepared samples were then used for the qRT-PCR assay.

Cell Culture and Treatment
HNPCs were isolated and cultured as per the previous report
(Dudek et al., 2017). Annulus fibrosus was first washed with
sterile phosphate-buffered saline (PBS) 3 times and then
meticulously eliminated from the human intervertebral disc
tissues. The medium was changed every 3 days. Cultured cells
were passaged when reaching a confluence of 80–90%. Cells of
the second or third generation were used for further assays. Cells
were treated with different doses of TNF-α (SRP2102; Sigma-
Aldrich, St Louis, MO, United States) for 24 h at 37◦C and 95%
humidity in an atmosphere of 5% CO2. Cells without treatment
were used as control.

Cell Transfection
pLKO.1 lentiviral vectors containing shRNA targeting human
METTL14 were synthesized by Sangon Biotech (Shanghai,
China). Human METTL14 or SIRT1 ectopic expression
vector was constructed using the pLVX-Puro or pcDNA3.1(+)
vector, respectively. HEK293T cells were cultured in 6-well
plates and those were transfected with pLKO.1-METTL14-
shRNA (shRNA), pLVX-Puro-METTL14 (METTL14), or
pcDNA3.1(+)-SIRT1 (SIRT1) using the Lipofectamine reagent as
per the manufacturer’s protocol. Post-transfection shRNA and
METTL14 vectors were collected and were used for transduction.
Cells without transduction or transfection were used as control.
Cells transduced with pLKO.1-scramble shRNA (shNC), blank
pLVX-Puro, or transfected with blank pcDNA3.1(+) vector were
used as the negative control.

miR-34a-5p mimic (5′-UGGCAGUGUCUUAGCUGGUUGU-
3′), miR-34a-5p inhibitor (5′-ACAACCAGCUAAGACA
CUGCCA-3′), and miR-34a-5p negative control (NC, 5′-
CAGUACUUUUGUGUAGUACAA-3′) were synthesized by
Genepharm Technologies (Shanghai, China). Transfection was
performed using Lipofectamine 2,000 (Invitrogen) as per the
manufacturer’s instructions. Cells without transfection were
used as control.

Cell Cycle Assay
After treatment, HNPCs were spun down at 1,000 × g for 5 min
and fixed with 700 µL of pre-cooled absolute ethanol. RNase
A (1 mg/mL, 100 µL) was added to the fixed cells for 30-
min incubation 1 in darkness. The resulting cells were further
stained with 50 µg/mL of propidium iodide (PI, 400 µL) for
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10 min. FACScan flow cytometry (Becton Dickinson, Franklin
Lakes, NJ) was then performed using the Cell Quest software
(Becton Dickinson).

SAβ-Galactosidase Staining
After treatment, HNPCs were washed with PBS 3 times
and stained with freshly prepared SA-β-Gal staining solution
following the manufacturer’s protocol (Beyotime Biotechnology
Ltd., Shanghai, China). The stained cells were then observed
under a microscope.

Co-immunoprecipitation
Cell lysates were prepared with the Radioimmunoprecipitation
assay (RIPA) lysis buffer. Antibodies, including anti-METTL14
(ab252562; Abcam, Cambridge, MA, United States), anti-DGCR8
(ab90579; Abcam) or normal IgG antibody (sc-2027; Santa Cruz
Biotechnology, Inc.), were incubated with the cell lysates followed
by incubation with Protein A/G PLUS-Agarose beads (sc-2003;
Santa Cruz Biotechnology, Inc.) for 2 h at 4◦C. After washing with
the lysis buffer 3 times, the samples were subjected to Western
blot analysis using anti-METTL14 (ab223090; Abcam) and anti-
DGCR8 (ab191875; Abcam) antibodies.

m6A Content Analysis
m6A in total RNA was analyzed with the m6A RNA Methylation
Assay Kit as per the manufacturer’s protocol (Abcam, ab185912).

RNA Immunoprecipitation Assays
Using the Magna RIP RNA-Binding Protein
Immunoprecipitation kit (Millipore), RNA immunoprecipitation
(RIP) assays were carried out following the manufacturer’s
protocol. Total RNA (input control) and isotype control (IgG)
were detected simultaneously. RNAs were extracted for reverse
transcription and qRT-PCR.

Luciferase Reporter Assay
SIRT1 3′-UTR region containing a putative miR-34a-5p binding
site was cloned into the pGL3 vector. For SIRT1 luciferase
reporter assay, the HNPCs were transfected with miR-34a-5p
mimic, miR-34a-5p inhibitor, and pGL3-SIRT1-WT or pGL3-
SIRT1-MUT plasmid and pRL-TK vector (Promega) expressing
the renilla luciferase with Lipofectamine 2,000. The relative
luciferase activity was determined and normalized to the Renilla
luciferase activity 48 h after transfection according to the
standard protocol.

RNA Isolation and Quantitative RT-PCR
Total RNA of HNPCs was extracted using TRIzol reagent
(Invitrogen) and the RNeasy Mini Kit (Qiagen, Hilden,
Germany). Reverse transcription was conducted using
PrimeScriptTMRT reagent Kit with gDNA Eraser (Takara,
Beijing, China). The resulting products were used for qRT-
PCR amplification with SYBR Premix Ex TaqTM GC (Takara).
GAPDH or U6 was used as the normalization control. The
primers for qRT-PCR are listed in Table 1. The fold changes of
mRNA or miRNA were determined by the 2−11CT method.

TABLE 1 | Primes sequences used in this study.

Gene Sequences (5′–3′)

TNF-α-forward GGTATGAGCCCATCTATCTG

TNF-α-reverse AGGGCAATGATCCCAAAG

METTL3-forward CCTTTGCCAGTTCGTTAGTC

METTL3-reverse TCCTCCTTGGTTCCATAGTC

METTL14-forward CTGGGAATGAAGTCAGGATAG

METTL14-reverse CCAGGGTATGGAACGTAATAG

WTAP-forward AAAGCAGTGAGTGGGAAAG

WTAP-reverse AGCGGCAGAAGTATTGAAG

SIRT1-forward ACCTCCTCATTGTTATTGG

SIRT1-reverse TTACAGGGTTACAGCAAAG

pri-miR-34a-forward AGTTGCTGAAGGTGGTGGTC

pri-miR-34a-reverse ACATGCGTGCCTGTAGTCC

GAPDH-forward AATCCCATCACCATCTTC

GAPDH-reverse AGGCTGTTGTCATACTTC

miR-200c-3p-forward CGCGTAATACTGCCGGGTAAT

miR-200c-3p-reverse AGTGCAGGGTCCGAGGTATT

miR-27a-3p-forward GCGCGTTCACAGTGGCTAAG

miR-27a-3p-reverse AGTGCAGGGTCCGAGGTATT

miR-34a-5p-forward CGCGTGGCAGTGTCTTAGCT

miR-34a-5p-reverse AGTGCAGGGTCCGAGGTATT

miR-15b-5p-forward CGCGTAGCAGCACATCATGG

miR-15b-5p-reverse AGTGCAGGGTCCGAGGTATT

pre-miR-34a-forward CCTAGAAGTGCTGCACGTTGTG

pre-miR-34a-forward AGTGCAGGGTCCGAGGTATT

U6-forward CTCGCTTCGGCAGCACA

U6-reverse AACGCTTCACGAATTTGCGT

Western Blot
The cell lysates were prepared using the
radioimmunoprecipitation assay lysis buffer (Beyotime,
Shanghai, China). The quantitation of protein in the samples was
performed using the bicinchoninic acid (BCA) Protein Assay Kit
(Beyotime). For SDS-PAGE, 20 µg of protein sample was loaded
to each well followed by the transmembrane onto polyvinylidene
fluoride membranes (Millipore, Billerica, MA, United States).
The blocking of the membrane was conducted by incubating with
5% fat-free milk and then primary antibodies against METTL3
(ab195352; Abcam), METTL14 (ab223090; Abcam), WTAP
(ab195380; Abcam), SIRT1 (ab110304; Abcam), and GAPDH
(#5174, Cell Signaling Technology) overnight at 4◦C. The blots
were then washed in Tris-buffered Saline Tween-20 (TBST) three
times and then incubated with secondary antibodies (A0208,
A0216; Beyotime, Shanghai, China). The blots were examined
by chemiluminescence using the Enhanced Chemiluminescence
Detection kit (Pierce Biotechnology, Rockford, IL, United States).
After exposure, the intensity of bands was analyzed by Image-Pro
Plus 6.0 software.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
8.0.2 (GraphPad Software, San Diego, CA, United States). Data
were shown as mean ± standard deviation (SD) from the
triplicates of independent experiments. The difference between
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different groups was analyzed using a two-sided Student’s t-test
and ANOVA. P-values< 0.05 were considered significant.

RESULTS

The Level of m6A Modification Is
Positively Correlated With TNF-α in IVDD
Patients
TNF-α is the main pro-inflammatory cytokines principally
associated with the progression of IVDD (Purmessur et al.,
2013). To verify the relationship between TNF-α and the
m6A methylation in IVDD patients, we first examined the
level of m6A methylation in the NP tissues from the patients
and discovered an increase in the level of m6A modification
(Figure 1A). Therefore, we further implemented screening of
the expression of genes related to m6A methylation, including
METTL3, METTL14, and Wilms tumor 1-associated protein
(Figures 1B–D). With the increase of the IVDD grades, all
the genes exhibited higher expression than the normal group.
Meanwhile, TNF-α expression increased along with the IVDD
grades (Figure 1E). To better determine the correlation between
the expression of TNF-α and m6A modification-related genes,
we calculated Pearson correlation coefficients for each gene
by plotting the TNF-α mRNA level against the m6A level
or the mRNA level of the genes (Figures 1F–I). Among the
three genes, TNF-α and METTL14 (r = 0.7299, P < 0.001)
were more correlated than the other two, which is similar
to the correlation between TNF-α expression and the m6A
methylation level. Similar phenomena were also observed in
HNPCs. With the increase in the stimulation concentrations
of TNF-α, the level of m6A methylation was significantly
elevated (Figure 1J). Accordingly, compared with the untreated
HNPCs, the METTL14 mRNA level and the protein level in
the treatment groups had also experienced significant increases
(Figures 1K,L). As a result, it is indicated that the METTL14-
mediated m6A modification is positively correlated with TNF-
α in IVDD models.

METTL14 Knockdown Inhibits
TNF-α-Induced Cell Cycle Arrest and
Senescence
The discovery of the positive correlation between the expression
of METTL14 and TNF-α in IVDD models motivated us to
further explore the impact of METTL14 on TNF-α-induced
NP cellular processes. We developed three shRNAs (shRNA
1-3) to silence METTL14 in HNPCs, which significantly
reduced the expression of the mRNA and protein compared
with the controls (Figures 2A,B). Especially, shRNA 1 and
2 showed better inhibitory potency according to the Western
blot result (Figure 2B). In the cell viability assay, TNF-α
treatment reduced the cell viability while the use of the two
shRNAs to TNF-α-treated HNPCs significantly restored the cell
viability (Figure 2C). A further investigation indicated that the
suppression of the METTL14 expression affected the TNF-α-
induced cell cycle arrest (Figures 2D,E). TNF-α caused the

cell cycle arrest of HNPCs at the G0-G1 stage. In comparison,
shRNA1 and 2 significantly drove the cells to enter the S and G2-
M phases. Additionally, the knockdown of METTL14 enabled the
inhibition of TNF-α-induced cell senescence (Figure 2F). Using
a senescence-associated (SA) β-galactose assay, we observed that
the blue-dyed precipitates had been considerably diminished
in the shRNA-treatment groups. From the results above, it
is suggested that METTL14 knockdown significantly inhibits
TNF-α-induced cell viability inhibition, cell cycle arrest, and
cell senescence.

METTL14 Overexpression Promotes Cell
Cycle Arrest and Senescence
To further evaluate the influence of METTL14 on cell
cycle arrest and senescence, we overexpressed METTL14
in HNPCs without the TNF-α treatment (Figures 3A,B).
Interestingly, despite the absence of TNF-α, the overexpression
of METTL14 led to reduced cell viability (Figure 3C). Likewise,
METTL14 overexpression remarkably influenced the cell cycle
(Figures 3D,E). METTL14 overexpression enhanced the cell
cycle arrest, which brought up the percentage of the cells
of the G0-G1 phase by 20% (50% for Vector vs. 70%
for METTL14). Accordingly, the cell percentage of S and
G2-M phases declined. With regard to the efficiency, the
overexpression of METTL14 was even comparable to the
TNF-α treatment (Figures 3D,E). When using the SA β-
galactose assay to identify the cell senescence of METTL14-
overexpressing HNPCs, we observed promoted cell senescence
(Figure 3F), which was similar to the TNF-α treatment.
Therefore, the METTL14 overexpression assays substantiated
that METTL14 inhibited cell viability and promote cell cycle
arrest and senescence.

METTL14-Dependent m6A Methylation
Regulates the Processing of miR-34a by
DGCR8
METTL14 can interact with DGCR8 to positively regulate the
primary miRNA process in an m6A-dependent manner (Ma et al.,
2017). In our case, we intended to pursue the downstream target
of the METTL14-DGCR8 axis. To this end, we first established
the interaction between DGCR8 and METTL14 in HNPCs by
co-immunoprecipitation (Figure 4A). Moreover, in METTL14-
overexpressing HNPCs we also saw a significant increase in
the binding between METTL14 and DGCR8 (Figure 4B).
The findings above solidified that METTL14 mediated pri-
miRNA processing by regulating the recognition and binding of
DGCR8 to pri-miRNAs.

Furthermore, we detected the association between the
four miRNAs, which were upregulated in TNF-α-treated
HNPCs and in NP tissues from IVDD patients (Cao and
Chen, 2017; Kang et al., 2017; Cheng et al., 2018; Xiang
et al., 2020), and METTL14 (Figure 4C). Compared with
the other three miRNAs, the miR-34a-5p level skyrocketed
(>3.5-fold) accompanying the overexpression of METTL14
(Figure 4D). Accordingly, the suppression of METTL14

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 642437

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642437 March 1, 2021 Time: 16:11 # 5

Zhu et al. METTL14/miR-34a-5p/SIRT1 Axis in Intervertebral Disc Degeneration

FIGURE 1 | Correlation between TNF-α and m6A modification in IVDD patients. (A) The m6A level and expression of (B) METTL3, (C) METTL14, (D) WTAP, and
(E) TNF-α in normal controls and IVDD patients. (F–I) Pearson correlation scatter plots in IVDD patients (n = 30). (J) The m6A level and (K,L) expression of METTL14
in HNPCs treated with different doses of TNF-α. *P < 0.05, **P < 0.01, ***P < 0.001 compared with normal control; ###P < 0.001 compared with low grade;
1 P < 0.05, 11 P < 0.01 compared with moderate grade.
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FIGURE 2 | METTL14 silencing inhibits TNF-α-induced cell cycle arrest and senescence. (A,B) Expression of METTL14 in HNPCs transduced with METTL14 shRNA
vectors. (C) Cell viability, (D,E) cell cycle, and (F) SA-β-gal staining of HNPCs transduced with METTL14 shRNA vectors and treated with 30 ng/mL TNF-α for 24 h.
Scale bar: 50 µm. **P < 0.01, ***P < 0.001 compared with control; ###P < 0.001 compared with TNF-α + shNC.

by the specific shRNAs significantly reduced the miR-34a-
5p relative level. When subjected to the TNF-α treatment,
HNPCs exhibited remarkably high expression of miR-34a-
5p and pre-miR-34 but low level of pri-miR-34, indicating
that miR-34 was processed (Figure 4E). The addition of
METTL14 shRNAs tremendously mitigated the TNF-α-induced
increase in mRNA levels of miR-34a-5p and pre-miR-34.
Furthermore, the relative pri-miR-34a m6A level was also
enhanced by TNF-α, which was abolished by METTL14
knockdown (Figure 4F). Conversely, the overexpression

of METTL14 promoted the formation of miR-34a-5p and
pre-miR-34 (Figure 4G). The relative level of pri-miR-34a
m6A showed a fourfold increase when METTL14 was
overexpressed (Figure 4H).

As a result, the level of METTL14 exhibited a positive
correlation with that of miR-34a-5p in NP tissues of IVDD
patients (Figure 4I). The regulation of the pri-miR-34a level was
tightly associated with the interaction between METTL14 and
DGCR8 (Figures 4J,K). The DGCR binding level as well as the
m6A modification level was significantly promoted by METTL14,
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FIGURE 3 | METTL14 overexpression promotes cell cycle arrest and senescence. (A,B) Expression of METTL14 in HNPC cells transduced with the METTL14
expression vector. (C) Cell viability, (D,E) cell cycle, and (F) SA-β-gal staining of HNPCs transduced with a METTL14 expression vector for 24 h. Scale bar: 50 µm.
**P < 0.01, ***P < 0.001 compared with vector.

indicating that METTL14 played a vital role in the maturation
of pri-miR-34a. Taken together, these results indicate that the
METTL14 promoted the processing of pri-miR-34a by DGCR8
in an m6A manner.

miR-34a-5p Inhibitor Rescues the Cell
Cycle Arrest and Senescence Induced by
METTL14 Overexpression
To verify the potential function of miR-34a-5p in IVDD,
we introduced the corresponding miRNA inhibitor in
the METTL14-overexpressing HNPCs. The miR-34a-5p
inhibitor considerably counteracted the effects of METTL14
overexpression on cell senescence of HNPCs (Figure 5). The cell
viability (Figure 5A), cell cycle arrest (Figures 5B,C), and cell
senescence (Figure 5D) were largely rescued by the inhibitor.
As a result, evidenced by the data, the METTL14-induced cell
cycle arrest and senescence can be recovered by the miR-34a-5p
inhibitor, thus manifesting the indispensable role of miR-34a-5p
in regulating METTL14-dependent cell senescence.

miR-34a-5p Promotes Cell Cycle Arrest
and Senescence by Targeting SIRT1
Using the mRNA interaction prediction server1, we predicted the
potential interaction between the miR-34-5p and the 3′-UTR of
SIRT1 mRNA (Figure 6A). To better analyze the interaction,
we devised a dual-luciferase assay using the SIRT1 wildtype
mRNA (SIRT1-WT) and the SIRT1 3′-UTR mutant mRNA
(SIRT1-MUT) in HNPCs that were treated with the miR-34a-
5p inhibitor or the miR-34a-5p mRNA mimic (Figure 6B). In
the SIRT1-WT group, the inhibitor approximately generated a
9-fold drastic increase in luciferase activity. By contrast, the
mimic led to lower luciferase activity. Instead of inducing changes
in luciferase activities, in the SIRT1-MUT group, no matter
whether the inhibitor or the mimic failed to generate any
signal, indicating that the mutation of 3′-UTR jeopardized the
interaction between miR34a-5p and SIRT1 mRNA. Furthermore,
SIRT1 mRNA expression can be influenced by miR-34a-5p

1http://www.microrna.org/
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FIGURE 4 | METTL14-dependent m6A methylation regulates the processing of miR-34a by DGCR8. (A) Co-immunoprecipitation of the METTL14-interacting protein
DGCR8. IgG antibody was used as the control for the immunoprecipitation. (B) Immunoprecipitation of DGCR8 in cells overexpressing METTL14 or not. Western
blot was conducted using the antibodies depicted. (C) Four up-regulated miRNAs were searched out according to their expression levels in TNF-α-treated HNPC
cells and in NP tissues of IVDD patients. (D) Expression of miR-200c-3p, miR-27a-3p, miR-34a-5p and miR-15b-5p in HNPC cells transduced with METTL14
shRNA vectors or overexpression vector. (E) Expression of pri-miR-34a, pre-miR-34a, and miR-34a-5p and (F) the levels of pri-miR-34a m6A in HNPC cells
transduced with METTL14 shRNA vectors and treated with 30 ng/mL TNF-α for 24 h. (G) Expression of pri-miR-34a, pre-miR-34a, and miR-34a-5p and (H) the
levels of pri-miR-34a m6A in HNPC cells transduced with a METTL14 expression vector for 24 h. (I) Pearson correlation scatter plots in IVDD patients (n = 30).
Immunoprecipitation of (J) DGCR8-associated and (K) m6A modified RNA from HNPC cells transduced with METTL14 expression vector followed by qRT-PCR to
detect pri-miR-34 binding to DGCR8 and to assess the pri-miR-34a m6A modification level, respectively. **P < 0.01, ***P < 0.001 compared with control or
vector.###P < 0.001 compared with TNF-α + shNC.
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FIGURE 5 | miR-34a-5p inhibitor rescues the cell cycle arrest and senescence induced by METTL14 overexpression. (A) Cell viability, (B,C) cell cycle, and
(D) SA-β-gal staining of HNPC cells transduced with the METTL14 expression vector and transfected with miR-34a-5p inhibitor for 24 h. Scale bar: 50 µm.
**P < 0.01, ***P < 0.001 compared with vector.###P < 0.001 compared with METTL14 + NC.

(Figure 6C). The miR-34a-5p inhibitor significantly promoted
SIRT1 expression in HNPCs while the mimic considerably
suppressed the expression. We next overexpressed SIRT1 in
HNPCs to determine the effects of SIRT1 on cell senescence
of HNPCs in the presence of the inhibitor or the mimic of
miR-34a-5p (Figures 6D,E). The miR-34a-5p mimic lowered
the cell viability of HNPCs. However, SIRT1 overexpression in
HNPCs largely restored the cell viability despite the presence
of the miR-34a-5p mimic (Figure 6F). SIRT1 overexpression

was also active in attenuating the miR-34a-5p-induced cell cycle
arrest, in which more HNPCs entered S and G2-M phases
(Figure 6G,H). Cell senescence of HNPCs caused by miR-34a-
5p was reversed by SIRT1 overexpression as well (Figure 6I).
Based on these findings, we established the relationship
between the level of SIRT1 mRNA and the levels of miR-
34a-5p and METTL14 mRNA in NP tissues of IVDD patients
(Figures 6J,K). SIRT1 expression was negatively correlated with
either the miR-34a-5p level or the METTL14 mRNA level.
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FIGURE 6 | miR-34a-5p promotes cell cycle arrest and senescence by targeting SIRT1. (A) Predictive miR-34a-5p binding sites in the 3′-UTR of SIRT1 mRNA.
(B) Dual-luciferase reporter assays demonstrated that SIRT1 was the direct target of miR-34a-5p. (C–E) Expression of SIRT1 in HNPC cells transfected with
miR-34a-5p inhibitor, miR-34a-5p mimic, or SIRT1 expression vector. (F) Cell viability, (G,H) cell cycle, and (I) SA-β-gal staining of HNPC cells transfected with
miR-34a-5p mimic and a SIRT1 expression vector for 24 h. (J) Pearson correlation scatter plots in IVDD patients (n = 30). Scale bar: 50 µm. (K) Diagram of the
mechanism. *P < 0.05, **P < 0.01, ***P < 0.001 compared with NC or vector.##P < 0.01, ###P < 0.001 compared with mimic + vector.
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Therefore, our results demonstrate that SIRT1 served as a
critical target in process of the miR-34a-5p-promoted cell cycle
arrest and senescence.

DISCUSSION

miRNA has been found closely associated with cellular process
regulation, cell function, and diseases (Bhaskaran and Mohan,
2014). The modification of miRNAs, especially methylation,
can largely affect the functions of mRNA, which further
regulates cellular processes and biological activities (Bianchi
et al., 2017). Recent reports link IVDD with miRNAs, suggesting
that miRNAs can act as potential therapeutic targets (Li et al.,
2015; Zhou et al., 2017). Herein, we have devised various assays
to clarify the mechanism of m6A methylation promoted cell
senescence in IVDD.

The level of m6A modification significantly increased in
the HNPCs, which was correlated with the level of TNF-α in
IVDD patients. m6A modification has been characterized as
the most prevalent internal mRNA modification in mammalian
cells, which accounts for regulating various important biological
processes (Zhang et al., 2019). Rising evidence is confirming the
role of m6A in cell development and cancers (Fazi and Fatica,
2019; Chen and Wong, 2020). Li et al. have characterized the
function of m6A methylation in controlling the proliferation of
human glioma cells by influencing apoptosis (Li F. et al., 2019).
Yang et al. have reported the m6A-modulated proliferation and
apoptosis of lens epithelial cells (Yang et al., 2020). However,
there is no previous report on the relation between m6A
methylation and IVDD. Our discovery of a high level of m6A
modification in NP tissues of IVDD patients expands the
scope of related research. More importantly, we have identified
that METTL14, one of the “writer” protein, was more tightly
associated with m6A modification, the expression of which
was positively correlated with the level of m6A methylation
as well as the TNF-α. Jian et al. (2020) have reported the
mechanism of METTL14-promoted endothelial inflammation
and atherosclerosis through driving FOXO1 m6A modifications.
They proved the major role of METTL14 in TNF-α-induced
endothelial cell inflammation. As a process tightly associated
with inflammation, cell senescence includes irreversible cell
cycle arrest (Stojanovic et al., 2020). In our study, we have
clearly illustrated the role of METTL14 in cell senescence,
which solidifies the function of METTL14 in TNF-α-induced
inflammation. With the increased expression of this writer
protein, cell viability decreased while cell cycle arrest and
senescence were significantly promoted.

The identification of METTL14 as the main regulator of
m6A modification in IVDD models allowed us to further
explore the mechanism behind it. Studies have shown that
METTL14 actively participates in the processing of miRNAs by
interacting with DGCR8 (Feng et al., 2010; Ma et al., 2017).
Accordingly, our co-immunoprecipitation assay also confirmed
the interaction between METTL14 and DGCR8 in HNPCs,
which proves that METTL14 played a role in regulating miRNA
maturation in IVDD models. Interestingly, through an in-depth

screening of miRNA change in either HNPCs or NP tissues
of IVDD patients, we identified several upregulated miRNAs,
in which miR-34a-5p showed a positive correlation with the
m6A modification level. When varying the METLL14 level in
HNPCs, we were able to capture the regulation of the miR-34a-
5p processing. Similar to the processing of miR-126 (Feng et al.,
2010) and miR-19a (Zhang et al., 2020), METLL14 positively
modulated the maturation of miR-34. Thus, the RNA levels
of pre-miR-34 and miR-34a-5p were significantly elevated in
contrast to the mitigated pri-miR-34 level. The m6A methylation
of pri-miR-34 was found active under the circumstance of
METTL14 overexpression.

Previous studies have discussed the mechanism of m6A-
promoted cell senescence (Li Q. et al., 2017; Wu et al.,
2020). The METTL3/METTL14-mediated m6A methylation can
enhance p21 expression which is further promoted. oxidative
stress-induced cellular senescence (Li Q. et al., 2017). Through
interacting with Lamin A, METTL3/14 can be properly localized
in the nuclear speckles to achieve the regulatory function (Wu
et al., 2020). Our study has deepened the current understanding
of m6A modification in cell senescence. Mainly regulated by
METTL14, m6A-involved cell senescence was originated from
the methylation of miR-34a-5p followed by the interaction
with the 3′-UTR of the SIRT mRNA. During the process,
the maturation of the mRNA was largely promoted, reflected
by the escalated levels of miR-34a-5p and pre-miR-34and
reduced level of pri-miR-34. The role of METTL3 in the
regulation of senescence.

It is noted that miRNAs can play vital roles in cell senescence
(Li et al., 2009; Faraonio et al., 2012; Baker et al., 2019). miR-
34a-5p has been identified as a possible cause of cell senescence
in HNPCs in our study. Xia et al. have characterized the
mechanism of miR-34a-5p-induced cardiac senescence-related
injury. It is shown that miR-34a-5p serves as an exosomal
transfer RNA and the inhibition of miR-34a-5p mitigated the pro-
senescent effect in cardiomyocytes and subsequently alleviated
the irreversible cell cycle arrest (Xia et al., 2020). miR-34a-
5p is also found involved in regulating the switch between
senescence and apoptosis in non-small cell lung cancer (Gupta
et al., 2020). Herein, we have presented that the inhibition of
miR-34a-5p significantly decreases the senescence of HNPCs. As
a result, miR-34a-5p demonstrates prevalent senescent effects in
varieties of tissues and organs, which can be a major biological
function of this miRNA.

Additionally, Maes et al. (2009) used a miRNA microarray
assay to reveal the upregulation of miR-34 in senescent cells.
We advanced the results and proved that this miRNA was
further processed through the METTL14-DGCR8 axis. Our data
have demonstrated that miR-34a-5p induced cell senescence
by targeting the downstream factor SIRT1. SIRT1 localizes in
both the nucleus and cytoplasm to function in many crucial
biological activities, including lifespan extension, ADP-ribosyl-
transferase, DNA repair, cell cycle arrest, and cellular senescence
(Lee et al., 2019). The sequence of miR-34a-5p was predicted to
pair with that of the 3′-UTR of SIRT1. The use of the miR-34a-
5p mimic resulted in typical senescence that was largely inhibited
by overexpressing SIRT1. In IVDD patients, SIRT1 expression
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was negatively correlated with the levels of the METTL14 mRNA
and miR-34a-5p. Therefore, our findings reinforce the idea that
SIRT1 prevents cell senescence.

Our data were mainly obtained from the in vitro model
of HNPCs, which can be further explored in in vivo IVDD
models. Due to limited studies in the related field, the concrete
mechanism of METTL14-mediated m6A modification and
maturation of miR-34a has not been fully elucidated. Efficient
disruption of the interaction between miR-34a-5p and SIRT1 in
both in vitro and in vivo levels to alleviate IVDD still requires
more sophisticated and intensive investigations. Additionally,
the interaction between METTL14 and DGRC8 is also worth
dedicated studies to uncover the entire axis.

Our current study reveals that m6A-modified miR-34a-
5p promotes induced NPC senescence by targeting SIRT1,
which represents the first attempt to discover the association
between miRNA modification and cell senescence in IVDD
models (Figure 6K). By characterizing the role of the miR-
34a-5p-SIRT1 axis in cell senescence, we have proposed
a potential direction for developing an IVDD therapy by
disrupting the interaction between miR-34a-5p and SIRT1 or
inhibiting METTL14.
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