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Abstract: Acute kidney injury (AKI) is a dose-limiting side effect of cisplatin therapy in cancer
patients. However, effective therapies for cisplatin-induced AKI are not available. Oxidative stress,
tubular cell death, and inflammation are known to be the major pathological processes of the
disease. 6-Shogaol is a major component of ginger and exhibits anti-oxidative and anti-inflammatory
effects. Accumulating evidence suggest that 6-shogaol may serve as a potential therapeutic agent for
various inflammatory diseases. However, whether 6-shogaol exerts a protective effect on cisplatin-
induced renal side effect has not yet been determined. The aim of this study was to evaluate
the effect of 6-shogaol on cisplatin-induced AKI and to investigate its underlying mechanisms. An
administration of 6-shogaol after cisplatin treatment ameliorated renal dysfunction and tubular injury,
as shown by a reduction in serum levels of creatinine and blood urea nitrogen and an improvement
in histological abnormalities. Mechanistically, 6-shogaol attenuated cisplatin-induced oxidative
stress and modulated the renal expression of prooxidant and antioxidant enzymes. Apoptosis and
necroptosis induced by cisplatin were also suppressed by 6-shogaol. Moreover, 6-shogaol inhibited
cisplatin-induced cytokine production and immune cell infiltration. These results suggest that
6-shogaol exhibits therapeutic effects against cisplatin-induced AKI via the suppression of oxidative
stress, tubular cell death, and inflammation.

Keywords: 6-shogaol; cisplatin; acute kidney injury; oxidative stress; apoptosis; necroptosis;
inflammation

1. Introduction

Acute kidney injury (AKI) is defined as a sudden decrease in kidney function and is
strongly associated with increased morbidity and mortality in hospitalized patients [1].
Furthermore, accumulating evidence suggest that AKI is significantly linked to an increased
risk of chronic kidney disease [2]. There are many possible causes of AKI, such as sepsis,
volume depletion, and nephrotoxic medications [1]. Among them, nephrotoxic mediation-
associated AKI accounts for 19-26% of AKI cases among hospitalized patients [3]. Over the
decades, many chemotherapeutic agents have been developed for cancer patients, but their
use is frequently limited by serious side effects, including nephrotoxicity [4]. Cisplatin is
one of the most effective chemotherapeutic agents and is widely used in the treatment of
various solid tumors, including lung, testicular, ovarian, and bladder cancers [5]. However,
nephrotoxicity is a major side effect of cisplatin-based therapies, with a 20-35% risk in
patients receiving cisplatin, limiting the application and efficacy of cisplatin in cancer
treatment [6]. Because there is no validated pharmacological treatment for cisplatin-
induced AKI, the development of novel medications for the renal side effect of cisplatin-
based therapies is urgently needed. Although the pathogenesis of cisplatin-induced AKI
is still incompletely understood, multiple mechanisms, such as oxidative stress, tubular
cell death, and inflammation, are involved in the pathological process [5,7]. Accumulating
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evidence suggest that many compounds isolated from natural products display potent
anti-oxidative and anti-inflammatory activities [8]. Thus, natural products can serve as
promising sources of lead compounds to achieve the discovery and development of new
drugs for various human diseases [9]. Indeed, in recent studies, many natural product-
derived compounds, such as curcumin, quercetin, luteolin, and berberine, have been
reported to have preventive or therapeutic effects on cisplatin-induced AKI [6].

Ginger is a well-known herbaceous plant and has long been used for relieving motion
sickness, nausea, and abdominal pain [10]. It is known that ginger contains various
bioactive compounds such as terpene, phenolic, and aromatic compounds [11]. Among
them, 6-shogaol is a main bioactive phenolic compound of dried ginger and exerts potent
anti-oxidative and anti-inflammatory effects [10]. Previous studies have shown that an
administration of 6-shogaol to rodents ameliorated various inflammatory diseases [10].
However, whether 6-shogaol has a beneficial effect on cisplatin-induced AKI has not yet
been determined. Therefore, in the present study, we evaluated the effect of 6-shogaol on
cisplatin-induced AKI and explored the underlying mechanisms.

2. Results
2.1. 6-Shogaol Ameliorated Cisplatin-Induced AKI

To evaluate the effect of 6-shogaol on renal function, we measured serum levels of
creatinine and blood urea nitrogen (BUN), indicators of renal function [12], in all three
groups of mice. A dose of 20 mg/kg cisplatin markedly increased the levels of both
markers (Figure 1A,B). However, the administration of 6-shogaol after cisplatin treatment
significantly attenuated the cisplatin-induced renal dysfunction (Figure 1A,B).
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Figure 1. Effect of 6-shogaol on renal function in cisplatin-treated mice. Mice were given an in-
traperitoneal injection of 6-shogaol (20 mg/kg; 6-SHO) daily for 3 consecutive days, starting from
1 h after cisplatin treatment (20 mg/kg; CP). All mice were sacrificed 72 h after a single dose of
cisplatin and blood samples were obtained. (A) Serum creatinine levels. (B) Blood urea nitrogen
(BUN) levels. n = 8 per group of mice. * p < 0.05 versus the control group (Con). * p < 0.05 versus the
cisplatin-treated group (CP).

Because tubular injury is a hallmark of cisplatin-induced AKI [13], we next performed
a histological examination of the kidneys. Hematoxylin and eosin (H&E) and periodic acid-
Schiff (PAS) staining showed significant tubular damage in cisplatin-treated mice, including
tubular dilatation and cast formation (Figure 2A,B). These histological abnormalities were
significantly alleviated by 6-shogaol (Figure 2A,B).

Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1
(KIM-1) are well-known markers of tubular injury [14]. It has been known that cisplatin
treatment markedly increases the renal expression of both markers in rodents [15,16].
Consistently, immunohistochemistry (IHC) staining revealed that cisplatin-treated mice
exhibited increased expression of NGAL and KIM-1 (Figure 3A-C). However, the adminis-
tration of 6-shogaol significantly reduced the expression of both markers (Figure 3A-C).
Taken together, these results suggest that 6-shogaol protected mice from cisplatin-induced
AKI, as represented by the amelioration of renal dysfunction and histopathological abnor-
malities.



Molecules 2021, 26, 5931 3of 14

A
cP CP+6-SHO

w

o

T

(2]

<

a

B
5 1 con

o * . cP
8 & B CP+6-SHO
EE
= #
<2
B
=
51
2

Figure 2. Effect of 6-shogaol on histological abnormalities in cisplatin-treated mice. (A) Representative images of hema-
toxylin and eosin (H&E) or periodic acid-Schiff (PAS) staining of renal cortex. Scale bar = 40 um. Red arrows indicate
tubular dilatation. Blue arrows indicate cast deposition in the lumens of tubules. (B) Tubular injury was semiquantitatively
scored using PAS-stained sections. 1 = 8 per group of mice. * p < 0.05 versus Con. * p < 0.05 versus CP.
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Figure 3. Effect of 6-shogaol on expression of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury
molecule-1 (KIM-1) in cisplatin-treated mice. (A) Representative images of immunohistochemistry (IHC) staining for NGAL
and KIM-1. Scale bar = 40 um. (B) Quantification of positive staining for NGAL. (C) Quantification of positive staining for
KIM-1. 1 = 8 per group of mice. * p < 0.05 versus Con. # p < 0.05 versus CP.
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2.2. 6-Shogaol Attenuated Cisplatin-Induced Oxidative Stress

Oxidative stress plays a critical role in cisplatin-induced renal injury [5,7]. Previous
studies have demonstrated that 6-shogaol exerts an anti-oxidative activity [17,18]. Thus, to
explore the mechanisms underlying the protective effect of 6-shogaol on cisplatin-induced
AKI, we next evaluated the levels of lipid peroxidation markers 4-hydroxynonenal (4-HNE)
and malondialdehyde (MDA) [19] in the kidneys. IHC staining showed that cisplatin
treatment largely increased the renal expression of 4-HNE (Figure 4A,B). In addition, renal
levels of MDA were elevated after cisplatin treatment (Figure 4C). The increased oxidative
stress after cisplatin treatment was also confirmed by a decrease in the ratio of reduced
glutathione (GSH) to oxidized glutathione (GSSG) in the kidneys (Figure 4D). However, all
these changes were significantly reversed by 6-shogaol (Figure 4A-D).
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Figure 4. Effect of 6-shogaol on oxidative stress in cisplatin-treated mice. (A) Representative images of IHC staining for
4-hydroxynonenal (4-HNE). Scale bar = 40 um. (B) Quantification of positive staining for 4-HNE. (C) Renal levels of
malondialdehyde (MDA). (D) Ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). n = 8 per group of mice.

* p < 0.05 versus Con. # p < 0.05 versus CP.

Previous studies have shown that prooxidant and antioxidant enzymes play important
roles in regulating oxidative stress in cisplatin-induced AKI [20,21]. Thus, we examined the
effect of 6-shogaol on the expressions of prooxidant and antioxidant enzymes. In cisplatin-
treated mice, the mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2
(COX-2), 5-lipoxygenase (5-LOX), and nicotinamide adenine dinucleotide phosphate 4
(NOX4) were elevated (Figure 5A), while the expression of catalase and manganese super-
oxide dismutase (MnSOD) was decreased (Figure 5B). Increased protein levels of NOX4
and MnSOD were also confirmed by western blot analysis (Figure 5C,D). Importantly, the
administration of 6-shogaol significantly revered the changes in expression of proxoidant
and antioxidant enzymes induced by cisplatin (Figure 5A-D). Altogether, these results
suggest that 6-shogaol attenuated the cisplatin-induced oxidative stress, at least in part,
through modulating prooxidant and antioxidant systems.

2.3. 6-Shogaol Inhibited Cisplatin-Induced Tubular Cell Death

Apoptotic death of tubular epithelial cells is a characteristic feature of cisplatin-
induced AKI [5,7]. To evaluate the effect of 6-shogaol on cisplatin-induced tubular cell
apoptosis, TdT-mediated dUTP nick end labeling (TUNEL) staining was performed on kid-
ney sections. Cisplatin treatment markedly increased the number of TUNEL-stained cells in
the kidneys (Figure 6A,B). However, the administration of 6-shogaol significantly reduced
the number of TUNEL-stained apoptotic cells in cisplatin-treated mice (Figure 6A,B).
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Figure 5. Effect of 6-shogaol on expression of prooxidant and antioxidant enzymes in cisplatin-treated mice. (A) Relative
mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and nicoti-
namide adenine dinucleotide phosphate oxidase 4 (NOX4). (B) Relative mRNA levels of catalase and manganese superoxide
dismutase (MnSOD). (C) Western blotting of NOX4 and MnSOD. (D) Quantification of western blots for NOX4 and MnSOD.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was chosen as an internal control. n = 8 per group of mice. * p < 0.05
versus Con. # p < 0.05 versus CP.
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Figure 6. Effect of 6-shogaol on tubular cell apoptosis in cisplatin-treated mice. (A) TdT-mediated dUTP nick end labeling
(TUNEL) assay on kidney sections. Scale bar = 10 um. To detect nuclei, 4/, 6-diamidino-2-phenylindole (DAPI) was used.
(B) Number of TUNEL-stained cells per field. 1 = 8 per group of mice. * p < 0.05 versus Con. ¥ p < 0.05 versus CP.

Recent studies have shown that necroptosis, a programed form of necrosis, is also
critically involved in the pathogenesis of cisplatin-induced AKI [22,23]. Because necroptosis
is regulated by receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and
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Con CP

mixed lineage kinase domain-like protein (MLKL), we examined the effect of 6-shogaol on
RIPK1-RIPK3-MLKL signaling cascade. Cisplatin-treated mice exhibited increased protein
levels of RIPK1, RIPK3, and p-MLKL in kidneys (Figure 7A,B). An upregulation of RIPK3
after cisplatin treatment was also confirmed by IHC staining (Figure 7C,D). Importantly,
the administration of 6-shogaol significantly inhibited the cisplatin-induced necroptosis
(Figure 7A-D).
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Figure 7. Effect of 6-shogaol on tubular cell necroptosis in cisplatin-treated mice. (A) Western blotting of receptor-interacting
serine/threonine protein kinase 1 (RIPK1), RIPK3, mixed-lineage kinase domain-like protein (MLKL), and p-MLKL.
(B) Quantification of western blots for RIPK1, RIPK3, and p-MLKL. GAPDH was used as an internal control. (C) Represen-
tative images of IHC staining for RIPK3. Scale bar = 40 um. (D) Quantification of positive staining for RIPK3. n = 8 per
group of mice. * p < 0.05 versus Con. ¥ p < 0.05 versus CP.

2.4. 6-Shogaol Suppressed Cisplatin-Induced Inflammation

It has been known that cisplatin treatment induces a significant production of in-
flammatory cytokines and chemokines and an infiltration of immune cells into the kid-
ney [24,25]. Because 6-shogal has been shown to exhibit anti-inflammatory activity [10],
we evaluated whether 6-shogaol can suppress inflammatory responses induced by cis-
platin. Cisplatin treatment increased serum levels of tumor necrosis factor-« (TNF-o) and
interleukin-6 (IL-6) (Figure 8A). Renal mRNA levels of TNF-«, IL-6, monocyte chemoat-
tractant protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5) were also elevated
after cisplatin treatment (Figure 8B). However, the excessive production of cytokines and
chemokines induced by cisplatin was significantly suppressed by 6-shogaol (Figure 8A,B).
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Figure 8. Effect of 6-shogaol on production of cytokines and chemokines in cisplatin-treated mice. (A) Serum levels of tumor
necrosis factor-a (TNF-«) and interleukin-6 (IL-6). (B) Relative mRNA levels of TNF-«, IL-6, monocyte chemoattractant
protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5). GAPDH was chosen as an internal control. n = 8 per group
of mice. * p < 0.05 versus Con. # p < 0.05 versus CP.

We next examined the effect of 6-shogaol on the infiltration of macrophages and CD4*
T cells into the kidney. IHC staining of the kidney sections showed that the number of
cells stained with F4/80 or CD4 was increased after cisplatin treatment (Figure 9A-C).
However, the administration of 6-shogaol significantly suppressed the infiltration of these
cells (Figure 9A-C).
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Figure 9. Effect of 6-shogaol on immune cell infiltration in cisplatin-treated mice. (A) Representative images of IHC staining
for F4/80 and CD4. Red arrows indicate positively stained cells. Scale bar = 20 um. (B) Number of F4/80-stained cells per
field. (C) Number of CD4-stained cells per field. # = 8 per group of mice. * p < 0.05 versus Con. * p < 0.05 versus CP.

3. Discussion

In this study, we aimed to evaluate the effect of 6-shogaol on cisplatin-induced AKI.
Our data showed that the administration of 6-shogaol after cisplatin treatment attenu-
ated cisplatin-induced renal dysfunction and tubular injury. These therapeutic effects of
6-shogaol were associated with an amelioration of oxidative stress, tubular cell death, and
inflammation.
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Ginger has been widely used as a medicinal herb, especially in Asia [10]. Among
the components of ginger, 6-gingerol is the most bioactive component in fresh ginger,
whereas 6-shogaol is the main bioactive compound in dried ginger [10]. Accumulating
evidence suggest that 6-shogaol exerts beneficial effects against various inflammatory
diseases such as periodontitis [26], endometriosis [27], diabetic neuropathy [28], multiple
sclerosis [29], Parkinson’s disease [30], asthma [31], and allergic dermatitis [32]. Importantly,
a recent study showed that an administration of 6-shogaol protected against renal ischemia-
reperfusion injury in mice [33]. Ischemia-reperfusion injury is one of the most common
causes of AKI and is closely associated with high morbidity and mortality [34]. In this
study, we demonstrated that 6-shogaol had a protective effect on cisplatin-induced AKI.
Because nephrotoxic medication-associated AKI is also a major cause of AKI [3], these
results suggest that 6-shogaol has the potential to protect against AKI caused by various
etiologies. Furthermore, 6-shogaol has been shown to exert a protective effect against
diabetic nephropathy, the most common cause of chronic kidney disease in mice [35,36].

Although the mechanism of cisplatin-induced AKI has not been fully elucidated
despite many efforts, oxidative stress is believed to play an important role in the patho-
physiology of cisplatin-induced AKI [5,7]. Indeed, many studies have examined the use
of antioxidants for the prevention or treatment of cisplatin-induced renal injury [37]. A
previous study showed that 6-shogaol has an antioxidant property and its antioxidant
activity is stronger than that of 6-gingerol [38]. These results prompted us to examine the
effect of 6-shogaol on oxidative stress in cisplatin-induced renal injury. The administration
of 6-shogaol suppressed cisplatin-induced oxidative stress, as shown by a decrease in
the amount of lipid peroxidation by-products. In addition, cisplatin treatment decreased
the GSH/GSSG ratio, which was significantly reversed by 6-shogaol. A decrease in the
GSH/GSSG ratio indicates increased oxidative stress [39,40]. Altogether, our data indicates
that 6-shogaol exhibited an anti-oxidative effect in cisplatin-induced AKIL Consistently, the
protective effects of 6-shogaol on diabetic nephropathy were associated with a suppression
of oxidative stress [35,36]. A recent study also reported that pretreatment of 6-shogaol
inhibited oxidative stress to ameliorate middle cerebral artery occlusion-induced brain
damage [41]. It has been known that oxidative stress occurs due to an imbalance between
prooxidant and antioxidant systems [42]. In cisplatin-induced AKI, the renal expression
of prooxidant enzymes, such as iNOS, COX-2, 5-LOX, and NOX4, was increased [21,25],
while that of antioxidant enzymes, such as catalase and MnSOD [19], was decreased. Our
data suggest that 6-shogaol modulated prooxidant and antioxidant systems to inhibit
cisplatin-induced oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)
is a critical transcription factor that regulates the expression of antioxidant enzymes [43].
The expression of catalase and MnSOD can be regulated by Nrf2. Recent studies have
shown that 6-shogaol activated Nrf2 to upregulate antioxidant enzymes, resulting in the
suppression of oxidative stress [17,44].

Tubular cell death is a hallmark of cisplatin-induced AKI [5,7]. The administration of
6-shogaol largely reduced cisplatin-induced apoptosis, as shown by a decrease in TUNEL-
stained cells. In agreement with our data, it was reported that 6-shogaol treatment reduced
tubular cell apoptosis in a murine model of ischemic AKI [33]. In cisplatin-induced AKI,
oxidative stress can lead to tubular cell apoptosis [45]. Thus, the suppression of oxidative
stress by 6-shogaol may have induced a decrease in apoptotic death. According to the
results of recent studies, besides apoptosis, necroptosis is known to play an important
role in cisplatin-induced AKI [22,23]. During necroptosis, RIPK1 interacts with RIPK3 to
form a heterodimer complex, promoting the oligomerization of MLKL by phosphorylating
it [34]. The oligomeric form of MLKL translocates to the plasma membrane, resulting in
membrane rupture. Mice deficient for RIPK3 or MLKL exhibited less severe renal injury
after cisplatin treatment compared to wild-type mice [22]. A pharmacological suppression
of RIPK1 activity ameliorated tubular cell necroptosis and renal injury in cisplatin-treated
mice [46,47]. Previous studies have reported that the renal expression of RIPK1, RIPK3,
and p-MLKL was increased after cisplatin treatment [48,49]. Interestingly, these changes
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were significantly attenuated by 6-shogaol. Altogether, these data indicate that 6-shogaol
inhibited two major types of tubular cell death, apoptosis and necroptosis, in cisplatin-
induced renal injury.

It has been known that inflammation is critically involved in cisplatin-induced AKI[5,7].
Cisplatin treatment induces systemic and renal inflammation and recruits immune cells into
the kidneys, promoting the production of more inflammatory cytokines and chemokines,
leading to severe kidney damage. In the present study, we found that 6-shogaol reduced
serum and renal levels of TNF-« and IL-6, suggesting the inhibitory effect of 6-shogaol
on systemic and renal inflammation. In particular, the importance of TNF-« in the patho-
genesis of cisplatin-induced AKI has been well elucidated in previous studies [5,7]. Mice
deficient for TNF-« were resistant to kidney damage induced by cisplatin [50,51]. A phar-
macological inhibition of TNF-« blunted cisplatin-induced production of other cytokines
and chemokines, and attenuated cisplatin-induced renal injury [50]. In addition, the ad-
ministration of 6-shogaol also reduced the elevated expression of chemokines, MCP-1 and
CCLS5. These chemokines play important roles in recruiting macrophages and T cells into
the tissues [52]. In the present study, an increased infiltration of macrophages and CD4* T
cells into the kidneys after cisplatin treatment was significantly suppressed by 6-shogaol.
These results suggest that 6-shogaol decreased the excessive production of cytokines and
chemokines, and suppressed the infiltration of immune cells, resulting in an amelioration of
cisplatin-induced inflammatory responses. Given that necroptosis promotes inflammatory
responses through the leakage of cellular contents into the extracellular space [53], the
suppression of inflammation by 6-shogaol may be, at least partially, due to its inhibitory
effect on necroptosis.

4. Materials and Methods
4.1. Animals and Treatment

Animal experiments were performed in accordance with the Institutional Animal
Care and Use Committee of the Daegu Catholic University Medical Center Approval
number: DCIAFCR-200626-13-Y, approval date: 26 June 2020). Seven-week-old male
C57BL/6N mice were acquired from HyoSung Science Inc. (Daegu, Korea) and kept at
20-24 °C and 55% humidity for 1 week. The mice were divided into three groups (1 = 8 per
group): control (Con), cisplatin (CP), and cisplatin plus 6-shogaol (CP + 6-SHO). The CP
group and the CP + 6-SHO group were given a single intraperitoneal injection of cisplatin
(20 mg/kg; Sigma-Aldrich, St. Louis, MO, USA). The CP + 6-SHO group was also given an
intraperitoneal injection of 6-shogaol [20 mg/kg; dissolved in dimethyl sulfoxide (DMSO);
Cayman Chemical, Ann Arbor, MI] daily for 3 consecutive days, starting from 1 h after
cisplatin injection. The Con group and the CP group received intraperitoneal injections of
an equal volume of DMSO daily for 3 consecutive days. All mice were sacrificed 72 h after
a single dose of cisplatin. The doses of cisplatin and 6-shogaol were selected based on the
results of previous studies [25,33].

4.2. Assessment of Renal Function

Serum creatinine and BUN levels were analyzed using a creatinine assay kit (BioAssay
Systems, Hayward, CA, USA) and a BUN assay kit (Thermo Fisher Scientific, Waltham,
MA, USA), respectively, according to the manufacturers’ protocols.

4.3. Histological Analysis and IHC Staining

Isolated kidney tissues were immediately fixed in 10% formalin and then dehydrated
in graded series of ethanol. After dehydration, the tissues were cleared in xylene and
embedded in paraffin. Thin sections were mounted on glass slides and stained with H&E
or PAS. The severity of tubular injury was scored semiquantitatively by estimating the
percentage of damaged area: 0, 0%; 1, <10%; 2, 11-25%; 3, 26-45%; 4, 46-75%; and 5,
76-100% [54,55]. Tubular injury was assessed in five arbitrarily chosen fields at x400
magnification per kidney sample. For IHC staining, the sections were probed with a
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primary antibody and then incubated with a secondary antibody. The primary antibodies
used for IHC staining were as follows: anti-NGAL (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-KIM-1 (Abcam, Cambridge, UK), anti-4-HNE (Abcam, Cambridge, UK),
anti-RIPK3 (Abcam, Cambridge, UK), anti-F4/80 (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), or anti-CD4 (Abcam, Cambridge, UK) antibodies. Images were visualized and
captured using a confocal microscope (Nikon, Tokyo, Japan). The percentage of stained
areas with anti-NGAL, anti-KIM-1, anti-4-HNE, or anti-RIPK3 antibodies were determined
in five arbitrarily selected fields at x400 magnification per kidney sample. The number of
cells stained with anti-F4/80 or anti-CD4 antibody was counted in five arbitrarily chosen
fields at x600 magnification per kidney sample.

4.4. Western Blot Analysis

Total proteins were extracted from kidney tissues with a lysis buffer and then loaded
onto gradient polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA). Separated
proteins were transferred from gels to nitrocellulose membranes. The membranes were
probed with primary antibodies against NOX4 (Novus Biologicals, Littleton, CO, USA),
MnSOD (Abcam, Cambridge, UK), RIPK1 (Cell Signaling, Danvers, MA, USA), RIPK3 (Cell
Signaling, Danvers, MA, USA), p-MLKL (Abcam, Cambridge, UK), MLKL (Cell Signaling,
Danvers, MA, USA), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Cell
Signaling, Danvers, MA, USA), and then incubated with horseradish peroxidase-conjugated
secondary antibodies. GAPDH was used as an internal control. The protein bands were
visualized using enhanced chemiluminescence reagents (Thermo Fisher Scientific, Waltham,
MA, USA). The signal intensities of the bands were measured using Image] software
(National Institutes of Health, Bethesda, MD, USA).

4.5. Real-Time Reverse Transcription-Polymerase Chain Reaction (RI-PCR)

Total RNA was extracted from kidney samples using Trizol reagent. Reverse tran-
scription was carried out using the iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA, USA) according to the manufacturer’s protocol. Real-time RT-PCR reactions
were performed using specific primers (Table 1), the Thermal Cycler Dice Real Time System
III (TaKaRa, Tokyo, Japan), and the Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA). GAPDH was chosen as an internal reference.

4.6. TUNEL Assay

Apoptosis was assessed using a TUNEL assay kit (Roche Diagnostics, Indianapolis,
IN, USA) according to the manufacturer’s protocol. For nuclear staining, 4/, 6-diamidino-2-
phenylindole (DAPI) was used. The number of cells stained with TUNEL was counted in
five randomly selected fields at x400 magnification per kidney sample.

4.7. Measurement of Serum Cytokines

Serum levels of TNF-o and IL-6 were measured using standard quantitative sand-
wich ELISA kits (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s
protocol.

4.8. Evaluation of Oxidative Stress

Renal MDA levels were measured using a colorimetric/fluorometric assay kit (Sigma-
Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions. The GSH/GSSG
ratio was assessed using the Glutathione Detection Kit (Enzo Life Sciences, Farmingdale,
NY, USA) according to the manufacturer’s protocol.

4.9. Statistical Analysis

Data are presented as mean = standard error of the mean (SEM). Differences between
groups were analyzed with one-way analysis of variance (ANOVA) and Bonferroni’s
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post hoc tests. For all the analyses, p values less than 0.05 were considered statistically
significant.

Table 1. List of primers used in this study.

Primer Sequence

Gene ' —s3) Accession No.
iNos Reverse: TGAGCCTATATICCTGIGACT NM_010927
cox2? Reverse: CATGTTCCAGGAGGATCGAG NM_O11198
SLOX Reverse: TCGTTCTCATAGTAGATGCTCACCA NM_005652
Noxs ! Reverse, GOCACAAAGGICCAGAAATCC NM_015760
Catalase O everse: CCCTTCGCAGCOATGTG NM_009804
MrSOD? Reverse, CICCAGCAACTCTCCITICG NM_013671
TNEaf N Roverse: CCGCCTGGAGTICICGAA. NM_013653
17 Reverse: ACTCCAGAAGACCAGAGGAAAT NM_031168
Mep-? Reverse: GCATTAGCTTCAGATITACGGGT NM_011333
cets? Reverse: TCTICTCTGGGTTGGCACACA NM_013653
GAPDH 10 Forward: ACTCCACTCACGGCAAATTC NM_001289726

Reverse: TCTCCATGGTGGTGAAGACA

! Inducuble nitric oxide synthase; 2 Cyclooxygenase-2; 3 5-Lipoxygenase;  Nicotinamide adenine dinucleotide phosphate oxidase 4;
5 Manganase superoxide dismutase; ® Tumor necrosis factor-o; 7 Interleukin-6; 8 Monocyte chemoattractant protein-1; ® C-C motif
chemokine ligand 5; 1 Glyceraldehyde-3-phosphate dehydrogenase.

5. Conclusions

In conclusion, our data demonstrated the protective action of 6-shogaol against
cisplatin-induced renal dysfunction and tubular injury. These effects are probably due to
the suppression of oxidative stress, tubular cell death, and inflammation. Because it is also
known that 6-shogaol exerts anti-tumor effects on various types of cancer cells [56,57], it
may be a useful treatment option for AKI in cancer patients receiving cisplatin therapy.
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