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Abstract: In conditionally automated driving, the engagement of non-driving activities (NDAs) can
be regarded as the main factor that affects the driver’s take-over performance, the investigation of
which is of great importance to the design of an intelligent human–machine interface for a safe and
smooth control transition. This paper introduces a 3D convolutional neural network-based system
to recognize six types of driver behaviour (four types of NDAs and two types of driving activities)
through two video feeds based on head and hand movement. Based on the interaction of driver and
object, the selected NDAs are divided into active mode and passive mode. The proposed recognition
system achieves 85.87% accuracy for the classification of six activities. The impact of NDAs on the
perspective of the driver’s situation awareness and take-over quality in terms of both activity type
and interaction mode is further investigated. The results show that at a similar level of achieved
maximum lateral error, the engagement of NDAs demands more time for drivers to accomplish
the control transition, especially for the active mode NDAs engagement, which is more mentally
demanding and reduces drivers’ sensitiveness to the driving situation change. Moreover, the haptic
feedback torque from the steering wheel could help to reduce the time of the transition process, which
can be regarded as a productive assistance system for the take-over process.

Keywords: non-driving related activity (NDRA) classification; level 3 automation; 3D CNN; take-over
transition; situation awareness

1. Introduction

Conditional automation systems (level 3), defined by the SAE (J3016) Automation
Levels [1], releases the driver’s eyes and hands from monitoring the environment and
controlling the vehicle. Such systems can perform some non-driving activities (NDAs)
during automated driving, however, they would have to intervene in the control of the
vehicle when requested. Even though lots of level 2 and 3 automation systems have been
commercialised in the automotive industry, the immature design and the excessive trust of
the driver still cause accidents, even costing lives. Two Tesla fatalities occurred in Williston,
Florida, USA, 2016 and Mountain View, California, USA, 2018. In both fatalities, the
Autopilot systems were engaged, and the drivers were performing some NDAs before and
when the accident happened (watching movies and playing games). Neither the Autopilot
nor the driver noticed the hazard ahead and took action to avoid the accident, even though
there was sufficient time and distance to react to prevent the crash [2,3]. Both fatalities
could have been avoided if there was a driver monitoring and alert system to prevent
the prolonged disengagement of the dynamic driving task. Since the driver’s situation
awareness could be reduced and their mental demand could be increased by the NDAs
engagement [4–6], automatically recognising the driver’s NDAs engagement and further
understanding its impact on the take-over performance is of great importance to design an
intelligent human–machine interface (HMI) for a safe and smooth take-over process.
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In terms of NDA recognition, the most similar research is secondary task detection,
which is an important part of driver behaviour monitoring for conventional vehicle safety.
It aims to evaluate the degree of distraction while the driver is driving. The related methods
can be roughly categorized into three groups, including vehicle maneuver-based methods,
driver gesture modelling methods, and information fusion methods. The vehicle maneuver-
based methods measure the vehicle state features, e.g., speed, longitudinal acceleration,
lateral acceleration, pedal position, etc. Such methods provide high accuracy in terms of
the engagement detection. However, the performance in terms of identifying a specific
task is relatively poor [7,8]. The gesture modelling methods directly model the driver’s
body pose to classify the engaged task [9,10]. The information fusion methods extract both
features from the driver’s behaviour (e.g., head or gaze movement) and the vehicle state
characteristics to achieve robust task detection [11,12]. Compared with the secondary task
detection, the NDA recognition aims to identify the specific activity the driver is engaging
in while the vehicle is in the automated driving mode, which could affect the take-over
performance. The existing common approaches used in secondary task detection suffer
from the limitation of action classification. For instance, during NDA engagement, the
driver is free from controlling the vehicle. The maneuver-based methods are therefore not
able to capture the driver’s distraction. It is also a challenge to refine activity recognition
using a single gesture or gaze modelling method due to the diversity and uncertainty of
NDA engagement [13].

Previous studies of drivers’ take-over performance claimed that a sufficient take-over
interval for the driver should be between 5 and 8 s [6,14]. The factors that influence the per-
formance include the driver’s state, such as gender, age, and driving experience [15,16], the
complexity of the driving scenario [17–19], the modality of the take-over request [14,20,21],
and the NDAs that the driver engages in [14,22]. In recent years, the effect of NDAs on
the take-over transition process has been broadly investigated. Yooh et al. [14] investi-
gated drivers’ take-over performance for three types of NDA, namely phone conversation,
smartphone interaction, and video watching tasks, while Zeeb et al. [23] examined the
impact of writing an email, reading news, and watching video clips. Results from both
studies suggested that NDA engagement can significantly affect take-over quality based
on the statistical analysis. One of the limitations of existing studies [24,25] is that NDAs
were investigated specifically and independently. When considering a new NDA, such a
system needs to conduct the evaluation process again, which limits the extendibility of the
driver monitoring or take-over assistance system. There is a lack of systematic methods
to group NDAs which could have a similar level of impact on the take-over performance
for enhanced scalability. On the other hand, the existing literature concerning the impact
of NDAs is normally from the perspective of the driver’s workload [6,26,27]. Situation
awareness before take-over is also considered as a crucial factor of safe take-over transition
but has not been discussed in association with NDAs [28]. There is a knowledge gap
concerning the implication of situation awareness on the take-over process.

It has been stated in the existing literature that the type of NDA that drivers engage
in affects their take-over. For instance, compare to auditory related activities, visual
related activities lead to a longer reaction time [29]. However, the existing research only
focused on a specific visual related task and an auditory related task. There is no further
discussion on more different visual related or auditory related activities. Following the
survey undertaken by Sivak and Schoettle [30], the identified common NDAs are reading,
texting, working, watching movies, and playing games. Since all these common activities
are visual related, in this study, we focus on this kind of NDA specifically. The four selected
types of NDA include playing games, answering questionnaires, watching videos, and
reading news. The device that the driver used to engage all these NDAs is a tablet. Based
on the type of interaction between the driver and tablet, the selected NDAs are divided
into two groups: active interaction mode and passive interaction mode. Playing games
and answering questionnaires are considered as the active interaction mode since the
driver and the object respond to each other’s action over time during the engagement.
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Under the passive interaction mode, e.g., reading news or watching videos, the driver
only receives information passively. For simplicity, the active NDAs and passive NDAs
will be used to represent the NDAs in the active interaction mode and passive interaction
mode, respectively. This study hypothesizes that the workload and demanded attention
are different between these two modes, which will lead to different take-over performance.

This paper proposes a two-feed, computer vision-based framework for NDAs/DAs
recognition with 3D convolutional neural network (CNN). The driver’s behaviour, includ-
ing head movement and hand movement, is considered as the input of the CNN framework.
Then, the implication of the recognized NDAs in both interaction modes on the take-over
performance was investigated. Additionally, based on the captured head movement video,
the driver’s road-checking behaviour has been extracted, which is considered a factor
that reflects the driver’s situation awareness. If more road-checking behaviour has been
performed during the engagement of NDAs, the driver will have more awareness of the
surrounding environment. The motivation for performing such behaviour associated with
each NDA has been inferred for further understanding the attention demand under differ-
ent NDAs. The haptic feedback torque was implemented in the steering wheel to support
the driver in the control transition. The haptic feedback assistance during the take-over
process has been broadly investigated regarding the design of the HMI [31–33], especially
the steering wheel implemented system [34–36]. This study also evaluated its impact and
effectiveness in the take-over process.

The paper is organized as below. The NDA detection and recognition system, the
experiment design, and the vehicle setting are introduced in Section 2. In Section 3,
the performance of the 3D CNN model used in this study is evaluated. Furthermore,
the driver’s road-checking behaviour and their take-over performance of each NDA are
presented and analysed from both the perspective of the group and individual. The
discussion and conclusions are further provided in Section 4.

2. Methodology
2.1. NDA Detection and Recognition System

The driver’s activities inside the cabin can be divided into 2 groups, which are driving-
related activities and non-driving related activities. Gaze estimation is one of the most
commonly used methods for the detection of driving-related activities, such as road check-
ing, wing mirror checking, and rear-view mirror checking [37–39]. This method focuses
on modelling through the driver’s facial features. It can work effectively in detecting
the driver’s road-checking behaviour and identifying some activities, e.g., centre console
checking and dashboard checking. However, for the application on NDA recognition, such
a method can only identify which object (e.g., phone or tablet) that the driver is gazing at
but cannot recognise the specific task [40], such as whether the driver is watching videos or
playing games with this object, which could lead to different take-over performances [6,23].
Yang et al. [41] proposed a two-stream CNN model for NDA recognition based on the
driver’s hand movement. The spatial stream demonstrates high performance on the clas-
sification of objects (phone and tablet). The temporal stream uses a stack of optical flow
frames which represent the hand movement between 2 RGB frames. Xing et al. [42] further
extracted the driver’s body from the RGB frames and used the segmented body frames
as the input of the CNN model to recognize the driver’s behaviors. Both methods are
based on the 2D CNN model, in which the convolutions only consider the features from
the spatial dimension of the frames [43]. The features of hand movement behaviour in a
time duration provided in the optical flow stack can only be processed as multiple channels
in the spatial dimension. It lacks a direct representation of the motion information in the
temporal dimension.

To address the above problem, this paper introduces a 2-feed 3D CNN-based NDA
recognition framework, the flowchart of which is shown in Figure 1. This framework is
used to recognize 4 types of NDAs and 2 types of driving activities (DAs). The details
of these activities will be introduced in the section below. The front camera captures
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the driver’s head movement, the image of which is cropped based on the face location
automatically. A stack of head movement frames within a certain time window, denoted as
d, are inputted to a 3D CNN model to detect whether the driver is performing NDAs or
DAs. The rear camera focuses on the driver hand movement. The frame is fixedly cropped
since the hand movement is limited in the vehicle cabin. A stack of hand movement frames
within the same time window is imported into 2 separate models to further identify the
specific NDA or DA. The final prediction result is obtained from the concatenated results
of the NDA and DA classification.

Figure 1. The proposed 2-feed NDA recognition framework.

The architecture of the network is based on 3D ResNet-18, whose capability in terms
of video recognition has been proven in [44,45]. The structure is illustrated in Figure 2.
The size of the input frame stack and the feature map is notated as c× d× h× w, where
c is the number of the channels, d is the depth of the input (the number of frames in
the time window for this case), h is the height of the frame, and w is the width of the
frame. The convolutional kernel size is denoted as dk × k × k, where dk is the depth of
the kernel and k is the spatial size of the kernel. The size of the cropped video clips for
both feeds is 400 × 400 pixels, which is resized to 120× 120 pixels and then randomly
cropped to 112× 112 pixels. A total of 16 frames in a clip are used as an input of the
network for training, which can be denoted as 3× 16× 112× 112. A total of 5 groups of
the convolutional layer are used in the network. The size of the convolutional kernel and
the extracted feature map from each layer are presented in Figure 2. There are 2 types of
residual blocks used in the last 4 convolution layer groups, which are shown at the bottom
of Figure 2. The shortcut structure of each block can be expressed as:

xl+1 = F(xl , wl) + xl (1)

where xl , wl are the input and weights of the convolutional layer l respectively. F(xl , wl)
represents the function where the residual mapping is learned. Batch normalisation (BN) is
employed in each convolution layer.
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Figure 2. The proposed 3D CNN model. There are two types of residual block in this network, which
are detailed in the bottom graph and indicated as different colours.

For the training process, Kaiming initialization [46] is applied for weight initialization.
The initial learning rate is set as 0.001, which is dynamically reduced when the validation
loss stops improving. The loss of a prediction output x in this network can be described as:

Loss(x, label) = wc[label]

(
−x[label] + log

(
∑

j
e(x[j])

))
(2)

where wc is the weight distribution of the classes in the dataset to improve the data
imbalance in a mini-batch; label is the true class of the instance; j is the index of all classes.
The losses are averaged for each mini-batch.

The prediction probability of NDA detection based on the driver’s head movement is
denoted as Pd, which has only two states: DA engagement and NDA engagement, denoted
as cd and cN , respectively. The prediction probability for these two classes is therefore
presented as Pd[cd] and Pd[cN ]. Two different 3D CNN models have been trained for DA
and NDA classification based on hand movement. The prediction probability for these 2
models are denoted as Pdc and PNc.

The final prediction scores for all NDA and DA classes, denoted by S, can be expressed
as:

S = Sd ∪ SN (3)

where Sd and SN are the final scores of the DA classification and NDA classification,
respectively. The score of a single DA can be expressed as:

Sd(id) = Pdc(id)Pd[cd] (4)

where id is the index of the DAs.
The score of a single NDA can be expressed as:

SN(iN) = PNc(iN)Pd[cN ] (5)

where iN is the index of the NDAs.
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2.2. Experiment Design

Take-over process: Figure 3 plots the design of the take-over process in a trial. During
a trial, the vehicle was driving automatically initially while the participant was required
to engage in a certain type of NDA or check the road. Then, the take-over process started
after a lateral offset was implemented to the vehicle. The lateral error is defined as the
distance between the vehicle position and the closest point on the path. After a lateral offset
is implemented, the vehicle is in an improper position on the road. Then, an acoustic signal
was given to the participant as a take-over request (TOR), which requests he/her to take
control of the vehicle and bring it back to the right position. In Figure 3, T1 indicates the
time needed for the driver to put her/his hand on the steering wheel. To achieve a safe
and smooth take-over transition, a haptic torque was implemented to help the driver guide
the vehicle to the reference route. The haptic torque was engaged as soon as the driver
applies the torque to the wheel and gradually fades away. After the lateral error achieves
the maximum value, the vehicle returns to the reference route. A threshold of the safety
distance is defined, which indicates that the control transition is finished, and the driver
could achieve safe manual driving afterwards. In this study, the threshold was set as 0.7 m,
which is the maximum lateral error to keep the vehicle inside the lane. In Figure 3, T2 refers
to the time needed from TOR to the time when the vehicle arrives at the threshold, which is
considered as a criterion to evaluate the take-over performance in this study.

Figure 3. Concept of the take-over process.

Track and take-over scenarios: The testing track is a two-lane road with a mini round-
about, as shown in Figure 4. The start point is highlighted with green colour. In the odd
loop, the vehicle enters from 1 into the roundabout and leaves from 3. Then, it enters from
4 and leaves from 2. In the even loop, the vehicle enters from 1 and leaves the roundabout
from 4. Then, it enters the roundabout from 3 and leaves from 2. The TOR signal was issued
at specific points on the track to avoid the area around the roundabout for safety concerns.
The lateral offset was set as 1.5 m with a small variation in the real trials. The maximum
speed of the vehicle was set as 30 mph. The interval between TORs was randomly selected
from the range of 5–9 min.
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Figure 4. Sketch map of the track.

NDAs and DAs: In this study, 4 types of NDA and 2 types of DAs were investigated.
A tablet was used for the engagement of NDAs, which include reading news, watching
videos, playing games, and answering questionnaires. For reading news, the participants
were required to read some articles from BBC News. For watching videos, the participants
were asked to watch some videos from YouTube. For playing games, the participants were
required to play Temple Run. For the NDA of answering questionnaires, the participants
were required to complete a questionnaire, which comprised some objective and subjective
questions about this experiment. The DAs considered in this study are road checking and
driving. In the experiment, each participant completed 7 trials, including 4 trials for 4 types
of NDA respectively and 1 trial of watching the road with no NDA engagement. For the
remaining 2 trials, 2 activities were randomly selected from the 5 activities mentioned
above. The order of activities for each participant was randomized.

Participants: 14 participants (12 male and 2 female; aged 24–30) participated in this
experiment. A valid UK driving license was required. None of them had driving experience
with high-level automated driving vehicles.

Video acquisition and dataset pre-processing: 2 Garmin Virb Action Cameras were
used to capture the driver’s behaviour inside the vehicle cabin in this experiment. Both
cameras had a spatial resolution set at 1920× 1440 pixels and a temporal resolution set
at 30 frames per second (fps). As shown in Figure 5, Camera 1 extracts the driver’s head
movement and facial information and detects if the driver is checking the road or engaging
with NDAs. Camera 2 captures the driver’s hand movement when interacting with the
tablet or the primary steering wheel, which was mounted on the vehicle’s roof between
two front seats.

In the dataset for the NDA recognition framework, a single instance, denoted by
I, contains a pair of synchronised frame stacks (I f , Ir) from Camera 1 and Camera 2,
respectively. The recorded video from each camera was split into several clips. There are 48
frames in each clip, where 16 adjacent frames were randomly picked and used as an input
instance I f or Ir. A total of 3624 instances for 6 classes were extracted from the videos of
the 14 participants. Specifically, for the 2 DAs, the driving instances were extracted from
the videos of the take-over process at the end of an NDA trial. The road-checking instances
were extracted from the videos of the watching road trial and the driver’s road checking
behaviour in an NDAs trial. For every participant, there are around 40 instances for each
NDA class and each DA class. The data of 10 participants were randomly selected and
used for training, the data of 2 participants were used for validation, and the remaining
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2 participants were used for testing. In summary, a total of 2598, 467, and 559 instances
were used for training, validation, and testing, respectively.

Figure 5. A illustration of the two cameras inside the vehicle.

2.3. Vehicle Setting

Vehicle Modification: An instrumented Land Rover Discovery 5 was employed as the
testing bed, which was modified to accommodate both autonomous and human driving.
An electric motor, operating on the steering column, was used for steering and another
electric motor was used to control the throttle pedal position. Braking was modified using
a pneumatic actuator on the brake pedal. To ensure safety, a second steering wheel and a
set of pedals were added in the back seat, shown in Figure 6, which allows a safety driver
to intervene and override the autonomous system. For the path following, the pure pursuit
algorithm was used to generate the reference steering angle. The rear steering wheel was
controlled using the reference steering angles and the front wheel follows the rear wheel.

Figure 6. A view of the modified vehicle, where the rear steering wheel and pedal have been
highlighted.
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Vehicle control and data acquisition: The OXTS RT1003 (Oxford Technical Solutions
Limited, Oxfordshire, United Kingdom) with RTK GPS system provides the global ve-
hicle position with an accuracy of 2 cm and the heading angle with an accuracy of less
than 1 degree. The data of vehicle status were recorded in the Microautobox I (dSPACE,
Paderborn, Germany) at a sampling rate of 1 k Hz. The data include driver steering torque,
autonomous steering torque, vehicle position and heading, vehicle velocity, steering angle,
and take-over signal. The path was recorded beforehand at a sampling rate of 1 k Hz and
then resampled by the linear interpolation to a spatial accuracy of 0.2 m.

A certain torque threshold was applied for hand-on-wheel time (T1) detection. It
was experimentally determined to avoid false take-over detection due to sensor noise.
An instance of the driver’s torque during a take-over process is shown in the top plot of
Figure 7. The corresponding vehicle route is presented in the bottom plot of Figure 7.

Figure 7. Top plot presents the driver’s torque and the haptic torque for 1 instance. Bottom plot
presents the corresponding vehicle movement in the track.

After the driver takes control of the steering wheel, the vehicle provides haptic cues to
the driver, in the form of torque on the steering wheel, to increase the driver’s awareness of
the environment. The haptic decays over a certain amount of time and eventually reaches 0
to give the driver full control. The value of the torque is calculated using

τhaptic(t) = Kt(t)Kp

(
δ− δre f

)
(6)

where δ is the vehicle steering angle; δre f is the reference steering angle calculated by the
path following algorithm; Kp is a constant gain, and Kt(t) is a decaying gain which is a
function of time starting from 1 and reaching 0 at the end of the take-over period. The
decaying profile is represented as the black dot line in the top plot of Figure 7. The decaying
duration chosen for this experiment was 8 s. The torque value is normalized between −1
and 1, where 1 indicates the maximum torque of the electric motor in one direction and
−1 indicates the maximum torque in another direction. The maximum amplitude of the
torque was a tuning parameter. Each participant tried two of three pre-set values randomly
in the trials: 0.35, 0.45, 0.55.
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3. Results
3.1. Activity Classification

The confusion matrices of the proposed two-feeds 3D CNN models are presented in
Figure 8. All six activities are abridged as a term for the convenience of result presentation.
Check and Drive refer to two DAs, which are road checking and driving. Game, Ques,
Read, and Watch refer to the four kinds of NDA, which are playing games, answering
questionnaires, reading news, and watching videos, respectively. For the NDA detection
based on the driver’s head movement (Figure 8a), the precision and recall of both classes
are over 95%. The accuracy of the NDA detection is 97.14%, as shown in Table 1. The DA
classification (Figure 8b) also shows a high precision and recall (>90%) and the accuracy
is 95.51% (Table 1). A total of 8.4% driving instances were misclassified as road checking,
which is due to the hand gesture where sometimes the driver holds the tablet in one
hand and controls the steering wheel with another hand during the take-over process. As
shown in the confusion matrix for NDA classification (Figure 8c), among all these NDAs,
answering questionnaires achieves the best performance (86.5% for precision and 96.0%
for recall). The lowest recall value is from playing games, which is 75.5%. The main
contribution of the false negative is from watching videos, which is due to the limited
hand movement in some game engagement instances, and comparing with the other two
NDAs, watching videos has similar spatial information with playing games. The highest
value of precision is from reading news (95.7%), while the recall is only 77.9%. Answering
questionnaires and watching videos are the main contributions of the false negative. The
prediction of reading news could be tricky, because sometimes the limited hand gesture
change could lead to confusion with watching videos. Sometimes, the frequent movement
required for turning pages could be misclassified as answering questionnaires since the
spatial background could be similar between these two classes. From the final fusion
matrix, shown in Figure 8d, it can be observed that the driving class achieves high values
in both precision and recall. Since the results are obtained by combining the 3 models, the
value of each class shows a similar trend with the value in the separate model mentioned
above. The total accuracy of the final prediction is 85.87%.

Table 1. Performance of 3D CNN model.

Term NDA
Detection

DA
Classification

NDA
Classification Final Prediction

Accuracy 97.14% 95.51% 85.56% 85.87%
Weighted F1 score 97.14% 95.49% 85.46% 85.88%

3.2. Road-Checking Behaviour Analysis

The road-checking behaviour performed during the NDA engagement has been
extracted by the proposed NDA recognition framework and shown in Table 2. The checking
period is determined as the division of the total time duration of the NDA engagement
trials by the total number of instances of road-checking behaviour in these trials. The
motivation of the road-checking behaviour is manually inferred from the recorded videos,
which has been divided into four classes, which are bumping, approaching junctions,
breakpoint, and other. Bumping refers to the checking behaviour caused by the vehicle
vibration that happened on the uneven road surface. Approaching junctions refers to the
checking behaviour whereby the driver glanced as the vehicle approached the roundabout
and turning. For breakpoint, it indicates the checking behaviour, which is performed
in a short break during the NDA engagement. For example, the driver could check the
surrounding environment after she/he finished watching a short clip or a round of the
game. Other includes the motivations which are different to the above-mentioned class,
such as illumination changing or regular checking, etc.
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Figure 8. Confusion matrices of the 3 developed 3D CNN models and the fused results. The precision
and recall for each class are presented in the bottom and right of the figure, respectively.

Table 2. Road-checking behaviour evaluation.

NDAs
Checking Period

(s)

Percentage of Checking for Corresponding Motivation

Bumping Approaching Junctions Breakpoint Others

Watching videos 37.10 19.88% 52.05% 5.85% 22.22%
Reading news 51.64 16.78% 51.75% 7.69% 23.78%
Playing games 79.13 3.61% 26.50% 59.04% 10.84%

Answering questionnaires 123.00 18.18% 50.00% 13.64% 18.18%

From Table 2, it can be seen that the checking period of watching videos is the shortest
(37.10 s). The period of reading news is slightly higher at 51.64 s. As the passive NDAs,
both NDAs show a similar proportion of motivation. Approaching junction is the main
motivation, which is above 50%. Playing games shows a relatively longer checking period
(79.13 s) than the passive NDAs, where breakpoint (59.04%) is the dominant motivation.
Answering questionnaires has the least road-checking behaviour, mostly once or twice
during a single trial. The motivation shows a similar trend with the passive NDAs, but with
a higher proportion of the breakpoint (13.64%). For the passive NDAs, the driver performs
more frequent road-checking behaviour compared to the active NDAs. This suggests that
the driver pays less attention to the engagement under this type of NDAs. The main
motivations are approaching junctions and bumping. This suggests that the driver is more
sensitive to the change of the vehicle state, such as velocity change, vibration, or turning.
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Such checking behaviour is important for safety control transition if the TOR is given when
the vehicle state is changing. The results of the active NDAs engagement show that the
driver performs much less road-checking behaviour, particularly for the engagement of
answering questionnaires. For playing games, the checking behaviour mainly happens in
breakpoint, which suggests the driver is at a high attention level and not sensitive to the
environment change during the engagement. Therefore, for the passive NDA, achieving a
high-quality control transition could be more challenging for the driver due to the limited
situational awareness.

3.3. Take-Over Performance

The take-over performance is presented and evaluated in this section. Figure 9 shows
the driver’s hand-on-wheel time (T1) against five activities. The shortest mean value of T1
is around 1.3 s, which is NoTask. For the remaining four NDAs, the average value is in
the range of 1.9–2.6 s. Answering questionnaires shows a relatively shorter T1 than other
NDAs. The maximum lateral error is presented in Figure 10. It can be observed that the
value for each NDA and NoTask are similar, the average value is around 2.8 m. In the
experiment, the TOR signal was given after the lateral error achieved 1.5 m, while most
of the drivers could control the vehicle within a maximum 3.5 m lateral error. However,
the impact of the NDAs engagement on the take-over performance mainly presented after
the maximum lateral error was achieved. From Figure 11, the baseline of time needed to
achieve the safe position (T2) is around 4.16 s for NoTask. The T2 for NDAs engagement is
at least 0.5 s more, which suggests the engagement of NDAs could increase the time that
the vehicle stays in the dangerous position on the road. The mean and standard deviation
of T2 for each activity are presented in Table 3. For the passive NDAs, the mean values of
watching videos and reading news, as the passive NDAs, are 4.74 s and 4.96 s respectively,
which are higher than the active NDAs, answering questionnaires and playing games
(5.45 s and 5.43 s respectively). The standard deviation of the NDAs is higher than the
NoTask, which suggests higher individual differences in terms of take-over performance in
NDAs engagement. From Figures 9 and 11, it can be observed that the driver under active
NDAs engagement requests more time to drive the vehicle back to the safe position, which
suggests a higher mental demand or workload during such NDAs engagement. After
receiving the TOR signal, the driver needs more time to build awareness of the surrounding
environment and it is more challenging for them to switch to the take-over process from
the NDA engagement.

Figure 9. The hand-on-wheel time performance. NoTask refers to the performance in watching
road trial.
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Figure 10. Maximum lateral error achieving. An outlier is presented with the plus sign which
represents a high concentration level of the driver during the road checking task.

Figure 11. Time cost for the vehicle back to the safe position.

Table 3. Time to threshold for all activities.

Time to Threshold
Activities

No Task Watch Read Ques Game

Mean (s) 4.16 4.74 4.96 5.45 5.43
Standard deviation (s) 0.67 1.12 0.87 1.23 1.14

Table 4 presents the T2 under different levels of haptic feedback. For a low level of
haptic torque, the mean value of T2 is 5.32 s, which is the lowest among all the evaluated
levels. The standard deviation is 1.12 s, which suggests that all the participants have higher
tolerance at this level of haptic torque assistance. It can be seen that the increase of the
torque level could result in the decrease of the mean value of T2, which means a higher
level of haptic torque could support the driver to reduce T2 and improve their take-over
performance. However, the standard deviation increases (1.55 s for medium level and 1.32 s
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for high level). This suggests that some of the participants could distrust and resist the
higher level of haptic torque and take a longer T2.

Table 4. Time to threshold for different haptic torque levels.

Time to Threshold
Haptic Torque Level

Low Medium High

Mean (s) 5.32 4.97 4.83
Standard deviation (s) 1.12 1.55 1.32

4. Conclusions

Achieving a safe control transition is one of the most important challenges in level 3
automation systems and is influenced by many factors, where the driver’s mental state
and driving-environment awareness before take-over play an important role. We proposed
a two-feed 3D CNN-based NDA recognition system which can automatically detect and
classify the driver’s NDAs engagement and DA activities with high accuracy. It has been
demonstrated that both head and hand movement are crucial for achieving this target. This
study further investigated the implication of the NDAs engagement on both perspectives
of roading checking behaviour and take-over performance. Based on the investigation,
a category method has been proposed to group the NDAs, which aims to extend the
application of this study on a wide range of NDAs. Moreover, the effectiveness of the
steering wheel haptic assistance system for the take-over process has been evaluated.

For the investigation of road checking behaviour, the driver always performs such
behaviour during the engagement of NDAs to ensure driving safety. There is less road
checking behaviour under the active NDAs engagement. The motivation study shows
the driver mainly checks the road in the breakpoint and is less sensitive to the change
of the vehicle state, which suggests that the driver paid more attention to the activity
and has less awareness of the driving environment. Since the lack of observation could
be dangerous, the driver should be reminded to monitor their surroundings to improve
situation awareness when they engage in this kind of NDA for a long period without
road-checking behaviour. From the take-over performance point of view, the engagement
of NDAs leads to a negative effect (longer T2). The engagement of active NDAs could
demand even more time. Furthermore, haptic torque assistance could improve the take-
over performance, as evidenced by decreasing T2. However, a higher level of haptic torque
could result in the driver’s resistance.

In summary, this investigation helps us develop a deeper understanding of the impli-
cation of the driver’s behaviour on the control transition in conditional automation, which
further helps the design of HMI and take-over strategies to accomplish a safe take-over.
The type of NDA determines the level of the driver’s mental demand, which further affects
their situation awareness and take-over performance. The observed results also suggest
that the take-over process could benefit from highly frequent road-checking and haptic
feedback assistance. The existing HMI design only considers the type of NDAs in the
take-over process from the perspective of the take-over request modality. From this study,
the road-checking behaviour of the driver during NDAs engagement also matters for
reducing the take-over time. An alert system for checking the surrounding environment
should be considered for further HMI design.
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