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Fluoxetine is used as a therapeutic agent for autism spectrum disorder (ASD), including
Fragile X syndrome (FXS). The treatment often associates with disruptive behaviors such
as agitation and disinhibited behaviors in FXS. To identify mechanisms that increase the
risk to poor treatment outcome, we investigated the behavioral and cellular effects of
fluoxetine on adult Fmr1 knockout (KO) mice, a mouse model for FXS. We found that
fluoxetine reduced anxiety-like behavior of both wild-type and Fmr1 KO mice seen as
shortened latency to enter the center area in the open field test. In Fmr1 KO mice, fluoxetine
normalized locomotor hyperactivity but abnormally increased exploratory activity. Reduced
brain-derived neurotrophic factor (BDNF) and increased TrkB receptor expression levels
in the hippocampus of Fmr1 KO mice associated with inappropriate coping responses
under stressful condition and abolished antidepressant activity of fluoxetine. Fluoxetine
response in the cell proliferation was also missing in the hippocampus of Fmr1 KO mice
when compared with wild-type controls. The postnatal mRNA expression of serotonin
transporter (SERT) was reduced in the thalamic nuclei of Fmr1 KO mice during the time of
transient innervation of somatosensory neurons suggesting that developmental changes
of SERT expression were involved in the differential cellular and behavioral responses to
fluoxetine in wild-type and Fmr1 mice. The results indicate that changes of BDNF/TrkB
signaling contribute to differential behavioral responses to fluoxetine among individuals
with ASD.
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INTRODUCTION
Fragile X syndrome (FXS) is a common inherited cause of
intellectual disability and a well characterized form of autism spec-
trum disease (ASD). The behavioral phenotype of FXS includes
hyperactivity, difficulties with regulation of attention, and many
features that are associated with infantile autism, including motor
stereotypies, poor eye contact, social avoidance, perseverative
and self-injurious behavior, and delayed speech development
(Hagerman et al., 2010). It has been estimated that approxi-
mately 30% of males with FXS meet the diagnostic criteria for
autism (Brown et al., 1986; Hernandez et al., 2009; Hagerman
et al., 2010). Perseveration in speech and behavior in FXS resem-
ble obsessive and compulsive behavior. Obsessive thoughts and
behavior are sometimes problems for FXS individuals. FXS is
caused by a loss of functional FMR1 protein (FMRP), an RNA-
binding protein that interacts with many pre- and postsynaptic
transcripts and regulates their translation (Darnell et al., 2011).
The absence of FMRP leads to aberrances in local synaptic
connections, membrane excitability, and circuit activity (Bassel
and Warren, 2008; Gibson et al., 2008). Alterations of neural
progenitor cell proliferation and differentiation both in devel-
oping and adult brain contribute to the pathophysiology of FXS

(Castrén et al., 2005; Luo et al., 2010). Several studies indicate that
brain-derived neurotrophic factor (BDNF) and its tropomyosin-
related kinase B (TrkB) receptors are involved in the plasticity
changes in FXS (Uutela et al., 2012; Castrén and Castrén,
2014) as well as in autism (Perry et al., 2001; Miyazaki et al.,
2004; Connolly et al., 2006; Correia et al., 2011; Garcia et al.,
2012).

Selective serotonin reuptake inhibitors (SSRIs) such as fluoxe-
tine are often prescribed medications for ASD (Aman et al., 2005;
Oswald and Sonenklar, 2007). Although some studies suggest that
fluoxetine may be beneficial for core features of ASD in adults
(Williams et al., 2013) and in individual cases and subgroups of
children with autism (DeLong et al., 1998, 2002; Hollander et al.,
2012), a recent meta-analysis indicates that there is not enough
evidence to support the use of SSRIs in autism (Williams et al.,
2013). In addition, the possible side-effects of the drug treatment
are a main concern in clinics. Treatment with fluoxetine has been
shown to be of benefit to some FXS individuals with autism, social
anxiety, or selective mutism (Hagerman et al., 1994). However,
fluoxetine may not be suitable to all individuals with FXS and it
can cause mood changes, restlessness, and aggression (Hagerman
et al., 2009).
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Fluoxetine acts primarily as an inhibitor of serotonin trans-
porter (SERT) and blocks serotonin uptake from the synaptic
cleft into presynaptic vesicles in the central nervous system (Wong
et al., 1974). Fluoxetine also inhibits a number of ion channels
and may suppress excitotoxicity (Kim et al., 2013b). The mecha-
nisms of fluoxetine action involve multiple molecular pathways,
including the activation of serotonergic receptors (Banasr et al.,
2004), the cAMP-CREB signaling pathway (Warner-Schmidt and
Duman, 2006), and signaling pathways associated with BDNF and
TrkB (Duman and Monteggia, 2006; Warner-Schmidt and Duman,
2006). The clinical antidepressant effects of fluoxetine have been
shown to be mediated via changes in neurogenesis and neuronal
elimination (Sairanen et al., 2005; Duman and Monteggia, 2006).
In the present study, we investigated behavioral and cellular effects
of long-term fluoxetine treatment on adult Fmr1 knockout (KO)
mice, a mouse model for FXS, and examined the contribution of
BDNF and TrkB to fluoxetine responses in FXS.

MATERIALS AND METHODS
ANIMALS
Fmr1 KO mice (B6.129P2-Fmr1tm1/Cgr/J) purchased from Jack-
son Laboratory (Bar Harbor, ME, USA) and maintained on the
C57BL/6JOlaHsd substrain in the Animal Centre of University of
Helsinki were used for the behavioral studies. Male mice at the
age of 3–4 months were used. Each experimental group contained
four mice. Group-housed mice were maintained under 12-h light–
dark cycle (lights on from 06.00 to 18.00 h) with food and water
available ad libitum. The behavioral experiments were carried out
during light phase (between 09.00 and 16.00 h). Fmr1-KO mice
and their WT littermates used at postnatal day 7–8 (P7-8) were on
inbred FVB background (Bakker et al., 1994). Animal experiments
were performed in accordance with the guidelines of the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals and European Economic Community Council Directive.
All animal procedures were approved by the Experimental Animal
Ethics Committee of Finland.

FLUOXETINE ADMINISTRATION AND CELL BIRTH STUDIES
Fluoxetine was administered via drinking water (0.10 mg/ml,
about 10 mg/kg/day, Orion Pharma, Finland) and control mice
received water without fluoxetine. Mice received an intraperitoneal
injection of bromodeoxyuridine (BrdU, Sigma-Aldrich) at a dose
of 75 mg/kg four times every 2 h (300 mg/kg total) starting 24 h
before sacrifice for studies investigating the proliferation and short
term survival of newborn cells in the hippocampus. Hippocampi
were dissected after cervical dislocation in CO2 anesthesia. The
BrdU labeling was detected as described previously (Wu and Cas-
trén, 2009). Briefly, deoxyribonucleic acid was extracted from the
hippocampi, denatured, and dot-blotted onto membrane. The
BrdU incorporation was detected by immunostaining with mouse
BrdU-specific monoclonal primary antibody (Roche, 1-299-964).

BEHAVIORAL TESTING
Behavioral testing was performed between 9:00 AM and 4:00 PM
by experimenters who were blinded to the genotypes at the time
of testing.

Open field test

The mice were released in the corner of novel open field arena
(30 × 30 cm, Med Associates, St. Albans, VT, USA) surrounded
by frames with infra-red light barriers for detection of animal’s
position. Horizontal and vertical activity was recorded for 30 min
(light intensity ∼150 lx). Peripheral zone was defined as a 6 cm-
wide corridor along the wall.

Forced swim test

Mice were placed in a clear, 21◦C water-filled cylinder (diameter,
20 cm; depth, 13 cm) for 6 min and the immobility time of the
mice was measured between 2 and 6 min.

BDNF ELISA
For the BDNF expression studies, hippocampi were collected from
mice sacrificed by cervical dislocation followed by anesthesia with
CO2. Samples were frozen on dry ice, and stored at –70◦C until use.
The BDNF expression was determined using BDNF ELISA (Quan-
tikine human BDNF kit, R&D Systems) as described previously
(Louhivuori et al., 2011).

WESTERN ANALYSIS
The samples were homogenized and processed in a lysis buffer
for Western analysis as previously described (Castrén et al., 2002).
The protein concentration of the supernatant samples was deter-
mined using Biorad DC protein assay. The protein extracts
(60 μg) were electrophoresed on 7.5% sodium dodecyl sulfate
polyacrylamide minigels and transferred to 0.2 mm nitrocellu-
lose membranes (Schleicher & Schuell) for 1 h at 400 mA. The
membranes were washed 10 min in TBS, pH 7.4 (0.1 M Tris,
0.15 M NaCl) and blocked in 5% non-fat dry milk, in TBS with
0.1% Tween 20 (TBST) for 1.5 h. The incubation with rabbit
anti-TrkB (1:1000, sc-11, Santa Cruz Biotechnology) at +4◦C
overnight was followed by washes in TBST and incubation with
horseradish-peroxidase-conjugated secondary antibody (1:10000,
Bio-Rad Laboratories) for 1.5 h at room temperature. Detec-
tion was performed using the enhanced chemiluminescence kit
(ECL++ kit, Amersham Biosciences) and Fuji LAS-3000 camera
(Tamro Medlabs, Vantaa, Finland). Data were analyzed using NIH
Image J software.

IN SITU HYBRIDIZATION
Mouse brains at P7-8 were fixed in 4% paraformaldehyde (PFA)
in phosphate buffered saline (PBS) overnight and processed for
frozen sectioning. Brains were washed twice in PBS after fixa-
tion and then soaked in cryoprotective solution (30% sucrose
in PBS). Brains were mounted in Tissue-Tek®(Sakura Finetek,
Zoeterwoude, Netherlands), frozen on dry ice, and stored at –80◦C
until cut. Brains were cut in 12 μm thick sections and collected
onto Superfrost® Plus microscope slides (Menzel GmbH & Co.
KG, Braunschweig, Germany) with MICROM HM 550 cryostat
(MICROM International GmbH, Walldorf, Germany) and the
slides were stored at –80◦C until use.

In situ hybridization with the oligonucleotide probes was
performed as described by Wisden and Morris (1994). Oligonu-
cleotides complementary to mouse SERT (5′-ATG AGG TAG TAG
AGC GCC CAG GCT ATG ATG GTG TT-3′) were 3′ labeled with
[α33P]-dATP (3000/mmol; Amerham Biosciences) to a specific
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activity of 6–7 × 10−7cpm/pmol using terminal deoxynucleotidyl
transferase (Finnzymes). Hybridization was performed overnight
(42◦C) on postfixed sections in the presence of 1 × 106 cpm/ml
labeled probe in buffer containing 50% formamide, 4× standard
saline citrate (SSC; 1×SSC: 150 mM NaCl, 15 mM sodium citrate),
10% dextran sulfate and 10 mM dithiothreitol. After overnight
hybridization at 42◦C, the sections were dipped into 1×SSC and
then sequentially for 3 min each at room temperature in 1×SSC,
0.1×SSC, 70% ethanol, and 94% ethanol. Microscope slides were
exposed to film (Fuji medical X-ray film super RX) for three weeks.
14C standard scale was included to every film. Hybridization sig-
nal intensities were quantified from films scanned with Fujifilm
FLA-5100 scanning device.

NEURAL PROGENITOR CULTURES
Neural progenitors were propagated from the wall of lat-
eral ventricles of wild-type and Fmr1 KO pups as previously
described (Castrén et al., 2005). Cells were grown as free-
floating aggregates referred to as neurospheres in Dulbecco’s
modified Eagle’s medium F-12 nutrient mixture (DMEM/F-
12) media containing B27 supplement (both from Gibco, Life
Technologies Ltd.), L-glutamine (2 mM), 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES, 15 mM), penicillin (100
U/ml), and streptomycin (100 U/ml) (all from Sigma-Aldrich), in
the presence of basic fibroblastic growth factor (10 ng/ml) and epi-
dermal growth factor (20 ng/ml) (both from PeproTech) in a 5%
CO2-humidified incubator at +37oC. The culture medium was
refreshed and growth factors were added three times per week.
The cells were passaged by manual trituration at approximately
two weeks intervals. Neuronal progenitor cells from WT and Fmr1
KO mice were plated at a concentration of 100000 cells/10 ml plate
and grown as neurospheres for 5 days. Medium was changed and
growth factors last added 5 h prior to the start of treatments. Cells
were treated with 1 μM fluoxetine in parallel with corresponding
non-treated controls for 48 h. The cells were then collected as cell
pellets and stored at –70◦C until further use.

RNA EXTRACTION AND REAL-TIME QUANTITATIVE PCR
Total RNA was extracted from frozen cells by using QIAzol (Qia-
gen, Valencia, CA, USA) and treated with DNaseI (Thermo Fisher
Scientific Inc., Rockford, IL, USA) according to the manufacturer’s
instruction. We used 2–4 μg of total RNA to synthesize cDNA
using the Maxima First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific Inc., Rockford, IL, USA). Real-time quantita-
tive PCR was performed using the Maxima SYBR Green qPCR
Master Mix (Thermo Fisher Scientific Inc., Rockford, IL, USA)
and the CFX96 TouchTM detection system (Bio-Rad, Hercules,
CA, USA). The primers described previously (Karpova et al.,
2009) were used to amplify specific cDNA regions of tran-
scripts: the coding region in the exon IX of the Bdnf gene for
the total Bdnf mRNA (5′-GAAGGCTGCAGGGGCATAGACAAA-
3′ and 5′-TACACAGGAAGTGTCTATCCTTATG-3′); the exon
IV (5′-ACCGAAGTATGAAATAACCATAGTAAG-3′) and (5′-
TGTTTACTTTGACAAGTAGTGACTGAA-3′), Gapdh (5′-GGTG
AAGGTCGGTGTGAACGG-3′ and 5′-ATGTAGTTGAGGTCAAT
GAAGGG-3′) as a housekeeping control gene. Ct and quantitative
values were calculated from each sample using CFX ManagerTM

software (Bio-Rad, Hercules, CA, USA) and the quantitative values
were normalized to the control Gapdh levels.

DATA ANALYSIS
Data obtained from behavioral tests were analyzed with Statview
software (SAS, Cary, NC, USA), unless specified otherwise, a two-
way repeated-measures analysis of variance (ANOVA) followed by
Fishers’s protected least significance post hoc test.

Immunoblot bands were quantified using NIH ImageJ soft-
ware. All the data are presented as means ±SEM. Statistical
analyses were performed using GraphPad Prism 4.0 for Windows
(GraphPad Software, San Diego, CA, USA). Quantitative anal-
ysis of signals on X-ray films was performed with AIDA Image
Analyzer (version 3.44.035, Raytest Isotopenmessgeräte GmbH,
Straubenhardt, Germany) software. Brightness and contrast were
optimized before measuring.

For comparison between two groups, Student’s t-test was used.
Two-way ANOVA was used to reveal main effect and interaction
between the factors followed by Bonferroni post hoc test. The
criterion for significance was set to P < 0.05.

RESULTS
BEHAVIORAL RESPONSES OF Fmr1 KO MICE TO FLUOXETINE IN THE
OPEN FIELD TEST
We observed a significant Fmr1 KO genotype and fluoxetine treat-
ment interaction (two-way ANOVA: F(1,33) = 2,294; P < 0.05) in
the locomotor activity in the open field test. Fmr1 KO mice were
hyperactive when compared with non-treated mice (P < 0.05) and
treatment with fluoxetine reduced the motor activity of Fmr1 KO
mice to wild-type levels (P = 0.295; Figure 1A). There was a main
effect of fluoxetine treatment (two-way ANOVA: F(1,12) = 6.948;
P < 0.05) but no effects of the mouse genotype (two-way ANOVA:
F(1,12) = 0.695; P > 0.05) on the latency to enter the center arena of
the open field. Fluoxetine reduced significantly the latency in both
wild-type (P < 0.05) and Fmr1 KO mice (P < 0.05; Figure 1B).
In addition, a significant genotype × treatment effect in the
exploratory activity and unconditioned anxiety-related behavior
(two-way ANOVA: F(1,12) = 5.863; 0.05) was found. Fluoxetine
increased the time that Fmr1 KO mice spent in the central square
(P < 0.05; Figure 1C) and appropriately decreased the time that
the transgenic mice stayed along the perimeter (P < 0.05; data
not shown) without having any effects on this behavior in wild-
type mice. As shown in Figure 1D, particularly the resting time
in center was increased (P < 0.05) in Fmr1 KO mice by fluoxetine
treatment. No genotype or fluoxetine effects were found on the
total resting time (two-way ANOVA: F(1,12) = 0.875; P > 0.05 and
F(1,12) = 2.353; P > 0.05, respectively).

BEHAVIORAL RESPONSES OF FMR1 KO MICE TO FLUOXETINE IN THE
FORCED SWIM TEST
We investigated the antidepressant effects of fluoxetine on the phe-
notype of Fmr1 KO mice by submitting the mice to the forced
swim test, which estimates behavioral despair under stressful and
inescapable conditions, and it is widely used screening test of
antidepressant drugs to assess their antidepressant activity (Por-
solt et al., 1977; Cryan et al., 2002; Prut and Belzung, 2003). In
this test, wild-type mice respond to antidepressants by reducing
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FIGURE 1 | Altered behavioral responses to fluoxetine of Fmr1 KO mice

in the open field test. (A) Fmr1 KO mice (Fmr1 KO) show locomotor
hyperactivity seen as longer distance traveled by the mice when compared
with wild-type controls (WT). The locomotor activity of Fmr1 KO mice was
decreased to the level of WT mice after treatment with fluoxetine.
(B) Fluoxetine reduced the latency to enter the center area of the open
field in both WT and Fmr1 KO mice. (C) Fluoxetine increased the time that
Fmr1 KO mice spent in the central square but did not have any effects on
this behavior in WT mice. (D) The resting time in center was increased by
fluoxetine in Fmr1 KO mice. Error bars indicate means + SEM. *P < 0.05,
**P < 0.01.

their immobility time (Porsolt et al., 1977). We found a significant
Fmr1 KO genotype and long-term fluoxetine treatment interaction
(two-way ANOVA: F(1,12) = 11,211; P < 0.01). The swimming
immobility of Fmr1 KO mice was decreased (P < 0.001) when
compared with WT littermates without any treatment (Figure 2A).
Fluoxetine administration reduced (P < 0.01) immobility time of
wild-type mice but had no effect on this immobility score of Fmr1
KO mice (Figure 2A).

EFFECTS OF FLUOXETINE ON CELL PROLIFERATION IN THE
HIPPOCAMPUS OF FMR1 KO MICE
The stimulatory effect of fluoxetine on progenitor cell proliferation
is implicated to its therapeutic effects. We assessed the short-
term effect of fluoxetine on cell proliferation by the BrdU staining
in the hippocampus 24 h after intraperitoneal BrdU injections
(Figure 2B). As shown in Figure 2C, treatment with fluoxetine
increased the BrdU staining 2.2-fold in wild-type mice but did
not have any effects on the BrdU expression in the hippocampus
of Fmr1 KO mice (ANOVA: F(3,14) = 5,117; P < 0.05). The data
indicate that the normal response to fluoxetine on proliferation
rate was missing in the absence of FMRP.

RESPONSES TO FLUOXETINE IN THE EXPRESSION OF BDNF AND TrkB
IN THE ABSENCE OF FMRP
BDNF/TrkB signaling is implicated in the fluoxetine effects and
chronic, but not acute, fluoxetine treatment increase BDNF in the

rodent brain (Nibuya et al., 1995; Duman and Monteggia, 2006).
The expression of BDNF was reduced in the hippocampus of Fmr1
KO mice when compared with wild-type controls (Figure 3A) as
shown previously in older Fmr1 KO mice (Uutela et al., 2012).
Treatment with fluoxetine did not have any significant effects
on the BDNF protein expression in the hippocampus of wild-
type or Fmr1 KO mice in our experimental setting (Figure 3A).
The expression of TrkB receptors was increased in the hip-
pocampus of the Fmr1 KO mice when compared with wild-type
controls (P < 0.05), suggesting a role for TrkB in altered flu-
oxetine responses in FXS (Figure 3B). There was a tendency
toward increased TrkB protein in the wild-type hippocampus
after fluoxetine treatment and the expression of TrkB protein
remained higher in the hippocampus of Fmr1 KO than in wild-
type controls after treatment but the effects of fluoxetine on the
TrkB protein expression did not reach the level of significance
(Figure 3B).

Our previous studies have shown that the dendritic tar-
geting and expression of Bdnf mRNA are increased in corti-
cal and hippocampal neurons of Fmr1 KO (Louhivuori et al.,
2011). We examined responses to fluoxetine on Bdnf mRNA lev-
els in undifferentiated cortical progenitors derived from Fmr1
KO mice. We found that the basal expression level of the
total Bdnf mRNA in progenitors lacking FMRP was signif-
icantly higher than that in wild-type progenitors (genotype,
F(1,20) = 1148.5; P < 2.0e–16; Figure 3C). A two-way
ANOVA showed that there was an interaction between geno-
type and drug treatment (genotype × treatment interaction,
F(1,20) = 100.0, P = 3.16e–09), and fluoxetine treatment
reduced total Bdnf mRNA in wild-type progenitor cultures
whereas the expression was increased by fluoxetine in cul-
tures derived from Fmr1 KO mice. The expression of exon
IV transcripts correlated with that of total Bdnf mRNA (data
not shown), but its large variation due to a low expression
level suggested that promoter IV-driven Bdnf transcription was
not utilized significantly in proliferating undifferentiated neural
progenitors.

SERT EXPRESSION IN POSTNATAL BRAIN OF FMR1 KO MOUSE
The early development of serotonergic system has important func-
tions in cortical maturation and plasticity (Vitalis and Parnavelas,
2003). Changes in the SERT expression during early brain devel-
opment induce long-lasting behavioral alterations that associate
with changes of responses to fluoxetine and expression of BDNF
and TrkB (Karpova et al., 2009; Kiryanova et al., 2013). Transient
SERT expression mediates innervation and the uptake of serotonin
by axons and terminals of thalamic sensory neurons at P1–P10
before the total maturation of serotonergic system (Lebrand et al.,
1996). We examined the SERT mRNA expression in the sensory
relay nuclei of the thalamus of Fmr1 KO mice at P7-8. The SERT
expression was slightly but significantly reduced (90% of control,
P < 0.003) in the medial geniculate nucleus (MGN) of the auditory
relay in Fmr1 KO mice when compared with wild-type controls
(Figures 4A,B). Signal intensities in the dorsal lateral geniculate
nucleus (dLGN) of the visual in Fmr1-KO mouse relay showed
a tendency to decreased levels and the ratio of the SERT mRNA
expression in dLGN to that in the ventrobasal nucleus (VB) of the
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FIGURE 2 | Altered fluoxetine responses on mobility in the forced swim

test and proliferation of hippocampal cells. (A) Fmr1 KO mice showed
abnormal coping responses under stressful condition in the forced swim test
and the immobility time of Fmr1 KO mice was reduced when compared with
wild-type controls. Fluoxetine reduced immobility of wild-type mice but not

that of Fmr1 KO mice. (B) The effects of long-term fluoxetine treatment were
examined on hippocampal cell proliferation analyzed by incorporation of BrdU
in newborn cells. (C) Fluoxetine increased significantly hippocampal cell
proliferation in wild type but not in Fmr1 KO mice after fluoxetine treatment.
Error bars indicate means + SEM. **P < 0.01, ***P < 0.001.

FIGURE 3 | Effects of fluoxetine on the BDNF and TrkB protein

expression in the hippocampus of Fmr1 KO mice. (A) The BDNF
protein expression was reduced in the hippocampus of Fmr1 KO mice
(Fmr1 KO) when compared to that of wild-type mice (WT). The
expression levels were not changed significantly after treatment with
fluoxetine under our experimental conditions. (B) The TrkB receptor
protein was significantly increased in the hippocampus of Fmr1 KO

mice when compared to WT controls. Fluoxetine did not have any
significant effects on the TrkB expression in WT or Fmr1 KO mice.
(C) The expression of Bdnf mRNA was increased in undifferentiated
neural progenitors derived from Fmr1 KO mice when compared with
WT controls and the responses to fluoxetine treatment were different in
WT and transgenic progenitors. Error bars indicate means ±SEM.
*P < 0.05, **P < 0.01, ***P < 0.001.

somatosensory relay (90% of control, P < 0.048) was significantly
reduced when compared with wild-type controls (Figures 4C,D)
suggesting dysregulation of serotonin-dependent developmental
processes in FXS.

DISCUSSION
Fmr1 KO MICE AS A MODEL FOR AUTISM FOR FLUOXETINE STUDIES
ASD consists of a range of complex neurodevelopmental dis-
orders, characterized by aberrant reciprocal social interactions,
impaired communication, and stereotyped repetitive behav-
iors with narrow restricted interests. ASD varies in character
and severity. The clinical phenotypes reflect heterogeneity of
genetic/epigenetic/environmental factors which may contribute to
alterations in developmental processes and neuronal plasticity that
associate with defects in synapse and neuronal network function
in autism (Hughes, 2009). A genetic association among autism
and the TrkB gene (Correia et al., 2011), abnormal blood BDNF
levels in children with autism (Nelson et al., 2001; Miyazaki et al.,
2004; Connolly et al., 2006; Iughetti et al., 2011), and increased
BDNF protein expression in postmortem brain tissue of autistic

individuals (Perry et al., 2001; Garcia et al., 2012) suggests that
BDNF/TrkB signaling plays a role in the pathophysiology of
autism. FXS is the cause of autism in 2–6% of all children diag-
nosed with autism and the syndrome is the best characterized form
of ASD (Dölen and Bear, 2009). FXS is caused by a loss of func-
tional FMRP and Fmr1 KO mice recapitulate the main features of
the human FXS (Hagerman et al., 1994). Studies of Fmr1 KO mice
have revealed that BDNF/TrkB signaling is involved in the alter-
ations of neurogenesis and synapse function in FXS (Louhivuori
et al., 2011; Uutela et al., 2012). Here, we show aberrant behav-
ioral and cellular responses to fluoxetine in Fmr1 KO mice. We
show that the aberrant responses associate with alterations in the
expression of BDNF and TrkB receptors. Furthermore, a reduced
transient SERT mRNA expression in the thalamic nuclei of Fmr1
KO mice suggests developmental changes in the maturation of the
serotonin system that can have long-lasting effects on the behavior.

ALTERATIONS OF BEHAVIORAL EFFECTS OF FLUOXETINE IN FXS MICE
We observed that fluoxetine reduced the latency of Fmr1 KO
and wild-type mice to enter the center area in the open field
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FIGURE 4 | Expression of SERT mRNA in the thalamic nuclei of Fmr1

KO mice at P7-8. (A) The location of the medial geniculate nucleus (MGN)
in the Nissl-stained brain section and radioactive in situ hybridization with
SERT showing the nucleus in the brain sections of a wild-type (WT) and
Fmr1 KO transgenic (TG) mouse. (B) A bar graph representing the decrease
in the signal intensity of the SERT expression in the MGN of TG mice when
compared with that of WT mice. (C) The location of the dorsal lateral
geniculate nucleus (dLGN) and ventrobasal nucleus (VB) in the
Nissl-stained brain section and the in situ SERT hybridization signal in the
nuclei in the brain sections of a WT and TG mouse. (D) A bar graph
representing the ratio of the signal intensities of the SERT expression in
the dLGN to that in the VB of WT and TG mice. n(WT) = 7, n(TG) = 7. Error
bars indicate means + SEM. *P < 0.05, **P < 0.01.

test indicating reduced anxiety in both mouse groups. Fluox-
etine normalized the locomotor hyperactivity characteristics of
Fmr1 KO mice (Bakker et al., 1994; Peier et al., 2000; Spencer et al.,
2005; Mineur et al., 2006) and increased the exploratory activity
of these mice, seen as longer time that the mice stayed in the cen-
ter of the open field when compared to that of fluoxetine-treated
wild-type mice. Fluoxetine did not display this type of anxiolytic
effect in wild-type mice. The behavioral response to fluoxetine
in Fmr1 KO mice may correlate with disinhibited behaviors and
agitation which are known side-effects of fluoxetine treatment in
FXS individuals. In the forced swim test, Fmr1 KO mice showed
reduced behavioral despair under the stressful condition when
compared with wild-type mice. Fluoxetine had no effects on the
immobility time of Fmr1 KO mice suggesting that the normal
antidepressant effect of fluoxetine was missing in the absence of
FMRP.

THE ABSENCE OF FMRP AFFECTS CELLULAR RESPONSES TO
FLUOXETINE
We found that the aberrant behavioral responses to fluoxetine in
Fmr1 KO mice correlated with alterations of cellular responses.
Fluoxetine did not increase the proliferation of hippocampal
cells in Fmr1 KO mice like is normally seen in wild-type mice.
The responses in cell proliferation and neurogenesis are impli-
cated particularly in the antidepressant effects of fluoxetine. The
forced swim test is used to assess the antidepressant activity of
drugs, and defects in cell proliferation responses in Fmr1 KO
mice are consistent with the unresponsiveness to fluoxetine in
the forced swim test. BDNF/TrkB signaling plays an essential
role for the antidepressant effects of fluoxetine (Saarelainen et al.,

2003; Monteggia et al., 2007; Ibarguen-Vargas et al., 2009). Behav-
ioral effects of fluoxetine are blunted in animals with reduced
BDNF expression in the central nervous system (Saarelainen et al.,
2003; Ibarguen-Vargas et al., 2009). The expression of BDNF
shows age-dependent changes in murine brain and temporal alter-
ations of BDNF expression have been found in Fmr1 KO mouse
brain. The reduced expression of hippocampal BDNF protein
in the Fmr1 KO male mice at the age of 3–4 months in the
present study is in agreement with an enhanced age-dependent
decay of BDNF expression in the absence of FMRP (Uutela et al.,
2012) and unresponsiveness to fluoxetine in the forced swim
test. However, previous studies have revealed that the expres-
sion of BDNF protein is increased in the hippocampus of young
Fmr1 KO mice (Louhivuori et al., 2011; Uutela et al., 2012). We
found previously an increased expression and dendritic target-
ing of Bdnf mRNAs in neurons of Fmr1 KO mice (Louhivuori
et al., 2011). Here, we showed that the Bdnf mRNA expression
is increased in FMRP-deficient neural progenitors which express
normal levels of BDNF protein (Louhivuori et al., 2011) and that
the fluoxetine responses are also affected on mRNA levels in these
cells.

The dynamic alterations of BDNF expression levels in Fmr1
KO mice contribute to a behavioral phenotype that differs from
the phenotype of Bdnf +/− mice with reduced BDNF expres-
sion (Uutela et al., 2012). Bdnf +/− mice are indistinguishable
from wild-type mice in behavioral tests investigating anxiety,
fear-associated learning, behavioral despair, and spatial learning
(Kernie et al., 2000; MacQueen et al., 2001). In early adulthood,
Bdnf +/− mice show aggressiveness that has been linked with
dysfunction of serotonergic neurons (Lyons et al., 1999). Defects
in associative learning and reduced startle responses at higher
intensities are consistent findings in Fmr1 KO mice but not seen in
Bdnf +/− mice (Uutela et al., 2012), whereas locomotor hyper-
activity is characteristics of Fmr1 KO mice that may be seen
in Bdnf +/− mice when stressed (Kernie et al., 2000; Rios et al.,
2001). Reduced non-social but increased social anxiety have been
reported in Fmr1 KO mice (Bakker et al., 1994; Peier et al., 2000;
Mineur et al., 2002; Spencer et al., 2005; Mineur et al., 2006) but
the anxiety phenotype of Fmr1 KO mice has not been consistent
in all studies (Van Dam et al., 2000; Mineur et al., 2002; Nielsen
et al., 2002; Zhao et al., 2005; Bernardet and Crusio, 2006).

Reduced behavioral despair in adult Fmr1 KO mice in the forced
swim test was associated with increased hippocampal TrkB recep-
tors. Similarly, mice with overexpression of TrkB in neurons show
reduced behavioral despair (Koponen et al., 2005). BDNF and
TrkB are implicated in learning and memory processes, including
acquisition of fear learning within amygdala (Rattiner et al., 2004).
Overexpression of TrkB in transgenic mice reduces anxiety and the
increased TrkB expression in Fmr1 KO mice was likely linked with
the reduced anxiety. Neuronal release of BDNF can alter anxiety-
like behaviors in mice (Berton et al., 2006; Chen et al., 2006) and
age-dependent changes in the expression of BDNF observed in the
brain of Fmr1 KO mice (Uutela et al., 2012) could at least partially
explain the alterations seen in the anxiety phenotype in different
studies. Fluoxetine displayed an abnormal anxiolytic effect that
did not associate with any significant changes in the TrkB expres-
sion in the hippocampus of Fmr1 KO mice in our experimental
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setting and further studies are needed to explore the regulation
and functional responses of TrkB receptors after treatment with
fluoxetine in different experimental conditions in FXS mice.

There is evidence that BDNF signaling is critical for the normal
development and function of central serotonergic neurons (Lyons
et al., 1999). Reduced levels of endogenous BDNF cause alterations
of serotonergic receptor expression but brain serotonin levels and
fiber density are normal in Bdnf +/− mice at early age. We found
that the postnatal SERT mRNA expression was reduced in the
thalamic nuclei of Fmr1 KO mice during the time of transient
innervation of somatosensory neurons indicating developmental
changes in the serotonergic system that contribute to alterations
of BDNF/TrkB signaling and behavioral responses in adult Fmr1
KO mice. Previously, defects of AMPA receptor GluR1 subtype
surface insertion have been shown after inhibition of 5-HT2A
receptor also indicating defects in serotonergic system in FXS (Xu
et al., 2012). Changes in the SERT mRNA expression in the sen-
sory thalamic nuclei during postnatal period are consistent with
alterations of developmental plasticity in both visual and auditory
systems of Fmr1 KO mice (Dolen et al., 2007; Kim et al., 2013a).
Temporal and spatial changes of serotonin expression during early
development may cause long-lasting behavioral alterations in FXS.
Indeed, targeting SERT expression by fluoxetine during postnatal
development results in reduced behavioral despair in adult mice
as seen in Fmr1 KO mice (Karpova et al., 2009).

FLUOXETINE TREATMENT IN ASD
Fluoxetine is often used to treat individuals with ASD (Aman
et al., 2005; Oswald and Sonenklar, 2007) and its effects have been
evaluated in several clinical studies. A recently published meta-
analysis does not support the use of SSRIs in autism (Williams
et al., 2013). However, positive effects of fluoxetine on core autis-
tic symptoms have been shown in individual cases and subgroups
of autistic children and in adults with ASD (DeLong et al., 1998,
2002; Makkonen et al., 2011; Hollander et al., 2012). Anxiety and
obsessive–compulsive symptoms which associate with autism can
be ameliorated by fluoxetine in adult ASD (Buchsbaum et al., 2001;
Hollander et al., 2012). In children, beneficial effects have been
particularly shown in language impairment. Relatively few side-
effects were observed over a 12-week fluoxetine treatment period
(Hollander et al., 2012) but long-time consequences of fluoxetine
treatment on human brain maturation are not known.

Improved understanding of distinct molecular mechanisms
linked to SSRI action in ASD could facilitate optimal pharmacolog-
ical intervention of individuals with ASD. Dysregulated serotoner-
gic signaling in autism is supported by platelet hyperserotonemia
in some of ASD individuals (Piven et al., 1991). Furthermore, link-
age studies have identified ASD candidate genes in serotonergic
pathways, including the gene that encodes SERT (SLC6A4) (Devlin
et al., 2005; Brune et al., 2006). Chronic treatment with fluoxetine
enhances serotonergic transmission that may activate mecha-
nisms involved in regulation of intracortical inhibitory–excitatory
balance and reduced γ-aminobutyric acid (GABA) signaling is
reported by fluoxetine treatment (Maya-Vetencourt et al., 2008).

In the present study, we examined effects of long-term flu-
oxetine treatment in FXS that represents a monogenic cause of
ASD. We observed aberrances of behavioral fluoxetine responses

which correlated with alterations of BDNF and TrkB expres-
sion. Alterations of both excitatory and inhibitory neurotrans-
mission are implicated in FXS and the outcome of fluoxetine
treatment on function of neuronal circuits in FXS is diffi-
cult to predict. Enhanced explorative activity of Fmr1 KO
mice after fluoxetine treatment is in agreement with acti-
vation seen as restlessness, mood changes, and disinhibited
behaviors in about 20% of individuals with FXS (Hager-
man et al., 1994). The present study suggests that molecu-
lar mechanisms underlying ASD may associate with develop-
mental changes that influence fluoxetine responses. Further
studies are needed to investigate genetic and epigenetic fac-
tors which modulate responses to fluoxetine in ASD more in
detail.
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