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ABSTRACT Here, we report the 7.4-Mb draft genome sequence of Paenibacillus sp.
strain GM2FR, an endophytic bacterium isolated from aerial plant tissues of Festuca
rubra L. Genome analysis revealed 6,652 coding gene sequences and several gene
clusters involved in plant growth promotion, such as that for the siderophore bacilli-
bactin.

Plant-associated bacteria belonging to the genus Paenibacillus are able to promote
plant growth and health (1, 2). Several Paenibacillus spp. are important antagonists

of various important plant pathogens and pests (3, 4). The genome sequence of the
endophyte strain Paenibacillus sp. GM2FR will facilitate further studies on the potential
of these bacteria for agricultural applications.

We isolated Paenibacillus sp. GM2FR from surface-sterilized aerial tissues of healthy
Festuca rubra plants. Genomic DNA was extracted using the MasterPure complete DNA
purification kit (Epicentre, Madison, WI, USA). The obtained DNA was used to generate
Illumina shotgun paired-end sequencing libraries. Sequencing was performed employ-
ing a MiSeq system and the MiSeq reagent kit version 3 (600 cycles), as recommended
by the manufacturer (Illumina, San Diego, CA, USA). Quality filtering using Trimmomatic
version 0.32 (5) resulted in 5,564,116 paired-end reads. The de novo genome assembly was
performed with the SPAdes genome assembler version 3.8.0 (6). The assembly resulted in
16 contigs (�500 bp) and an average coverage of 154-fold. The assembly was validated
and the read coverage determined with QualiMap version 2.1 (7).

The draft genome of strain GM2FR consisted of 7,416,573 bp, with an overall GC
content of 49.56%. Gene prediction and annotation were performed using Prokka
(Rapid Prokaryotic Genome Annotation) version 1.11 (8). The draft genome harbored 8
rRNA genes, 45 tRNA genes, 2,573 protein-encoding genes with functional predictions,
and 4,079 genes coding for hypothetical proteins. Multilocus sequence typing (MLST)
based on four housekeeping genes (gapA, groEL, gyrA, and pgi) was performed accord-
ing to Iiyama et al. (9). Strain GM2FR clustered with Paenibacillus vortex (10).

An antiSMASH 3.0.5 (11) analysis predicted 51 potential gene clusters involved in
secondary metabolite production. These included 48 clusters with no or low (�20%)
similarity to known clusters, such as a bacteriocin, terpene, and type III polyketide
synthase (T3pks) gene clusters. In addition, a nonribosomal polyketide synthetase
(NRPS) cluster was identified with 53% of the genes sharing similarity to a bacillibactin
biosynthesis gene cluster. Bacillibactin is a catecholate-type siderophore produced by
Paenibacillus larvae (12) as well as several Bacillus species (13). Siderophores play an
important role in competition between microorganisms (13) and can enhance plant
growth and health (12–14). Moreover, a gene cluster with 75% of genes exhibiting
similarity to an ectoine biosynthetic gene cluster was identified. Ectoines are produced
by bacteria as compatible solutes to maintain the stability and correct folding of their
proteins under osmotic stress (15). It has been shown that ectoines can enhance the
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nitrogen supply to tobacco leaves by increasing transpiration and by protecting
RuBisCO proteins from the deleterious effects of salt (16). In addition, an increased
water uptake rate and, subsequently, an increased photosynthesis rate under salt stress
were observed in ectoine transgenic tomato plants (17). Thus, Paenibacillus sp. GM2FR
might be involved in plant growth health in its host plant.

Accession number(s). The whole-genome shotgun project has been deposited
at DDBJ/ENA/GenBank under the accession number MKZM00000000. The version
described here is version MKZM01000000.
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