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Abstract: Circadian clocks have evolved in most light-sensitive organisms, from unicellular organ-
isms to mammals. Consequently, a myriad of biological functions exhibits circadian rhythmicity,
from behavior to physiology, through tissue and cellular functions to subcellular processes. Circadian
rhythms in intracellular organelles are an emerging and exciting research arena. We summarize
herein the current literature for rhythmicity in major intracellular organelles in mammals. These
include changes in the morphology, content, and functions of different intracellular organelles. While
these data highlight the presence of rhythmicity in these organelles, a gap remains in our knowl-
edge regarding the underlying molecular mechanisms and their functional significance. Finally, we
discuss the importance and challenges faced by spatio-temporal studies on these organelles and
speculate on the presence of oscillators in organelles and their potential mode of communication.
As circadian biology has been and continues to be studied throughout temporal and spatial axes,
circadian organelles appear to be the next frontier.

Keywords: circadian clocks; rhythms; organelles; mitochondria; nucleus; endoplasmic reticulum;
lysosomes

1. Introduction

“Clocks, processes measuring absolute time, occur in living organisms”, wrote Colin
Pittendrigh in 1954 [1]. Considered one of the founding fathers of the clock field, Pittendrigh
was among the first to deliberately adopt the term “clock”. This was done in contemplation
of the growing body of evidence for daily rhythmic behaviors in various organisms [2]. To
name a few: leaf movement in plants, bird navigation, and fly emergence from puparia, all
had clear rhythms with daily periodicity. While some researchers initially objected to the
concept of an internal clock and advocated for an (unknown) external factor that regulates
these rhythms, most readily adopted the current view that light-sensitive organisms have
an internal capacity to tell time.

In addition to internal timekeeping capacities, adopting the clock terminology insti-
gated basic questions regarding its nature and clock-like properties [3]. For one, since a
clock is a physical object and therefore must have a distinct location, an important question
emerges: where is this biological clock located? This question has been echoed throughout
decades in the search for, and subsequent discovery of, the location of the clock in a number
of model organisms. In the 1970s, seminal lesion experiments in rodents revealed that the
“master clock” in mammals resides in the Suprachiasmatic Nucleus (SCN) region of the
brain [4,5]. Years later, clocks were found in almost every cell throughout the body [6–9]
and were shown to function in a self-sustained and cell-autonomous manner in culture.
Importantly, this latter finding goes together with the presence of circadian clocks in
unicellular organisms, such as cyanobacteria [10].

Another fundamental implementation of the clock terminology is that a clock has parts,
and consequently, chronobiologists were ever-eager to answer the question: what is the
biological clock made of? The first to be identified of what are now termed “clock genes”
was the period gene in Drosophila melanogaster, as its mutated forms were found to disrupt
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behavioral rhythms [11]. Intensive cloning efforts and genetic investigations enabled, by
1990, the introduction of a negative transcription and translation feedback loop (TTFL) model
to explain how these genes and their products generate self-sustained oscillations [12–14].
Subsequent studies identified similar TTFLs consisting of additional clock genes in other
organisms. Consequently, the TTFL is widely considered as a universal clock mecha-
nism [15]. In mammals, the Circadian Locomotor Output Cycles Kaput (CLOCK) was the
first clock component to be identified [16,17]. Successive studies further deciphered the
mammalian clockwork, which consists of an intricate network of molecular feedback loops.
The rhythmic heterodimerization of BMAL1 and CLOCK (or its paralog NPAS2) drives the
expression of Period (Per1, Per2, and Per3) and Cryptochrome (Cry1 and Cry2) genes. In turn,
PERIOD and CRYPTOCHROME proteins accumulate and repress the transcription of their
own genes. Another central feedback loop involves the expression of the nuclear receptors
NR1D1/2 (REV-ERBα/β) and ROR, which are targets of BMAL1 transcription and regulate
Bmal1 expression [18,19] (Figure 1). Throughout the years, additional transcription regula-
tors have been identified to participate in the transcriptional feedback loops (e.g., DEC1
and DEC2 [20,21]) and control rhythmic gene expression (e.g., the PARbZip transcription
factors [22]). It is noteworthy that several studies also reported on circadian rhythmicity
that is independent of a functional TTFL, for example [23,24].
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Figure 1. Circadian rhythmicity across multiple levels. Circadian rhythmicity occurs in myriad of biological functions, from
behavior to physiology at the whole animal level and through specific tissue functions and cellular functions to subcellular
processes. The circadian clock functions at the molecular level based on transcription-translation feedback loops.

The term circadian was coined as a conjugation of the Latin words circa (about) and
diem (day) [25]. This was due to the fact that the actual period length of these clocks is close
but seldom identical to 24 h. This frequency can be longer or shorter than a day, depending
on the organism or environmental conditions, but for any given context, it would always
be very stable. Importantly, the deviation from 24 h is only observable under what is called
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“free running conditions”, i.e., in constant routine experiments. The clock can continue
to tick on its own, with a fixed period, highlighting its autonomous, internal nature. Any
process which continues to cycle, with one major peak in ~24 h, in a constant environmental
setup, is said to be under circadian clock control, or simply, circadian. Alternatively, a
rhythmic phenomenon that repeats itself, but in a rhythmic environment such as the normal
light/dark cycles would be called a “daily” or “diurnal” rhythm, as the rhythms might
occur merely in response to the external cues. Such a rhythm can ultimately be deemed
circadian, but only if it maintains its oscillations in free running settings. Often, the terms
circadian and daily are unfortunately misused in the literature without adhering to their
true definition.

Another circadian property is the capacity of adjusting to external time, also termed
phase resetting, or entrainment. Many environmental signals can serve as timing cues,
or zeitgebers (time givers, in German); prominent examples amongst them are light/dark,
feeding/fasting, and temperature cycles [26–28]. Molecular input signals include, among
others: glucocorticoids, cAMP, growth factors [29], glucose [30], insulin [31], and gases
such as oxygen [32] and carbon dioxide [33].

From an evolutionary perspective, the presence of circadian clocks from unicellular
organisms to plants, flies, and mammals suggests that the circadian clock confers survival
advantages. For one, it can allow for temporal separation of conflicting processes and
anticipation of the cycling environmental conditions (e.g., coordination between metabolic
gene expression and activity with feeding–fasting rhythms). Thus, countless biological
functions are rhythmic at multiple scales, from behavior to physiology and various cellular
functions, even in subcellular compartments.

In this review, we summarize the evidence for ~24 h rhythmicity in the following
membrane-bound organelles: nuclei, mitochondria, Endoplasmic Reticulum (ER), and
lysosomes, as the majority of the literature relates to them. However, there have been some
sporadic reports on other organelles, such as the Golgi network [34] or peroxisomes [35].
Notably, the lion’s share of these studies was performed in rodents and predominantly
the liver, which is highly rhythmic [36]. We concentrated on the organelles’ structure
and function, as could be gleaned by their morphology and key biochemical processes.
We also discuss the importance, alongside the challenges, of studying the rhythmicity of
intracellular organelles, as well as the potential implications of what we know so far. We
hope this will leave the reader with a comprehensive view and serve as “food for thought”
for future studies along this line of research.

2. Rhythms in Organelles
2.1. Nucleus

Polyploidy, an increase in the number of chromosome sets per cell, is a common
feature of the mammalian liver, with a range of 30–90% polyploid hepatocytes in different
organisms [37,38]. Polyploidy prevalence is generally associated with aging, senescence,
and pathological conditions [38]. Nevertheless, the process is considered reversible, and
daily rhythmicity in polyploidy was shown in mouse liver using both histological slices
and flow cytometry of isolated nuclei [39]. For instance, bi-nucleated diploid hepatocytes
peaked during the light phase, while mono-nucleated tetraploid hepatocytes peaked in
the dark. Along these lines, Chao and colleagues observed a marked increase in hepatic
polyploidy in clock-disrupted Per1,2,3 triple negative mice and therefore hypothesized this
to be clock-controlled [40]. However, as these experiments were carried out only at a single
time of the day, it remains unclear whether the circadian clock controls temporal dynamics
in ploidy.

Within the nuclei, DNA is folded into 3D structures, which are non-random and
define spatial positioning between regulatory elements and coding regions [41,42]. The
overall spread of chromatin spans throughout the nucleus, from areas which are centrally
located and rich in transcriptionally active genes (called “compartment A”) as opposed
to areas more peripherally localized with the nuclear lamina with repressed genes (“com-
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partment B”). Within these “megastructures”, anchored by cohesin and CCCTC-binding
factor (CTCF) proteins, are Topologically Associating Domains (TADs), which are mostly
conserved and stable between different tissues and cell-states. At a small genomic scale,
the spatial arrangement of genes and their regulating elements, namely, proximity between
enhancers and promoters, was found to be very dynamic, and the chronobiology field was
not late to the game.

The first attempts to unravel daily chromatin rhythmicity were made in cell cultures.
Using chromosome conformation capture-on-chip (4C) on the Dbp gene in Mouse Embry-
onic Fibroblasts (MEFs), [43] circadian rhythms in chromatin changes were detected. These
rhythms in chromatin association appeared altered in clock-disrupted MEFs, though due
to the low temporal resolution, the conclusions in this respect were limited. In the human
colon cancer cell line HCT116, [44] rhythmic repressive Lamina Associated Domains (LADs)
were shown following the interaction between PARP1 (Poly (ADP-Ribose) Polymerase 1),
a chromatin modifier and integrator of feeding with the circadian clock [45], and CTCF.
Evidence for interaction between the nuclear periphery and circadian rhythmicity had
also been obtained in vivo, as levels of the nuclear envelope protein LaminA were shown
to affect the rhythmicity of PER2 protein in mouse liver, and genetic manipulation of
additional nuclear envelope-related proteins affected the period of behavioral rhythms
in constant dark [46,47]. In addition, daily changes in open and closed configurations of
chromatin compartments A and B were identified using Principal Component Analysis
(PCA) analysis on Hi-C data [48].

While the functional significance of some of the long-range interactions remains
debatable [41], and not all initial findings were recapitulated in vivo [49], a stream of studies
has since underscored the importance of temporal examination of chromatin architecture,
at least on the smaller genomic scale [41,42,50]. Circadian chromosome dynamics have
been shown to involve clock components such as Cry1 in mouse liver, which is controlled
by Rev-erbα [51] and Bmal1 [52]. Rhythmic enhancer activity of Bmal1 and Period2 was
associated with transcription of these genes [53]. These clock genes, among others, present
daily changes in their promoter contact sites [48]. In addition, several clock output genes
undergo rhythmic cis element binding, such as: Gys2 [52] and Mreg [53].

Though further studies are expected to produce a more complete picture, compart-
mentalization of the nuclear interior is by now established as a mechanism for generating
diurnal rhythms in gene expression [41,42,50]. Gene transcription, which occurs in the
nucleus, is the molecular basis for circadian clock function and control of its many rhyth-
mic outputs. This notion, together with the rapid advancement in technologies for gene
expression analyses in recent years, has positioned transcriptomic as one of the most
prominent techniques in the chronobiologist toolkit. Over the past three decades, gene
expression analyses have been fertile grounds for circadian studies and suggest that up to
40% of the genes in mammals are transcribed in a circadian manner [42,54,55]. Not only
do transcription factor bindings cycle in a daily manner, but rhythms are also prevalent
throughout major steps of transcription regulation and RNA processing such as chromatin
accessibility, PolII activity, RNA capping, splicing, and export to cytoplasm [56].

Hence, gene transcription, which is a hallmark of nuclear function, is clearly rhythmic.
Moreover, it carries wide implications on the rhythmicity of other cellular organelles as
detailed below. That said, rhythmic transcription is not the end of the story, and as a
matter of fact, not all rhythmic transcripts yield rhythmic protein levels [57,58]. Several
studies in recent years applied proteomics and phospho-proteomics on whole cells as
well as nuclear fractions isolated from mouse liver around the clock [39,57–60]. Under
a rhythmic environment (light/dark and feeding/fasting cycles), the nuclear proteome
undergoes significant diurnal changes with night-time enrichment for protein complexes
involved in cytoskeleton organization, protein transport, proteolysis, and chaperoning of
proteins [39]. Comparison of total and nuclear liver proteome shows a discrepancy between
the two datasets, which implies that protein translocation from the cytoplasm into the
nucleus plays a role in nuclear protein rhythmicity. In support of that, UniProt annotation
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of the nucleus-rhythmic proteins shows many are shuttling-related. In this respect, it is
interesting to note that specific clock components themselves undergo rhythmic import
into the nucleus, e.g., PER1 via Transportin 1 [61] as well as PERs and CRYs via NRON
complex [62] and via KPNB1 [63].

Aside from transcriptomics and proteomics, circadian metabolomics have been at
the forefront in recent years. In the last decade, following major technological advances,
circadian lipid molecules were discovered across many cell types as blood, saliva, muscle
cells and whole liver [64–67]. Following biochemical fractionations for the nucleus and
mitochondria from mouse liver, lipids were found to undergo vast daily changes in these
compartments [68]. In the nucleus, over 30% of the lipids are rhythmic, with higher levels in
the beginning of the light phase. Their rhythmicity and overall abundance greatly respond
to the feeding regimen. Interestingly, the nuclear lipid phases mirror those in mitochondria
and suggest coupling and potential daily lipid shuttling between these organelles, which is
further discussed below.

Taken together, the above detailed findings suggest temporal compartmentalization
of key basic biological functions of the nucleus.

2.2. Mitochondria

Mitochondria have been of major interest for chronobiologists, and several aspects
of circadian mitochondrial biology have been elucidated. Generally, there are three main
facets through which the circadian clock exerts its control over mitochondrial function: (1)
mitochondrial dynamics, namely cycles of fission and fusion to maintain shape, size, and
number; (2) molecular content, namely expression of mitochondrial related genes (both
nuclear and mitochondrial encoded) as well as proteins (e.g., enzymes) and metabolite
levels; and (3) major mitochondrial functions such as oxidative phosphorylation, probed
mostly through examination of Oxygen Consumption Rate (OCR). These three broad and
interconnected categories (dynamics, content, and function) will serve here to navigate
through the mitochondrial circadian literature [69,70].

Dynamic changes in morphology, from fragmented to tubular forms, contribute to
mitochondrial functionality and involve continuous fission and fusion cycles to maintain
their abundance, morphology, quality, and function [71]. Specifically, mitochondrial fission
results in small and round mitochondria, while mitochondrial fusion generates thin and
elongated mitochondria with highly interconnected networks.

Upon nutrient availability, mitochondria are mostly fragmented, and when nutri-
ents are scarce, mitochondria become tubular and thus more supportive of ATP produc-
tion [70,72]. Therefore, mitochondrial dynamics likely respond to daily rest/activity and
feeding/fasting cycles due to differences in nutrient availability and energy demands.
Indeed, early observations made on rat hepatocytes using electron microscopy reported
significant differences in the volume and shape of mitochondria between rest and active
phases [73]. Studies in mouse liver showed that mitochondrial dynamics are coupled with
daily feeding−fasting cycle in part through BMAL1, which regulates the rhythmic expres-
sion levels of fission and mitophagy genes [74]. Mitochondrial morphology in cultured
fibroblasts also displays circadian rhythmicity and is regulated through clock-dependent
modification of the mitochondrial fission protein DRP1 [75]. Control of mitochondrial
morphology by clock genes was also observed in livers from liver-specific Bmal1 knockout
mice [74] and from Clock∆19 mice [76] as well as in mouse skeletal muscle and heart [77,78].
Mitochondrial dynamics involve massive changes in the organelles’ membranes. Indeed,
lipidomics analyses performed on isolated mitochondria from mouse liver at different
times of the day revealed that about a third of the mitochondrial lipidome exhibits daily
rhythms [68]. Both the phase and the composition of the rhythmic lipids is dependent on
feeding/fasting cycles and on the clock components PER1,2.

Of the approximately thousand different proteins that reside in mitochondria [79],
most are encoded by the nuclear genome and imported into the mitochondria, while only
13 proteins are encoded by the mitochondrial DNA and are locally transcribed and syn-
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thesized [80]. The transcript levels of several nuclear-encoded mitochondrial proteins are
altered in clock-deficient mice [78,81]. ChIP analysis also revealed that these genes’ pro-
moters are occupied by BMAL1 [74,82,83]. Indeed, over a third of mitochondrial proteins
accumulate in a daily manner and include key enzymes in carbohydrate metabolism, fatty
acid uptake and oxidation, Krebs cycle, and the respiratory chain complexes [57,58,84].

Proteomic analysis of isolated mitochondria around the clock revealed that the rhyth-
mic mitochondrial proteins mostly peak during the early light phase, while their respective
transcripts are elevated in the beginning of the dark phase [84]. This suggests that post-
transcriptional mechanisms, such as protein-translation [85,86] and various protein modifi-
cations (e.g., acetylation [87–89]), alongside the mitochondrial protein import machinery,
potentially shape the phase of the rhythmic mitochondrial proteome [69]. In addition, a
wide range of metabolites associated with mitochondrial metabolism display circadian
rhythmicity, including ATP and NAD+ [75,87,90,91]. Such metabolic rhythms are likely to
feed back to the clock function [92,93].

Respiration through oxidative phosphorylation is perhaps the most prominent role of
mitochondria. Assays that measure OCR performed on cells and isolated mitochondria
were used to uncover the circadian control of mitochondrial nutrient utilization and res-
piration. Circadian fluctuations in OCR measurements were observed in cultured cells,
including C2C12 [87], HepG2 [94,95], and fibroblasts [96]. OCR measurements in primary
hepatocytes isolated from mice in the beginning of the light and dark phase revealed higher
respiration in the latter. This daily difference was diminished in hepatocytes isolated from
liver-specific Bmal1 knockout mice [74]. Experiments performed with mitochondria iso-
lated from mouse liver around the clock provided further insight on mitochondrial nutrient
utilization throughout the day [84]. In the presence of substrates such as palmitoyl + carni-
tine and palmitoyl-CoA + carnitine, mitochondria exhibit rhythmic respiration with zenith
level early in the light phase, in accordance with elevated Carnitine palmitoyltransferase 1
(CPT1) protein levels. Carbohydrate (i.e., pyruvate and malate) utilization is rhythmic as
well but peaks later during the light phase in line with Pyruvate dehydrogenase (PDH)
accumulation. Remarkably, these daily rhythms in mitochondrial respiration are strongly
influenced not only by the molecular circadian clock (i.e., Per1,2 null mice), but also by
nutrition type (e.g., high fat diet) and mealtime (i.e., nighttime restricted feeding).

Together, these studies suggest that mitochondrial biology exhibits daily rhythms, at
least in mouse liver. It is conceivable that the observed temporal changes in mitochondrial
fission-fusion, protein content, and the organelles’ function evolved in response to daily
changes in nutrient availability and energetic demands.

2.3. Endoplasmic Reticulum (ER)

The ER is an elaborate network of lipid membranes that forms sites in which secretory
and transmembrane proteins undergo folding and posttranslational modifications that
are required for their function. Interconnected with the nuclear membrane as well as
mitochondria, these organelles offer a range of functions for spatio-temporal investigations.

As early as the 1970s and onwards, microscopic studies described diurnal changes in
ER morphology that occur in rat hepatocytes [97,98]. Both the rough and smooth ER (with
and without ribosomes, respectively) were proposed to vary in surface area and volume
densities, presenting anti-phasic daily trends [98].

The ER constitutes the first step in the protein secretion pathway, which transports
an estimated 30% of proteins, at least in humans [79,99]. In recent years, this process
was proposed to oscillate throughout the day, based on around the clock mouse liver pro-
teomics [57,58]. In these studies, the rhythmic proteome was enriched for secreted proteins
with various functions: apolipoproteins, coagulation factors, complement factors, and ser-
ine protease inhibitors [57]. Furthermore, many components of the secretory pathway itself,
such as ribosome docking, ER chaperones, ER, and Golgi vesicle-mediated transporters
were found to be rhythmic [58]. This supports the assumption that regulation of protein
secretion is rhythmic, yet functional assays are still lacking. Remarkably, similar to the
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rhythmic mitochondrial proteome detailed above, both studies note that the rhythmicity of
many of these secretory proteins do not correspond to their transcript levels, suggesting a
role for post-transcriptional mechanisms in control of their daily rhythmicity.

Collagen, the most abundant Extra Cellular Matrix (ECM) protein, is often thought
to be found in constant levels [100,101]. Indeed, neither its transcript level nor its total
protein levels are rhythmic; however, its synthesis, transport, and degradation are all circa-
dian [100]. For instance, in mouse tendons, daily dynamics were recently detected across a
range of different collagen fibrils, which differed in their peak times, thus explaining how
the net effect is constant. In support of this, oscillations were observed in collagen secretion,
transport, and degradation-related transcripts (e.g., Sec61a2, Mia3, Pde4d, and Vps33b), as
well as their ribosome occupancy. Moreover, such collagen fiber assembly and disassembly
maintain their circadian rhythmicity in a cell-autonomous manner in cultured fibroblasts.

It is noteworthy that enrichment for the “protein folding” functional category was also
reported in the daily rhythmic proteome [58]. These proteins’ expression was relatively
aligned with their rhythmic transcripts. Protein folding in ER is crucial for cellular function
and requires tight regulation. Following excessive accumulation of unfolded proteins,
specific signaling pathways are activated, collectively termed Unfolded Protein Response
(UPR) [102]. Treatment with the UPR-inducer tunicamycin at different times around the
clock revealed that induction of several UPR components in mouse liver is dependent on
the time of day [103]. Curiously, UPR-related genes undergo the rhythmic expression of a
12 h period (a harmonic of 24 h) with synchronized peak times. Phosphorylation of the
UPR-related kinase IRE1α (Inositol-requiring transmembrane kinase/endoribonuclease
1α) and nuclear accumulation of the XBP1 (X-Box Binding Protein-1) transcription factor
show corresponding rhythmicity. These rhythms persist in animals housed in constant
dark and that are food-deprived, suggesting that they are endogenously driven [103]. In
fact, XBP1 was recently further shown to regulate 12 h rhythmicity that goes beyond the
UPR [104–106].

In other works, several mRNAs encoding for UPR signaling components were shown
to oscillate in mouse liver with 24 h rhythmicity [107]. The UPR-activated transcription
factor, ATF4 (Activating Transcription Factor 4), was shown to undergo circadian cycles,
both in transcript and protein levels, both in mouse liver and cultured cells [108]. While
Clock knockout animals show complete disruption of Atf4 rhythms [108], Cry1,2 double
knockouts subjected to night-restricted feeding exhibit rhythmic activation of the pathway
with a 24 h periodicity [103], highlighting the complex regulation of UPR.

As depicted above, several aspects of ER function, such as protein secretion and UPR,
are rhythmic, and it would be interesting to examine in future studies the underlying
molecular mechanisms as well as the functional implications.

2.4. Lysosomes

The lysosomal degradation system sequesters hydrolytic enzymes into membrane
compartments, segregating their activity within the cell. Lysosomes, “digestive bodies”
in Greek, were serendipitously discovered by biochemical fractionation [109,110] and
soon after were identified in situ within cells by direct microscopy [111], which also
revealed that they are morphologically heterogeneous among various cell types [112].
In the following years, it also became clear that lysosomes vary in their size and shape
throughout the day, at least in rat heart and liver [98,113]. These rhythms do not come as a
surprise, since lysosomes are highly influenced by feeding/fasting conditions. Starvation
induces recycling and removal of unnecessary cytoplasmic components such as metabolites,
proteins, lipids, and even other organelles. Accordingly, lysosome volume is larger during
the light phase, namely when nocturnal rodents do not ingest food [113].

Lysosomes have received attention in chronobiology literature, somewhat indirectly,
in relation to autophagy, a process in which they play a key role. Many aspects of au-
tophagy are by now established as rhythmic. These include autophagy-related gene
expression and protein accumulation, autophagic flux, as well as the appearance of au-
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tophagosomes [114,115]. The role of specific clock components in autophagy regulation
has been examined. Interestingly, while an early study testing Bmal1-liver specific knock-
out mice showed that autophagy rhythmicity, and the overall autophagic response, is
largely diminished [114], a recent study showed that whole body Bmal1-null mice present
rhythmic autophagic flux similar to wild-type mice [115]. Future research is required
to settle this apparent discrepancy. It is noteworthy that mitochondrial autophagy was
found to be regulated by the circadian Clock gene in cardiac myocytes during ischemic
stress [116]. In addition, REV-ERBα, AMPK, mTOR, and the autophagy-inducing kinase
ULK1, which themselves exhibit circadian rhythmicity, were suggested to act as integrators
of the nutrition−clocks−autophagy axis, as detailed in relevant reviews [117–119].

A case for circadian phagocytosis was recently made in a retinal-cell culture (ARPE-19
monolayers), which show rhythmic expression of phagocytosis-related genes, as well as
lysosomal-associated membrane protein 1 (LAMP1) [120]. LAMP1, a lysosomal marker, is
activated in these cells in a time-dependent manner, downstream to photoreceptor removal
demands, demonstrating circadian regulation of lysosomal activation.

Overall, different aspects of lysosomal biology show circadian rhythmicity from
morphology to related gene expression, protein accumulation, as well as some relevant
functions, yet the underlying molecular mechanisms in conjunction with the circadian
clock are still lacking.

3. Discussion

In his incessant wit, the world-renowned chronobiologist Michael Rosbash concludes
his “50-year journey” in circadian genetics with: “The moral of the story is, as in real estate,
‘location, location, location.’” [121]. That is to say, in retrospect, his Nobel-prize-level
success can be attributed to location in terms of where he performed his research, or his
former student Paul Harding’s breakthrough approach in using fly heads instead of whole
animals, and other fortuitous paths. To adopt and double-down on his sage advice, we
discuss below the benefits of studying circadian rhythms in organelles.

3.1. The Importance of Circadian Organelle Research

Much like different organs throughout the body, organelles have distinct functions, as
were described throughout this review (Figure 2). Thus, investigating isolated parts can
provide better resolution and deeper understanding of localized processes. For example,
coverage of scarcely expressed proteins and transcription factors in whole cells is low, but
they are more readily detected using purified nuclei.

Detectability of the target of interest is of obvious importance for every study, regard-
less of the aspect of time. However, when addressing rhythmic properties, selecting the
proper location becomes even more critical. Consider our group’s personal experience
with circadian lipid research: in an earlier work [67], we utilized a lipidomics approach on
mouse liver around the clock and detected rhythmicity in 17% of the lipids, the majority of
them being triacylglycerols (TAGs). Interestingly, when we applied the same lipidomics
technique on isolated nuclei and mitochondria, we saw a twofold increase in rhythmic
lipids, but each organelle had opposing peak times of lipid molecules [68]. This demon-
strates that, in practice, if a tissue contains anti-phasic rhythms in different organelles,
these will be averaged-out when analyzing the tissue as a whole. Similar conclusions were
drawn in respect to rhythmic protein levels, as described in [39].
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3.2. The Challenges of Circadian Organelle Research

Despite the apparent advantages, studying isolated organelles brings about many
challenges. While subcellular fractionation protocols are established (for example [122,123]),
their purity is not always very high, and they might contain other organelle contaminants.
Furthermore, a time-course experiment would require significant efforts in applying these
additional steps around the clock and would likely require more biological material to start
with (i.e., compared with straightforward sample collection).

While of great interest and potential implications, much of the organelle-related
rhythms known today and described herein are in fact based on descriptive methods and
mostly rely on high-throughput omics techniques. Our knowledge regarding the functional
significance of these changes is still lagging behind, predominantly because many of the
relevant assays are demanding and difficult to perform around the clock. Furthermore, the
presence of oscillations in isolated organelles may not be representative of their behavior
within tissues or living organisms.

Furthermore, questions regarding the effect of rhythmicity in one organelle on another
organelle are extremely challenging to perform as it is currently near impossible to directly
interfere with a specific organelle in view of their indispensable roles. Having said that,
there are some exceptions. For example, although mitochondria are considered as the
cellular energy power plants, in cell culture, cells can perfectly grow and survive in
the absence of mitochondrial DNA and consequently defective mitochondria (i.e., ρ0

cells), [124]. Hence, it would be interesting to examine the effect of mitochondria on
rhythmicity of other cellular processes using these cells.

Despite some efforts to uncover the molecular mechanisms underlying different facets
of organelle rhythmicity, relatively little is known. It is unclear to which extent these
rhythms are driven by the molecular circadian clocks, how much is controlled at the
transcriptional vs. the posttranscriptional levels, as well as within or outside the organelles.
Obviously, this type of questions requires advanced expertise and methodologies both
from the molecular and cell biology arenas.
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3.3. Potential and Speculative Implications of Circadian Organelle Research

Importantly, the rhythmicity observed in different organelles and detailed above is
most likely driven either directly or indirectly by the molecular circadian clock. Although
currently there is no evidence to support this idea, one can speculate that organelles
might harbor their own internal clock. Of particular interest are mitochondria, in view
of their evolutionary shared past with prokaryotes, some of which harbor a circadian
clock [125,126]. However, unlike cells that can be cultured for days to weeks without any
intervention, to date it has been virtually impossible to keep isolated organelles viable
in culture for several days. Such ex vivo “organelle-cultures” are extremely critical in
order to determine organelle specific rhythmicity. Nonetheless, the notion of an organelle-
intrinsic clock could be very appealing for exciting future research avenues relating to
the hierarchy of the circadian system. Following the above-mentioned endeavor to find
the clock’s location, and the historical transition in studying mammalian time-measuring
capacity from whole organisms, to the SCN region of the brain, and subsequently to every
cell in the body, adding another layer of circadian complexity, potentially in the form of
“organelle-clocks”, seems to be a conceivable trajectory.

Following this narrative, irrespective of whether organelles harbor their own clock, it
is likely that their circadian rhythmicity should be coordinated with the rhythmicity of other
cellular compartments to optimize cellular functions, very similar to the observation that
circadian rhythmicity of different organs in mammals is phase-coordinated through clock-
dependent and independent mechanisms [127]. For example, temporal communication
between organelles can be achieved through different metabolites, proteins, contact sites,
as well as various signaling pathways. Based on the notion that the cell functions as a unit
with internal logic and flow, it is tempting to speculate that oftentimes various molecular
cargos can serve as time cues to support a sort of temporal organelle crosstalk. In this light,
the observed temporal correlation between lipids in nuclei and mitochondria [68] could
suggest that the same lipid species shuttle from one compartment to the other. Metabolites
shuttling from mitochondria to the nucleus is known as “retrograde signaling” and is
an important part of the cellular stress response, conveying information of metabolic
status to the nucleus. One could conceive of a hypothetical cross-organelle cooperation in
which stress response activates both mitochondria signaling to the nucleus and lysosomal
autophagy to control organelle remodeling. Recently, a connection between retrograde
signals and circadian clocks was shown in plants, with signals from mitochondria and
chloroplasts affecting the plant clock system [128].

4. Summary

Technological advances and conceptual breakthroughs have occurred throughout the
last decades in the fields of circadian and organelle biology. Growing evidence suggests
that intracellular organelles are rhythmic, yet this line of research is still in its infancy. Many
key questions regarding the functional significance and the underlying mechanisms remain
open and pose exciting challenges for future molecular and cell biologists as they continue
to push temporal and spatial boundaries.
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