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Pregnancy is a unique type of immunological process. Healthy pregnancy is associated
with a series of inflammatory events: implantation (inflammation), gestation (anti-
inflammation), and parturition (inflammation). As the most abundant leukocytes during
pregnancy, natural killer (NK) cells are recruited and activated by ovarian hormones and
have pivotal roles throughout pregnancy. During the first trimester, NK cells represent up
to 50–70% of decidua lymphocytes. Differently from peripheral-blood NK cells, decidual
natural killer (dNK) cells are poorly cytolytic, and they release cytokines/chemokines that
induce trophoblast invasion, tissue remodeling, embryonic development, and
placentation. NK cells can also shift to a cytotoxic identity and carry out immune
defense if infected in utero by pathogens. At late gestation, premature activation of NK
cells can lead to a breakdown of tolerance of the maternal–fetal interface and,
subsequently, can result in preterm birth. This review is focused on the role of dNK
cells in normal pregnancy and pathological pregnancy, including preeclampsia, recurrent
spontaneous abortion, endometriosis, and recurrent implantation failure. dNK cells could
be targets for the treatment of pregnancy complications.

Keywords: human pregnancy, decidual natural killer cells, inflammation, anti-inflammation, maternal-fetal
interface, immune tolerance, pregnancy complications
INTRODUCTION

Successful pregnancy in humans is reliant on a series of critical events: embryo implantation,
decidualization, placentation, and parturition. Each of these events is crucial to a good
pregnancy outcome.

At the onset of human pregnancy, the blastocyst hatching from the zona pellucida adheres and
implants into the maternal uterine endometrium. There is a high prevalence of implantation failure
after natural conception and in in vitro fertilization (IVF) therapy (1). Uterine stromal cells that
surround the implanting embryo differentiate into large secretory decidual cells (“decidualization”).
The decidua provides nutritional support and an immune-privileged matrix to the embryo before
establishment of a functional placenta (2). After implantation, the trophectoderm of the implanted
blastocyst proliferates and differentiates rapidly into two main subpopulations: syncytiotrophoblast
org August 2021 | Volume 12 | Article 7282911
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(the multinucleated epithelium of the villi responsible for
nutrient exchange and hormone production) and extravillous
trophoblast (EVT; which invades the uterine endometrium of the
mother through “placentation”). The placenta provides sufficient
nutrients and is a barrier to immune tolerance for the developing
fetus (3). If the fetus is at term, parturition is initiated by
inflammatory and endocrine signals, which drives quiescent
uterine tissues to an active labor state, and promotes
contractions (4, 5). These physiological events in pregnancy are
inflammatory processes, and a balance of pro- and anti-
inflammatory factors is required for remodeling of intrauterine
tissue, feto-placental growth, and parturition throughout
gestation (6).

Natural killer (NK) cells play a crucial part in the initiation
and resolution of inflammation (7), and they are detected in all
phases of pregnancy (8–10). NK cells are cytotoxic innate
lymphoid cells, and were first discovered thanks to their ability
to kill tumor cells, and later found to also kill pathogen-infected
cells (11). In humans, conventional NK cells are present in
peripheral blood (pNK cells) and are distributed widely
throughout the body. pNK cells are divided primarily into two
subtypes: cluster of differentiation CD3−CD56dimCD16+ cells
and CD3−CD56brightCD16− cells. It has been found that 90–
95% of pNK cells, CD56dim NK cells, have potent cytotoxicity
and high expression of CD16. CD56bright NK cells are best
known for producing diverse types of cytokines with weak
cytolytic activity (12). In addition to pNK cells, in humans NK
cells are also found in peripheral tissues, such as the liver, lungs,
skin and uterus, and are termed “tissue-resident NK” (trNK)
cells. Most trNK cells are the subset of CD56bright NK cells. The
latter exhibit different signatures that are related to their tissue of
origin, and show high expression of CD69, CD103, and CD49a,
which have been used to identify trNK cells (13). Decidual NK
(dNK) cells are a specialized type of trNK cells found at
endometrial decidual tissue, and display many unique
phenotypic and functional characteristics compared with pNK
cells and trNK cells (14).

Herein, we review the emerging knowledge about human
dNK cells. We focus specifically on the phenotypes and functions
of NK cells under human physiological and pathological
pregnancy conditions.
CHARACTERISTICS AND SUBTYPES OF
DNK CELLS IN HUMAN PREGNANCY

dNK cells comprise ~70% of immune cells in the first-trimester
decidua (8). Vento-Tormo and colleagues identified three main
subsets of dNK cells (dNK1, dNK2 and dNK3), which all co-
express the tissue-resident marker CD49a together with
proliferating NK cells from isolated first-trimester decidual cells
by single-cell RNA-sequencing (15). Compared with dNK2 and
dNK3 cells, dNK1 cells show higher expression of killer cell
immunoglobulin-like receptor (KIR) genes (human leukocyte
antigen (HLA)-C receptor: KIR2DS1, KIR2DS4, KIR2DL1,
Frontiers in Immunology | www.frontiersin.org 2
KIR2DL2 and KIR2DL3) and Leukocyte Immunoglobulin-Like
Receptor B1 (ILT2, an HLA-G receptor which is expressed only
by the dNK1-cell subset). HLA-G and HLA-C are expressed
primarily on EVTs of fetal origin. The interaction between
HLA-C and HLA-G molecules with their receptors on dNK1
cells contributes to trophoblast invasiveness, vascular remodeling,
and maintenance of a local microenvironment of immune
tolerance (16, 17). In addition, dNK1 cells contain more
cytoplasmic granule proteins (perforin 1, granulysin, granzyme
A GZMA and GZMB) which provide immunity against placental
infection and the enzymes involved in glycolysis. Studies have
shown that adaptive NK cells from human cytomegalovirus
(HCMV)-seropositive individuals exhibit enhanced glycolytic
metabolic profiles relative to that in canonical NK cells (18).
Increased expression of glycolytic enzymes in dNK1 cells suggests
that they may be responsible for supporting repeated pregnancies.
dNK2 and dNK1 cells co-express activating killer cell lectin-like
receptor C2 (NKG2C) and NKG2E (activating receptors on NK
cells) as well as NKG2A receptors (inhibitory receptor on NK
cells) for HLA-E molecules, which indicates similar functions
between dNK2 and dNK1 cells (19). dNK2 cells also expresses
high levels of X-C motif chemokine ligand 1(XCL1) which is
known as lymphotactin. Whereas XCR1, the receptor of XCL1, is
expressed on EVTs and dendritic cells. Bottcher et al. proved that
NK cells producing XCL1 chemokines promote cDC1 recruitment
by surface receptor XCR1 on cDC1 (20). The recognition and
combination of XCL1–XCR1 suggests that dNK2 cells mediate
recruitment of EVTs and dendritic cells at the fetal–maternal
interface. dNK3 cells are in low proportion and show high
expression of chemokine ligand 5 (CCL5). C-C motif chemokine
receptor 1 (CCR1, the receptor for CCL5) is expressed by EVTs.
Sato et al. reported that chemokine-CCR1 interactions induced
migration of the EVTs to maternal tissue (21), which suggests a
role for dNK3 cells in regulating EVT invasion. Those findings
suggest the importance of dNK cells in the first-trimester decidua,
and in particular, dNK1 plays a dominant role in early pregnancy.

Whether the phenotypic and functional properties of dNK
cells remain unchanged throughout pregnancy is an important
concept. Zhang and colleagues measured expression of the
activation receptors, degranulation capacity, cytokine
expression, and proliferation of human dNK cells during the
first and second trimesters. They found that the number and
cytokine expression [e.g., interferon (IFN)-g, vascular endothelial
growth factor (VEGF) and interleukin (IL)-8] of dNK cells were
not significantly different in the first trimester and second
trimester. dNK cells in the second trimester showed higher
expression of active receptors (NKp80 and NKG2D), but
limited degranulation capacity of dNK cells in comparison
with that in the first trimester. Zhang and colleagues
speculated that inhibition of dNK-cell function may lead to
two mechanisms during the first and second trimesters:
suppression of activating-receptor levels in the first trimester
by trophoblasts and disengagement of receptor–ligand coupling
in the second trimester (9). Likewise, de Mendonca Vieira and
colleagues investigated the function, and phenotype, of dNK
cells in a term pregnancy. By comparison with pNK cells and
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first-trimester dNK cells, they suggested that the proportion of
term-pregnancy dNK cells among CD45+ cells were significantly
lower and dNK cells in a term pregnancy had an increased
degranulation response, but lower capacity to respond to human
CMV-infected cells. They also identified that expression of a
set of NK cell receptors, and found that term pregnancy dNK
had fewer HLA-C receptors (KIR2DL1, KIR2DL2/3, and
KIR2DS1) but more HLA-E receptor NKG2D compared with
first trimester dNK. NKG2A, and NKG2C were no significant
changes between the two dNK types. Term pregnancy EVT had
the highest expression levels of HLA-G. They also detected the
expression of HLA-G receptors in term pregnancy dNK,
KIR2DL4 and ILT4 were no significant differences between
first trimester dNK and term pregnancy dNK. In addition, a
series of genes including IFN-g, GZMH, interferon gamma
receptor 1(IFNGR1), CD69, integrin subunit beta 2(ITGB2),
NKp80, was upregulated by term-pregnancy dNK cells
compared with that in first-trimester dNK and pNK cells (10).
The different receptors and gene-expression profile of term-
pregnancy dNK cells indicates a distinct type of NK cells, and
the specific function of term-pregnancy dNK cells remains to be
determined. But previous reports have stated that dNK cells
progressively disappear from mid-gestation onwards and
virtually are absent at term (22, 23). A possible explanation for
the discrepancy may be due to the different detection methods
(the early studies identified NK cells by staining cytoplasmic
granules). Granulated leukocytes were rare after 20 weeks (24).
Later studies identified NK cells distribution in third trimester by
immunostaining CD56. While there are a proportion of
agranular CD56+ uNK cells in third trimester, and these cells
may be overlooked.

In repeated pregnancies, dNK cells display unique phenotypic
properties. They show increased expression of NKG2C and ILT2
and enhanced production of IFN-g and VEGFa, and display a
special type of innate memory: these cells are termed
“pregnancy-trained dNK cells” (25). Greater expression of
VEGFa and IFN-g can better support vascularization and
initiate remodeling of endometrial vasculature in development
of the placental bed, so pregnancy-trained dNK cells are more
beneficial for subsequent pregnancies.

There is also evidence that dNK cells can be induced for a
senescent phenotype by interacting with HLA-G from
trophoblasts during pregnancy (26, 27). The NK cells of
senescent phenotype would produce pro-inflammatory factors
and pro-angiogenic factors that contribute to for trophoblast
invasion and spiral artery remodeling (28).

In humans, NK cells are also divided into four subsets
according to relative expression of the surface markers CD27
and CD11b. CD27 has been indicated as a marker for dividing
mature NK cells into two functionally distinct subsets (29). The
CD11b has been identified as a marker of human NK cells
maturation (30). CD11b+CD27− NK cells exhibit high cytolytic
ability; CD11b−CD27+ and CD11b+CD27+ NK cells have the
best ability to secrete cytokines; CD11b−CD27− NK cells display
differentiation potential (31). For dNK cells, ~60% are
CD11b−CD27− NK cells and >20% are CD27+ NK cells (32).
Frontiers in Immunology | www.frontiersin.org 3
THE ROLE OF DNK CELLS IN
NORMAL PREGNANCY
Regulation of Uterine Natural Killer (uNK)
Cells by Ovarian Hormones
Progesterone and estrogen are the two main ovarian hormones
involved in regulation of the menstrual cycle and establishment
and maintenance of pregnancy (33). Some studies have revealed
that uNK cells accumulate extensively around spiral arterioles in
the mid-secretory-phase endometrium and early-pregnancy
decidua in accordance with increasing levels of ovarian-derived
estrogen and progesterone (34). Those findings indicate that the
recruitment and/or expansion of uNK cells may be regulated by
these hormones. It is known that NK cells express receptors for
specific chemokines and can be induced to migrate to specific
tissues in response to several chemokines (35). Some studies have
suggested that estrogen and progesterone induce expression of
chemokines C-X-C motif chemokine ligand 10 (CXCL10) and
CXCL11 in the human endometrium, whereas pNK cells and
uNK cells show high expression of specific receptors for these
chemokines. Therefore, progesterone and estrogen have
indispensable roles in regulating the recruitment of NK cells
into the uterus (36). This phenomenon could also explain the
increase in uNK-cell number during the menstrual cycle.

Progesterone is a major driver of decidualization. Some
studies have shown that progesterone can stimulate
endometrial stromal cells to secrete IL-15 to promote the
proliferation and differentiation of uNK cells in an indirect
manner due to the absence of progesterone receptor on uNK
cells (37, 38). Besides, estrogen and progesterone can regulate the
function of uNK cells. It has been reported that human uNK cells
can express glucocorticoid receptor (GR) which is a member of
the superfamily of nuclear receptors, and that progesterone
cross-reacts significantly with GR. Guo et al. found that
progesterone could inhibit the IFN-g production of uNK cells
via GR (39), and induce immune tolerance during early
pregnancy. Estrogens regulate uNK-cell migration directly and
promote secretion of CCL2 from uNK cells, which facilitates
uNK cell-mediated angiogenesis (40).

dNK Cells in Implantation
and Decidualization
uNK cells are the major leukocytes in the endometrium. They
comprise ≤30% of total lymphocytes in the endometrium at the
mid-secretory phase (also called the “window of implantation”)
and 70–80% of the total leukocyte population in the decidua
from early pregnancy, which suggests that NK cells have a crucial
role in implantation and decidualization (41). Paradoxically,
implantation in humans and rodents is reliant on a
proinflammatory mechanism. This inflammatory reaction is
essential for implantation. Most of the accumulated evidence
indicates that IVF patients with recurrent implantation failure
(RIF) subjected to endometrial biopsy exhibit a substantial
improvement in their chance to conceive (42). During the
window of implantation, the uterus is “primed” under the
action of ovarian hormones to release proinflammatory
August 2021 | Volume 12 | Article 728291
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cytokines and chemokines, including IL-8, IL-15, IL-6, CXCL10
and CXCL11 (36, 43), which activate and recruit large
populations of decidual immune cells to the endometrium at
the time of implantation. Of these, 65–70% are uNK cells.
Successful implantation is dependent upon an implantation-
competent embryo achieving invasion into the receptive
endometrium to establish a blood supply for the conceptus.
uNK cells play a crucial role in this process with a recent study
indicating that dNK cells act as biosensors of low-quality human
embryos. Low-quality blastocysts that failed to implant secreted
lower levels of hyaluronidase 2 (HYAL2), a member of
hyaluronidases family that regulates hyaluronan (HA) size at
tissue. Low levels of HYAL2 and high levels of high molecular
weight HA (HMWHA) inhibit dNK cells-mediated clearance
of senescent decidual cells. Hence, dNK cells determines
endometrial fate at implantation (44). Further, in the first
weeks of pregnancy (the period of embryo implantation
in human), these trophoblast cells express soluble HLA-G
(sHLA-G) which is bound by the NK cells receptor KIR2DL4,
activating a proinflammatory/proangiogenic response which
is beneficial to the establishment of receptive endometrium
(45). Brighton et al. indicated that decidualization induced
acute senescence in a subpopulation of ESCs. The senescence-
associated secretory phenotype drives the initial auto-inflammatory
decidual response linked to endometrial receptivity. As pregnancy
progress, dNK cells eliminate senescent decidual cells to
regulate endometrial rejuvenation and remodeling upon
embryo implantation, and maintain the homeostasis of the
endometrium (46). Expression of prokineticin 1 secreted by
uNK cells is increased during the mid-secretory phase of the
menstrual cycle, and increased further in early pregnancy. It has
been proposed as a marker of a receptive endometrium because it
regulates expression of a series of implantation-related factors,
including leukemia inhibitory factor, IL-11, and prostaglandins
(47, 48). Interestingly, their involvement in the development of a
receptive endometrium in humans is crucial whereas, in mice,
mature NK cells do not appear in the uterus before implantation
(49). In addition, elevated uNK cells in women who have repeated
early pregnancy losses contribute to pathological elongation of
the window of endometrial receptivity which permits abnormal
or delayed embryos to implant (50).

Endometrial decidualization in humans is triggered whether
or not there is a conceptus. During pregnancy, once
decidualization is initiated, the state of the endometrium is
translated from a phenotype of acute inflammatory initiation
to an anti-inflammatory phenotype. This process is accompanied
by the massive infiltration of immune cells, including NK cells,
which are termed dNK cells. The number of NK cells begins to
increase around LH+3 (pre-decidualization) with large numbers
densely scattered throughout the stroma in the late secretory
(decidualization). NK cells coexist with the decidual tissue and
are also observed in ectopic decidua (49). These findings provide
valuable hints that the NK cell may be associated with the
decidualization. Differentiation of endometrial stromal cells
(ESCs) into specialized decidual cells is the most typical feature
of decidualization. Several hormones, cytokines, growth factors,
Frontiers in Immunology | www.frontiersin.org 4
and morphogens are involved in regulating this process (2).
Zhang et al. reported that dNK cells facilitated ESC
decidualization by secreting IL-25 (51). Recent studies have
reported that the dNK cell from early miscarriage decidual
tissues induce AEA (endocannabinoid anandamide)
production by ESCs (52). AEA plasma levels are higher in
women suffering miscarriage (53) and notably AEA has been
shown to impair decidualization in vitro (54). The dNK cell from
miscarriage cases also secrete higher level of TNF-a, which
inhibits ESCs decidualization by decreasing the decidual
markers prolactin (PRL) and insulin-like growth factor binding
protein-1(IGFBP-1) (52). A study observed that decidual stromal
cel ls (DSCs) displayed increased autophagy during
decidualization, and accelerated the residence and enrichment
of dNK cells during normal pregnancy. Depletion or absence of
NK cells resulted in adverse outcomes (reduced number of
embryos implanted, increased embryo loss, and angiogenesis
disorders) in pregnant mice, and emphasized the importance of
NK cells in the establishment and maintenance of normal
pregnancy (55, 56). Broadly speaking, the process of
decidualization also include spiral artery remodeling, and the
role of dNK cells on spiral artery remodeling will be
discussed below.

dNK Cells in Placentation and
Fetal Development
Following implantation and decidualization, the second
important stage of pregnancy is initiated: rapid growth of the
placenta and the growth and development of the fetus.
Trophoblast invasion and vascular remodeling are the most
critical moments during placentation. Reduced invasion of
trophoblasts and vascular conversion results in poor placental
perfusion, which is thought to be the underlying primary defect
of common disorders of pregnancy (e.g., recurrent miscarriage,
preeclampsia and fetal growth restriction) (57). During the
placental formation, the role of dNK in regulating extravillous
trophoblast (EVT) invasion is dependent on gestational age (58).
Several studies suggest that dNK cells at 8–10 weeks of gestation
mainly produce angiogenic growth factors which are associated
with spiral artery remodeling in early pregnancy (59). Later
between 12–14 weeks, dNK cells mainly produce cytokines
(IL-8 and INF-g inducible protein, IP10) that stimulate EVT
invasion by increasing MMP-9 secretion and reducing EVT
apoptosis (58). It is known that excess EVT invasion can
endanger placenta and mother. However, dNK can also secrete
a range of cytokines, TNF-a, TGF-b and IFN-g, inhibit EVT
excessive invasion in later stages (60, 61).

When trophoblasts complete their invasion (~20th week of
pregnancy), the number of dNK cells begins to decrease (8). To
support the demands of the growing fetus, uterine spiral arteries
(SAs) must remold to a wide diameter and be capable of
transporting adequate nutrition and oxygen to the fetus (62).
Although trophoblasts are involved in SA remodeling, the initial
stages, including loss of vascular smooth muscle cells (VSMCs)
and breaks in the endothelial-cell layer, occur in the absence of
EVTs but in the presence of lymphocytes (63). Accumulating
August 2021 | Volume 12 | Article 728291
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evidence suggests the direct influence of dNK cells on SA
remodeling. dNK cells infiltrating near human SAs express a
wide range of MMPs which can initiate early breakdown of the
extracellular matrix of SAs in the absence of EVTs (64). One
study demonstrated that VSMC loss in SA remodeling occurs
via migration away from the vessel wall, and not apoptosis
(65). Dedifferentiation of VSMCs is an important feature of
migration. Yang and colleagues showed that the uterine decidual
niche (including dNK cells) modulates the progressive
dedifferentiation of human VSMCs in SAs (66). The factors
secreted by dNK cells, including chemokines, cytokines and
vasoactive factors, such as IL-8, TGF-b, angiopoietin-1/2
(Ang1/2), and VEGF-C, initiate destabilization of vascular
structures and, thus, SA transformation (59, 67, 68). As
mentioned above, sHLA-G from EVT induces a senescent state
in NK cells capable of participating in SA remodeling by
secreting a series of factors (TNF-a, IL-1b, IFN-g, IL-6, IL-8 (28).

A role for dNK cells in SA remodeling in human disease has
also been noted. Reduced numbers of dNK cells have been
demonstrated in patients with pre-eclampsia and intrauterine
growth restriction (IUGR), which are associated with poor
remodeling of SAs and reduced trophoblast invasion in the
decidua (69). In addition to the role of NK cells in
placentation, they can also promote the growth and
development of the fetus. Fu et al. identified a CD49a+ subset
of dNK cells that promoted fetal development by secreting
growth-promoting factors, including pleiotrophin (PTN)and
osteoglycin (OGN), before establishment of the placenta in
humans and mice. Ultimately, a deficiency in these growth
factors leads to growth restriction by abnormal development of
bone in offspring (70). Zhou et al. demonstrated that the
transcription factor PBX homeobox 1 can directly regulate
transcriptional expression of growth-promoting factors in dNK
cells and drive fetal growth (71).

Regulation and Function of dNK Cells at
the Maternal–Fetal Interface
At ~5 weeks after implantation, the human placenta is formed
from trophoblasts of fetal origin and decidua of maternal origin.
The placenta constitutes an interface connecting the mother and
the fetus: the maternal–fetal interface (72). This is a unique
process, the mother, placenta, and the fetus with paternal
antigen are symbiotic processes. The maternal immune system
must accept the semi-allogeneic fetus while preserving immune
defense against pathogens, and the predominant immunological
feature of this phase is induction of an anti-inflammatory state.

Many efforts have been made to explain the mechanism of
maternal–fetal interface immune tolerance. The maternal–fetal
interface is composed mainly of fetal trophoblasts, maternal
DSCs, and decidual immune cells (23). In the first trimester,
human decidual leukocytes are primarily NK cells (∼70%) and
macrophages (∼20%) (24). In addition to an intrinsic lower
cytotoxicity of decidual CD56brightCD16− NK cells, several
studies have indicated that dNK cells interact with HLA
ligands (e.g., HLA-G, HLA-C and HLA-E) expressed on EVTs
to depress the cytotoxic capability of dNK cells. HLA-G is a
Frontiers in Immunology | www.frontiersin.org 5
non-classical HLA class-I molecule, and is uniquely expressed in
EVTs (73). At the maternal–fetal interface, dNK cells show high
expression of the inhibitory receptors KIRs, such as KIR2DL1,
KIR2DL2/L3 and ILT2, which recognize HLA-G to inhibit NK-
cell cytotoxicity (73). Beyond that, HLA-G-induced immune
tolerance has been found to occur by a peculiar cell biological
process: “trogocytosis” which is defined for lymphocytes can
extract surface molecules through the ‘immunological synapse’
from interacting cells (74). One study demonstrated that primary
human dNK cells can uptake HLA-G proteins produced by
primary human EVTs (75), and internalized HLA-G correlates
with the very low cytotoxicity of freshly isolated dNK cells (76).
One possible explanation may lie in the fact that EVT–NK-cell
synapses are inhibited during HLA-G endocytosis and endo-
lysosomal signaling events, and inhibition of these synapses
weakens the cytotoxicity of NK cells (76). Another non-
classical HLA class-I molecule expressed by trophoblasts,
HLA-E, can regulate the cytotoxicity of dNK cells by
interacting directly with the inhibitory receptors CD94/
NKG2A (77). HLA-C (a classical HLA class-I molecule) also
weakens the cytotoxicity of NK cells by interacting with the
inhibitory receptors KIRs (78).

T-helper (Th)17 cells are a critical lineage of proinflammatory
Th cells involved in development of autoimmune disease. Excess
Th17 cells directly cause fetal loss in vivo (79). Wei and
colleagues indicated that decidual CD56brightCD27+ NK cells
“dampened” inflammatory Th17 cells by secreting IFN-g to
promote immune tolerance and successful pregnancy (79).
Indoleamine 2,3-dioxygenase (IDO) is a key metabolic enzyme
responsible for tryptophan degradation (80). IDO is produced
widely at the fetal–maternal interface (81). Ban et al. indicated
that trophoblast-derived IDO could downregulate expression of
NKp46 and NKG2D and reduce the cytotoxicity of pNK cells; it
may also contribute to maintaining dNK-cell cytotoxicity at a
low level, and play an important part in maintenance of normal
pregnancy (82). T-cell immunoglobulin domain and mucin
domain-containing molecule-3 (Tim-3) is a newly defined
regulatory factor. Tim-3 can modulate the balance of Th1
cells/Th2 cells (83). Li et al. were the first to detect Tim-3
expression in dNK cells, Tim-3+ dNK cells displayed decreased
cytotoxicity due to producing less perforin than Tim-3- dNK
cells (84). In addition, Huang et al. found that microRNA-30e
expression was upregulated in the decidual tissues in healthy
pregnant women, and was involved in immune tolerance at the
maternal–fetal interface by increasing expression of KIR2DL1
and decreasing expression of NKp44 to suppress dNK-cell
cytotoxicity (85). At the maternal–fetal interface, CXCL16
secreted by trophoblasts induces the polarization of
macrophages towards the M2 phenotype. M2 macrophages
attenuate NK-cell cytotoxicity by decreasing IL-15 secretion,
which has important roles in the differentiation, maturation,
and survival of NK cells to establish immune tolerance (86).

Curiously, although dNK cells display low cytotoxicity, they
show high expression of cytotoxic granules, such as perforins,
granzymes, granulysin and several NK-activating receptors,
including NKp46, NKp44, NKp30, and NKG2D, compared
August 2021 | Volume 12 | Article 728291
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with peripheral-blood CD56bright NK cells (87). In utero
infection by viruses (Zika, HCMV), bacteria (Listeria
monocytogenes) and parasites (Toxoplasma gondii and
Plasmodium species) causes fetal defect/loss, premature labor,
and IUGR (88–91). However, the rate of vertical transmission is
quite low in the first trimester, which coincides with high
numbers of dNK cells within the placental bed (14). These
observations indicate that dNK cells can play an important
part in maintaining maternal–fetal tolerance under
physiological conditions, but also present cytotoxicity under
infection. Some studies have observed that individuals who
carry more activating KIR also have a significantly improved
outcome after viral infections (e.g. , HCMV, human
immunodeficiency virus, human papillomavirus) (92, 93).
Siewiera et al. provided the first evidence that dNK cells can
clear HCMV-infected DSCs (94) and that HCMV-infected EVTs
cannot be cleared (75). A recent study suggested that dNK cells
killed bacteria in trophoblasts by transferring granulysin without
killing placental cells (95). Conversely, viruses can induce
expression of activating ligands (e.g., major histocompatibility
class I polypeptide–related sequence A (MICA) and MICB) on
the surface of infected cells that bind directly to activating NK
receptors and promote NK-cell cytotoxicity (96). NK-derived
IFN-g is crucial in antimicrobial immunity because it activates
macrophages and promotes differentiation of Th1 cells (97).
Furthermore, understanding the mechanisms that regulate the
switching of dNK cells between immune tolerance and immunity
at the maternal–fetal interface may contribute to the
development of novel strategies to limit pathogen-induced
placental infections.

NK Cells in Parturition
Parturition is an inflammatory process. During late pregnancy,
extensive evidence suggests that reproductive tissues
(myometrium, placenta, cervix, and fetal membranes) can
secrete chemotactic factors (e.g., CXCL8, CXCL10, CCL2 and
CCL3), and are responsible for the selective recruitment of
circulating maternal leukocytes (innate and adaptive) to these
tissue (98–100). These leukocytes, along with reproductive-tissue
cells, secrete proinflammatory mediators, including cytokines
(IL-1, IL-6, IL-8, and TNF), MMPs, and prostaglandins, which
induce cervical effacement/dilatation and rupture of the
membranes, leading to labor and delivery of the baby [77]. It is
thought that premature activation of this proinflammatory
pathway can lead to a breakdown of tolerance of the maternal–
fetal interface and, subsequently, can result in preterm birth
(101). The latter is a major determinant of neonatal mortality
and morbidity (102).

Several studies in humans and mice have reported the
important role of neutrophils, macrophages, T cells, and B cells
during parturition. With the progression of pregnancy, dNK cells
lose granules in the cytoplasm, which indicates that a functional
shift is needed at late gestation for parturition (103). Some have
studies indicated that NK cells are also involved in regulating
labor. Pique-Regi et al. used single-cell RNA-sequencing to profile
the placental villous tree, basal plate, and chorioamniotic
membranes of women with labor at term and those with
Frontiers in Immunology | www.frontiersin.org 6
preterm labor. They observed that the chorioamniotic
membranes, basal plate, and placental villi largely contained
lymphoid and myeloid cells, including T cells, NK cells, and
macrophages. In addition, they reported that expression of the
single-cell signatures of NK-cells and activated T-cells was
upregulated in women with spontaneous labor at term
compared to gestational-age matched controls without labor
(104). NK T cells are a unique lymphocyte subset that express
the markers and characteristics of the adaptive and innate immune
system. St Louis et al. identified activated NK T-like cells to be
more abundant in the decidual basalis of women who underwent
preterm labor, and demonstrated that in vivo NK T-cell activation
led to preterm labor by inducing a maternal systemic
proinflammatory response (105). However, the regulatory
mechanisms of NK cells in labor remain are not clear.
THE ROLE OF DNK CELLS IN
PATHOLOGICAL PREGNANCY

Preeclampsia (PE)
PE is a serious complication of pregnancy that manifests as
maternal hypertension and proteinuria. This pregnancy
complication affects 5–8% of all pregnancies worldwide, and is
a major cause of maternal and perinatal morbidity and mortality
worldwide (106, 107). PE is subdivided into early-onset (starts
before 34 weeks) and late-onset PE (starts after 34 weeks). Early-
onset PE has a close relationship with inadequate placentation
and placental ischemia. However, the pathological placenta is a
result of incomplete invasion by trophoblasts and SA remodeling
(108, 109). As mentioned above, dNK cells have critical roles in
regulating SA remodeling with trophoblasts by producing a
series of cytokines and chemokines. Hence, dNK-cell
dysfunction has been implicated in PE initiation. Some studies
have indicated that there is higher risk of women suffering PE if
they carry alleles for KIR AA genotype (lacking most or all
activating KIR) on maternal NK cells when the trophoblast
expresses HLA-C2 (a much stronger inhibitory effect when
binding to KIR2DL1 inhibitory receptors) (110, 111). Thus,
excessive inhibition of uNK cells after trophoblast binding, as
well as reduced production of angiogenic factors and cytokines,
is detrimental to placentation and arterial transformation (112).

HLA-G can protect trophoblasts from dNK-cell lysis,
Pazmany et al. showed that patients with severe PE have
reduced expression of HLA-G (113). The CD94/NKG2A
receptor on dNK cells binds to HLA-E molecules to provide an
overall inhibitory signal of preventing cell lysis. A recent study
suggested that NKG2A ablation in mice caused abnormal
vascular remodeling in pregnancy. They also found that a 7%
greater relative risk associated with the maternal HLA-B allele
(most of which encode activating receptors, KIR2DS1, 2, 3, 5,
and KIR3DS1) that fail to educate NKG2A+ NK by analyzing
whole genome sequence of 7,219 PE case (114). Natural
cytotoxicity receptors (e.g., NKp44, NKp46 and NKp30) are
unique markers to NK cells that regulate cytokine production
and cytotoxicity. A significantly reduced percentage of NKp46+
August 2021 | Volume 12 | Article 728291
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NK cells in the peripheral blood of women with PE compared
with that of women not suffering from PE can be observed 3–4
months before PE onset (115). Abnormal placental TGF-b
response is related to pathological development of PE (116).
Zhang et al. reported that higher levels of TGF-b produced by
decidual Treg cells suppressed dNK cell function by
downregulating IFN-g/IL-8/CD107a expression, and also
selectively modulated the proportions and function of specific
dNK subsets in preeclamptic decidua, which may have a direct
effect on the pathogenesis of PE (117).

Additionally, there are a number of studies showing that
altered numbers of uNK cells are associated with PE. Some
studies have reported that the numbers of dNK cells are
significantly higher in PE compared with normal pregnancies
(118, 119) although other studies have reached the opposite
conclusion (69, 120, 121). The contradictory results may be due
to the differences in the specimen origin (e.g. decidua basalis
versus placental bed biopsies), sample size, test or analytic
methods used. More meaningful results may be obtained by
detecting the changes in the different NK cells subtype and NK
cells functions rather than measuring absolute changes in cells
number. In a PE model in BPH/5 mice, Sones et al. showed lower
levels of uNK cells in the decidua (122). Based on those studies,
abnormal activation of NK cells in PE could be a target for
improving treatment of PE.

Recurrent Pregnancy Loss (RPL)
According to American Society of Reproductive Medicine
criteria, RPL is the experience of at least two or three
spontaneous miscarriages before the 24th gestational week.
About 50% of RPL cases are caused mainly by chromosome
abnormalities, endocrine disorders, uterine defects, and
infections (123, 124). The cause of the other 50% of cases is
not known, and such cases are referred to as “unexplained RPL”
(uRPL). These unexplained cases are associated with
immunologic dissonance (125). A series of studies have shown
that abnormal numbers and subsets of NK cells may be
associated with uRPL. Most of the studies have suggested that
higher concentrations of uNK cells are detected in women with
uRPL than that in healthy fertile women (126–129). In other
studies, despite a lack of differences in the proportion of uNK
cells between controls and women with RPL, women with RPL
showed a significant decrease in the subset of CD56brightCD16−

NK cells, and significantly increased populations of cytotoxic
CD16+ uNK cells expressing high levels of the cytotoxicity
receptors NKp46, NKp44, and NKp30 (129, 130). Ebina
et al. revealed pre-pregnancy increased activities of pNK cells
to be associated with pregnancy loss (131). Intravenous
immunoglobulin (IVIG) has been shown to be efficacious
treatment of uRPL, particularly in patients with increased
numbers of NK cells. IVIG can reduce the cytotoxicity of pNK
cells in vitro and in vivo (132, 133). CD49a expression on dNK
cells regulates the early adhesion and migration of dNK cells into
trophoblasts, and limits their cytotoxicity by downregulating
expression of perforin, granzyme B, and IFN-g. dNK cells from
women who underwent RPL had lower levels of CD49a and
higher expression of perforin, granzyme B, and IFN-g compared
Frontiers in Immunology | www.frontiersin.org 7
with dNK cells from age-matched healthy controls (134). Those
studies suggest that the cytotoxicity of uNK cells is higher in RPL
than that in healthy controls. Guo et al. provided evidence of
lower KIR2DL4 expression on dNK cells and lower HLA-G
expression on trophoblasts in patients with RPL, which led to
impairment of the pro-invasion and pro-angiogenesis functions
of dNK cells (135). This may be a possible mechanism explaining
RPL. Another subset of uNK cells in the endometrium and
decidua, IL-22-producing NK cells, has been found to be higher
in number in uRPL than that in infertile women (136).
Therefore, accumulating evidence suggests that uNK cells are
profoundly dysregulated in uRPL, and that evaluating the activity
of NK cells may be a predictive marker for RPL.

Endometriosis
Endometriosis is a common gynecological disease which affects
10% of all women of reproductive age. It causes chronic pelvic
pain, dysmenorrhea and infertility (137). Endometriosis is
characterized by endometrial tissue outside the uterine cavity.
Ectopic endometrium is found most commonly in the pelvis and
is thought to arrive by retrograde menstruation (138). The
pathophysiology of endometriosis is incompletely understood,
but accumulating evidence indicates that this disease could be an
immune-related chronic inflammatory process (139).

The current consensus is that the function of immune-related
(including NK) cells is impaired. The role of NK cells in the
removal of menstrual debris and endometrial fragments that are
likely to reach the peritoneal cavity by retrograde menses has
been studied extensively (140). Most studies have focused on the
change of number of pNK cells and NK cells in peritoneal fluid.
There is no difference in the number of pNK cells and peritoneal
fluid in women with endometriosis compared with those without
this disease (141). However, the cytotoxicity of pNK cells and NK
cells in peritoneal fluid from endometriosis patients is reduced
significantly by display of increased expression of inhibitory
receptors (e.g., KIR2DL1) and diminished expression of
activating receptors (e.g., KIR2DS1, and CD94/NKG2A)
compared with that in healthy women (142–144). Those
results suggest that low cytotoxicity of pNK cells and NK cells
in peritoneal fluid may reduce clearance of ectopic endometrial
fragments in the peritoneal cavity. However, there have been
very few studies on uNK cells in endometriosis. One study
discovered that the percentage of uNK cells increased
progressively from the proliferative phase. The highest number
was in the late secretory phase in the eutopic endometrium of
women with endometriosis, with no difference in fertile healthy
women. However, the percentage of uNK cells in ectopic lesions
remained significantly low throughout the menstrual cycle (34),
enabling the survival of endometrial cells in ectopic lesions.

Infertility is a common complication of endometriosis. It is
estimated that 50% of women with endometriosis are infertile
(145). Hence, the change of microenvironment in the eutopic
endometrium in endometriosis may be associated with infertility.
One study reported that the number of CD16+ and NKp46+

(cytotoxic uNK cell-surface receptors) uNK cells was increased
significantly in the endometrium of women with endometriosis
who were infertile or experienced recurrent pregnancy loss,
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compared with that in fertile women (126). Those data suggest
that increased activity of uNK cells may not be conducive to
establishment of normal pregnancy. Besides, an increased
number of immature uNK cells has been found in women with
endometriosis-associated infertility compared with those
without endometriosis (146). This phenomenon may also
explain the infertility associated with endometriosis. Thus, the
differences between the number of uNK cells in patients with
Frontiers in Immunology | www.frontiersin.org 8
endometriosis versus those without endometriosis needs further
exploration to judge which changes increase the risk of infertility
in these patients.

RIF
RIF is defined as the failure to achieve a clinical pregnancy after
transfer of at least four high-quality embryos in a minimum of
three fresh or frozen cycles in a woman under 40 years of age (147).
FIGURE 1 | The primary roles dNK cells during key stages of human pregnancy and major subtypes of dNK cells in different trimesters. During early pregnancy,
uNK cells highly express prokinetincin1, a marker of receptive endometrium, and proinflammatory factors (IL-6, IL-8) facilitating the embryo to implant into
endometrium. dNK cells facilitate ESC decidualization by secreting IL-25. During human placental and fetal development, inhibitor receptors expressed on dNK cells
(such as KIRs, CD94/NKG2) interact with HLA ligands expressed on EVTs to depress the cytotoxic capability of dNK cells, thus maintaining immune tolerance in
maternal-fetal interface. Up-regulation of microRNA-30e, Tim-3 and IFN-g in dNK cells also contributes to the immune tolerance in maternal-fetal interface. dNK cells
participate in the remodeling of spiral arteries by secreting chemokines, cytokines and vasoactive factors, such as IL-8, TGF-b, IFN-g, Ang-1/2, VEGF-C. dNK cells
can also promote fetal development through secreting PTN and OGN. At late gestation, the activation of NK cells leaded to labor by inducing a maternal systemic
pro-inflammatory response. In addition, the major dNK cell subtype classified by receptor expression are shown for the different trimesters. The figure was created
with biorender.com.
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Approximately 10% of women after IVF embryo transfers
experience RIF. Multiple factors may contribute to RIF,
including disturbance of the endometrial microenvironment,
which significantly influences embryo implantation during the
establishment of pregnancy. As discussed above, uNK cells are
the major leukocyte population within the endometrium at the
time of implantation, which suggests that uNK cells should be
focused upon if exploring RIF pathogenesis. Using flow cytometry
and immunohistochemistry, some studies have reported that that
the number of uNK cells increases during the peri-implantation
period in the endometrium of women with RIF (148–150).
However, a recent a study showed that the number and
distribution of uNK cells relative to endometrial arterioles was
not significantly different in women with RIF compared with
that in women in whom embryo implantation was successful
following IVF (151). A meta-analysis showed no differences in
IVF outcomes among women with or without increased number of
uNK cells (128). These paradoxical results may be due to
differences in laboratory protocols or sampling time in the
endometrium. Chen et al. observed that isolated CD56+ uNK
cells from women with RIF produced a lower level of angiogenic
factors (e.g., VEGF and PLGF) compared with that in normal
Frontiers in Immunology | www.frontiersin.org 9
controls with proven fertility (41). Similar to preeclampsia, the
risk of RIF is related to the haplotypic polymorphism of KIR
genes. Alecsandru et al. found that women with the maternal KIR
AA haplotype were more susceptible to suffering RIF after IVF
treatment than those with the KIR AB haplotype or KIR BB
haplotype (152). In addition, NKp44 expression on uNK cells
was upregulated significantly in RIF patients, and suggested that
the high cytotoxicity of NK cells may be one of the causes of
RIF (115). Perhaps due to the difficulty in obtaining suitable
endometrial samples, there have been few studies on the role of
uNK cells in RIF.
CONCLUSIONS

This review emphasizes the important role of dNK cells
throughout pregnancy (Figure 1). These cells undertake
different functions during several critical stages of pregnancy.
In the early stages of pregnancy, dNK cells do not present a
cytotoxic response against the semi-allogeneic embryo. dNK cells
interact with HLA ligands expressed on EVTs to depress the
FIGURE 2 | The roles of uNK cells in related pregnancy complications. There is high risk of women suffering PE if they carry alleles for KIR AA genotype on maternal
NK cells when the trophoblast expresses HLA-C2. The inhibition of dNK activation by downregulating IFN-g, IL-8 and CD107a contributes to the onset of
preeclampsia. uNK cells from women with RPL have low levels of CD49a, KIR2DL4, and high expression of NKp46/44/30, perforin, granzyme B, and IFN-g.
Moreover, their cytotoxic CD16+ uNK cells populations is significantly increased while the CD56brightCD16− NK cells subset is significant decrease. In women with
endometriosis, the number of CD16+, NKp46+ uNK cells and immature uNK cells was significantly increased in the endometrium. Women suffering RIF express low
levels of angiogenic factors (VEGF and PLGF) and those with a maternal KIR AA haplotype are more susceptible to suffering RIF after IVF treatment. The figure was
created with biorender.com.
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cytotoxic capability of dNK cells and mediate immune tolerance
at the maternal–fetal interface. In addition, they are key
regulators in the early stages of pregnancy because they secrete
several cytokines, thereby having a fundamental role in vascular
remodeling, trophoblast invasion, and embryonic development.
NK cells can also shift to cytotoxic behavior and undertake
immune defense upon in utero infection by pathogens. At late
gestation, dNK cells are reactivated to break immune tolerance
and induce parturition. However, the underlying molecular basis
of dNK cells for the transition from a weak cytotoxic status to
robust status in different stages has yet to be revealed. Further
investigation is required on how these dNK subtypes may change
during pregnancy and which factors determine their mechanism
of transition. Furthermore, the abnormal number and activity of
NK cells can lead to various reproductive diseases, such as RSA,
PE, Endometriosis, RIF (Figure 2). Therefore, understanding the
normal physiology of pregnancy will help to reveal the
Frontiers in Immunology | www.frontiersin.org 10
pathogenesis of pregnancy complications. This will be
meaningful for the treatment and management of the disease.
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