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Machine‑learning based prediction 
of Cushing’s syndrome in dogs 
attending UK primary‑care 
veterinary practice
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David B. Church2, Rebecca F. Geddes2 & Dan G. O’Neill1

Cushing’s syndrome is an endocrine disease in dogs that negatively impacts upon the quality-of-
life of affected animals. Cushing’s syndrome can be a challenging diagnosis to confirm, therefore 
new methods to aid diagnosis are warranted. Four machine-learning algorithms were applied to 
predict a future diagnosis of Cushing’s syndrome, using structured clinical data from the VetCompass 
programme in the UK. Dogs suspected of having Cushing’s syndrome were included in the analysis and 
classified based on their final reported diagnosis within their clinical records. Demographic and clinical 
features available at the point of first suspicion by the attending veterinarian were included within 
the models. The machine-learning methods were able to classify the recorded Cushing’s syndrome 
diagnoses, with good predictive performance. The LASSO penalised regression model indicated 
the best overall performance when applied to the test set with an AUROC = 0.85 (95% CI 0.80–0.89), 
sensitivity = 0.71, specificity = 0.82, PPV = 0.75 and NPV = 0.78. The findings of our study indicate 
that machine-learning methods could predict the future diagnosis of a practicing veterinarian. New 
approaches using these methods could support clinical decision-making and contribute to improved 
diagnosis of Cushing’s syndrome in dogs.

Abbreviations
CI	� Confidence interval
EPR	� Electronic patient record
LASSO	� Least absolute shrinkage and selection operator
RF	� Random forest
SVM	� Support vector machine
RBF	� Radial basis function
UCCR​	� Urine cortisol-creatinine ratio
LDDST	� Low dose dexamethasone suppression test
AUROC	� Area under the receiver operating characteristic curve

Cushing’s syndrome (or hyperadrenocorticism) is an endocrine disease in dogs that occurs due to a chronic 
excess of circulatory glucocorticoids that ultimately produce the classical clinical signs in affected dogs1. Affected 
dogs typically show various combinations of polyuria, polydipsia, polyphagia, a potbellied appearance, muscle 
weakness, bilateral alopecia, panting and lethargy1–4. These clinical signs, along with potential consequential 
complications of the disease such as diabetes mellitus, pancreatitis and hypertension, highlight the importance 
of timely diagnosis and optimal control of Cushing’s syndrome for ongoing health and good quality-of-life5, 6. 
However, Cushing’s syndrome can be a challenging diagnosis to confirm due to non-pathognomonic clinical 
features making it difficult to distinguish from other possible diseases, low disease prevalence within the general 
dog population estimated at 0.28% and the absence of highly accurate diagnostic tests2, 7–9. Obtaining a correct 
and timely diagnosis of Cushing’s syndrome is crucial for early commencement of appropriate treatment to 
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improve the quality-of-life of affected dogs10. Additionally, an incorrect diagnosis of Cushing’s syndrome could 
lead to unnecessary treatment which could be potentially harmful. Therefore, new methods to aid the diagnosis 
of Cushing’s syndrome are warranted.

A number of epidemiological studies have provided evidence for associations for several risk factors with 
Cushing’s syndrome such as increasing age, specific breeds and sex2, 7. Additionally one study has demonstrated 
the predictive ability of demographic and clinical features in dogs with Cushing’s syndrome under primary vet-
erinary care in the UK, using stepwise logistic regression to develop a risk score4. Alternative advanced statisti-
cal and machine-learning methods are available and could offer an alternative, improved approach to standard 
prediction modelling11. Machine-learning methods have been demonstrated to outperform conventional risk 
models for disease prediction due to their ability to model complex, non-linear interactions between features 
(variables) and to handle higher numbers of features11, 12. Machine-learning based classification algorithms have 
been increasingly described in the human and veterinary medical literature, and have been applied to specific 
clinical problems such as using laboratory data to identify dogs with Addison’s disease and to identify cats with 
chronic kidney disease11, 13–17. A machine-learning tool to predict dogs with Cushing’s syndrome could aid vet-
erinarians within the practice setting and could facilitate timely commencement of treatment for affected dogs.

This study aimed to explore whether novel applications of machine-learning methods to UK primary-care 
veterinary electronic patient records could predict a veterinarian’s recorded diagnosis of Cushing’s syndrome 
using clinical information at the point of first suspicion of disease.

Results
Anonymised data were collected from 886 primary-care UK veterinary practices participating within the Vet-
Compass programme. The study population contained 905,544 dogs attending practices in 2016, of which 10,141 
were identified to have a mention of Cushing’s syndrome within their electronic patient records (EPRs). Manual 
revision of 62% (6287) of these EPRs identified dogs meeting the study inclusion criteria; 419 cases (recorded 
as having Cushing’s syndrome) and 581 non-cases (suspected of having Cushing’s syndrome but ruled out after 
further investigation). Dogs with no recorded information regarding clinical signs within the two-week period 
of first suspicion were excluded from the study, retaining 398/419 (95.0%) cases and 541/581 (93.1%) non-cases 
for analysis. Thirty features (variables) were extracted from the EPRs of dogs included in the study.

Data pre‑processing.  Three features were removed from analysis due to near zero variance within the data-
set: current administrations of insulin, l-thyroxine supplementation and anti-hypertensive agents. Six features 
were removed due to large proportions of missing data; body temperature (67.9% missing), heart rate (61.8%), 
alkaline phosphatase (ALKP) measurements (67.9%), urine specific gravity (USG) measurements (61.3%), pres-
ence of proteinuria (64.0%) and dilute USG (59.9%) at first suspicion. No high correlation between variables was 
identified, retaining twenty-one features (Table 1). Following one-hot encoding of breed, sex-neuter and weight 
change, 40 features were included in the modelling process.

Data were split randomly with two-thirds of the data incorporated into a training dataset, used to optimise 
the prediction model (n = 626; cases = 259 and non-cases = 367). The remaining one-third of the data formed a 
testing dataset, used to independently evaluate the model performance (n = 313; cases = 139 and non-cases = 174).

Model training and optimisation.  Four models were trained and optimised:

	 (i)	 A Least Absolute Shrinkage and Selection Operator (LASSO) model was optimised with a penalty 
(lambda) of 0.014 during tenfold cross-validation. The application of this penalty term to the likelihood 
being maximised results in feature selection at the time of model training. The features retained in the 
final model included: age, specified breeds, sex, clinical signs and laboratory features (Table 2). The model 
demonstrated good discrimination when examining the confusion matrix during cross-validation of the 
training dataset with an area under the receiver operating characteristic (AUROC) curve of 0.83 (95% 
confidence interval (CI): 0.80–0.86) (Table 3).

	 (ii)	 A random forest (RF) model was optimised by tuning the ‘mtry’ hyperparameter to include 3 features 
per node split and the ‘ntree’ hyperparameter to grow 200 trees. The optimum selected threshold for the 
diagnosis of Cushing’s syndrome was ≥ 0.50 predicted probability which obtained a maximum PPV of 
0.71 and NPV 0.72. The training dataset performance had an area under the receiver operating charac-
teristic curve of 0.77 (95% CI 0.73–0.81). Variable importance analysis illustrated that the majority of 
features had small contributions to improved prediction accuracy within the RF model. Clinical signs 
of a potbelly and polyuria, and laboratory features (ALT and ALKP) had the greatest influence on the 
model.

	 (iii)	 The linear support vector machine (SVM) model was optimised using tenfold cross-validation on the 
training set. A range of 0.25 to 16 was searched for the cost hyperparameter and the optimal value was 
0.5. The training dataset performance had an area under the receiver operating characteristic curve of 
0.83 (95% CI 0.80–0.87).

	 (iv)	 The non-linear SVM model with a radial basis function (RBF) kernel was optimised by tenfold cross-
validation using a grid search, tuning the cost hyperparameter to 4 (searched between 0.25 and 16) and 
the gamma hyperparameter to 0.02 (searched between 0.01 and 32)18. The training dataset performance 
had an area under the receiver operating characteristic curve of 0.84 (95% CI 0.81–0.87).



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9035  | https://doi.org/10.1038/s41598-021-88440-z

www.nature.com/scientificreports/

Variable Category Cases (%) Non-cases (%) p-value

Age at first suspicion (median, IQR, years) – 10.8 (IQR 9.0–12.5) 10.2 (IQR 8.2–12.1 0.004

Weight at first suspicion (median, IQR, kg) – 11.4 kg (IQR 8.8–20.0) 13.2 kg (IQR 9.3–25.1) 0.008

Weight change in last 12 months (10% 
change)

Loss 41 (10.3) 70 (12.9)

0.41Gain 32 (8.0) 47 (8.7)

No change 325 (81.7) 424 (78.4)

Sex-neuter

Female entire 58 (14.6) 39 (7.2)

0.001
Female neutered 154 (38.7) 236 (43.6)

Male entire 53 (13.3) 61 (11.3)

Male neutered 133 (33.4) 205 (37.9)

Breed

Beagle 1 (0.3) 11 (2.0)

< 0.001

Bichon frise 32 (8.0) 24 (4.4)

Border collie 5 (1.3) 12 (2.2)

Border terrier 23 (5.8) 11 (2.0)

Boxer 6 (1.5) 7 (1.3)

Cavalier King Charles spaniel 7 (1.8) 11 (2.0)

Cocker spaniel 5 (1.3) 20 (3.7)

Crossbreed 90 (22.6) 114 (21.1)

Jack Russell terrier 39 (9.8) 39 (7.2)

Labrador retriever 6 (1.5) 39 (7.2)

Lhasa apso 7 (1.8) 4 (0.7)

Poodle 5 (1.3) 8 (1.5)

Schnauzer 6 (1.5) 24 (4.4)

Shih tzu 19 (4.8) 3 (0.6)

Staffordshire bull terrier 29 (7.3) 26 (4.8)

West Highland white terrier 13 (3.3) 46 (8.5)

Yorkshire terrier 20 (5.0) 20 (3.7)

Other purebreed 85 (21.4) 122 (22.6)

Polydipsia
Yes 279 (70.1) 261 (48.2)

< 0.001
No 119 (29.9) 280 (51.8)

Polyuria
Yes 234 (58.8) 195 (36.0)

 < 0.001
No 164 (41.2) 346 (64.0)

Polyphagia
Yes 98 (24.6) 77 (14.2)

 < 0.001
No 300 (75.4) 464 (85.8)

Vomiting
Yes 19 (4.8) 59 (10.9)

0.001
No 379 (95.2) 482 (89.1)

Diarrhoea
Yes 26 (6.5) 57 (10.5)

0.03
No 372 (93.5) 484 (89.5)

Potbelly/hepatomegaly
Yes 197 (49.5) 116 (21.4)

 < 0.001
No 201 (50.5) 425 (78.6)

Thin/dry skin
Yes 96 (24.1) 100 (18.5)

0.04
No 302 (75.9) 441 (81.5)

Alopecia
Yes 118 (29.7) 81 (15.0)

 < 0.001
No 280 (70.3) 460 (85.0)

Pruritus
Yes 15 (3.8) 45 (8.3)

0.005
No 383 (96.2) 496 (91.7)

Muscle wastage
Yes 54 (13.6) 45 (8.3)

0.01
No 344 (86.4) 496 (91.7)

Lethargy
Yes 73 (18.3) 112 (20.7)

0.37
No 325 (81.7) 429 (79.3)

Panting
Yes 80 (20.1) 99 (18.3)

0.49
No 318 (79.9) 442 (81.7)

Neurological signs
Yes 18 (4.5) 31 (5.7)

0.41
No 380 (95.5) 510 (94.3)

Hospitalised in previous 12 months
Yes 55 (13.8) 81 (15.0)

0.62
No 343 (86.2) 460 (85.0)

Continued
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The four models indicated good performance in the training dataset all with an AUROC ≥ 0.77 (Table 3). The 
non-linear RBF SVM model indicated the best performance during model training with the highest AUROC.

Final model performance on test dataset.  Final performance of the models was assessed on the inde-
pendent test dataset. All models indicated good discrimination (Fig. 1) and calibration (Fig. 2). The LASSO 
model indicated the best performance when applied to the test dataset (Table 4) with an AUROC = 0.85 (95% 
CI 0.80–0.89) which is consistent with the training cross-validation performance (Table 3). The calibration plot 
of the LASSO model demonstrated good model calibration with narrow 95% confidence intervals that crossed 
the 45 degree line of perfect calibration. The calibration plot indicates slightly poorer calibration of the lower 
probability predictions in the model.  

The SVM models demonstrated a drop in performance when applied to the test set: Linear SVM 
AUROC = 0.73 (95% CI 0.67–0.78); RBF SVM AUROC = 0.72 (95% CI 0.66–0.78) (Table 3). The RF model 
maintained a reasonable performance (AUROC = 0.74; 95% CI 0.68–0.79). Calibration plots suggested good 
calibration for the RF and SVM models (Fig. 2).

Discussion
This study demonstrates the ability of machine-learning methods to correctly classify the recorded veterinarian 
diagnosis of Cushing’s syndrome in dogs from the point of first suspicion, using electronic patient records of dogs 
under primary veterinary care in the UK. Our study assessed four classification machine-learning models, all 
with good predictive performance. Of our four models, the LASSO penalised regression was the best performing 
model for support of a diagnosis of Cushing’s syndrome with the highest AUROC in the test set validation. The 
LASSO aims to selects a model that achieves a trade-off between goodness of fit and model complexity, from a 
large list of potential models19. This has been used in other prediction methods and is recommended for use in 
the consensus paper for medical prediction models12, 20, 21. Little overfitting was observed in the calibration plot 
of the LASSO model; however greater uncertainty was observed at the lowest predictions, with 95% confidence 
intervals narrowly missing the 45 degree line of perfect calibration. LASSO performs feature selection at the same 
time as model training, therefore requires fewer features to be considered and could be easily implemented for 
use in practice22. Another benefit of the LASSO is that it works well in low-dimensional, binary data which could 
be a reason for its superior performance in the classification of Cushing’s syndrome diagnosis23.

The RBF SVM model had the superior performance to all optimised models during the cross-validation of 
the training dataset with an AUROC of 0.84, however performance dropped to 0.72 in the test dataset. The RF 
model had the poorest performance when applied to the training datasets and retained a reasonable performance 
in the test dataset. There are many machine-learning methods that can be used for classification problems, each 
with their own advantages and drawbacks12, 24. A review paper examined the performance of different machine-
learning methods for disease prediction and found the methods performed differently depending on the types 
of data used. SVM and RF models were found to perform less well than simpler models, such as regression 
models, when clinical and demographic data were used, which reflects the findings in the current study24. SVM 
has advantages in high dimensional datasets (considering large numbers of features) as well as for features with 
small predictive effects (such as for genome-wide associations)25. The gamma hyperparameter of the RBF SVM 
model affects the complexity of the model with higher values of gamma increasing the flexibility of the SVM 
hyperplane. In the current study, performance of the non-linear RBF SVM model was similar to the linear 
SVM model in the test dataset suggesting the non-linear model could have largely learnt a linear relationship. 
This could be due to the predominant inclusion of binary features in our dataset22. In our study a low gamma 
hyperparameter for the non-linear model was identified during model optimisation suggesting a less complex 
relationship was being modelled by the RBF SVM model26.

The drop in performance of the RBF SVM model when applied to the test dataset could indicate overfitting 
of the models to the training data or could be as a result of randomly splitting the data into a single training 
and testing group. A single train-test split is dependent on which data are randomly allocated to either group 
and can result in high variability between the two datasets and is less reliable at inferring generalisability of 
model performance27, 28. Other methods such as nested cross-validation can be used to reduce test set vari-
ability and could provide a less biased estimate of model generalisation performance27, 29. This could be used as 
an alternative strategy in future studies. The poorer performance of the RF model could be due to the inclusion 

Variable Category Cases (%) Non-cases (%) p-value

Raised ALKP activity

Yes 211 (53.0) 263 (48.6)

0.001No 14 (3.5) 55 (10.2)

Unknown 173 (43.5) 223 (41.2)

Raised ALT activity

Yes 163 (41.0) 179 (33.1)

 < 0.001No 28 (7.0) 98 (18.1)

Unknown 207 (52.0) 264 (48.8)

Table 1.   Descriptive statistics and univariable associations of features included in machine-learning 
prediction of the diagnosis of Cushing’s syndrome in dogs attending primary-care veterinary practices in the 
UK (Cases, n = 398; non-cases: n = 541).
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of predominantly binary categorical variables, resulting in the model growing sparse decision trees22, 30. When 
examining the importance plot of the features in the RF model, the majority of features had a low mean decrease 
in accuracy and Gini which could have resulted in a model that is not highly robust. However the features with 
most importance were the presence of polyphagia, and polyuria as well as abnormal ALT and ALKP laboratory 
findings, which are clinical features frequently reported in dogs with Cushing’s syndrome1, 9.

Automated prediction of Cushing’s syndrome in dogs could support veterinarian decision-making and con-
tribute to improved diagnosis of the disease. The currently available tests used for the diagnosis of Cushing’s 
syndrome in primary-care practice have varying sensitivities and specificities. The ACTH stimulation test is 
the most commonly used test in primary-care practice and has an estimated sensitivity between 57 and 83% 
and a specificity between 59 and 95%2, 31–34. The test characteristics vary according to the study referenced with 
superior test specificity estimates stemming from test populations which include healthy controls or controls 

Table 2.   Least Absolute Shrinkage and Selection Operator (LASSO) prediction model for a diagnosis of 
Cushing’s syndrome, applied to dogs attending primary-care veterinary practices in the UK (Cases, n = 259; 
non-cases: n = 367). Coefficients were estimated following application of a penalty (lambda = 0.014) during 
tenfold cross validation. Coefficients marked with a full-stop indicate coefficients that have been shrunk to zero 
and therefore removed from the model.

Feature Coefficient

Age at first suspicion (years) 0.77

Weight at first suspicion (kg)  .

Beagle −0.66

Bichon frise 0.31

Border collie 0.09

Border terrier 0.22

Boxer . 

Cavalier King Charles spaniel 0.18

Cocker spaniel −0.11

Crossbreed  .

Jack Russell terrier  .

Labrador retriever −1.33

Lhasa apso 0.29

Poodle  .

Other purebreed  .

Schnauzer −0.56

Shih tzu 1.12

Staffordshire bull terrier −0.29

West Highland white terrier −1.17

Female neutered  .

Female entire 0.52

Male entire  .

Weight loss −0.25

Weight gain  .

Polydipsia absent −0.38

Polyuria present 0.64

Polyphagia present 0.06

Vomiting present −0.46

Diarrhoea present −0.35

Potbelly present 0.75

Thin/dry skin present 0.12

Alopecia present 0.93

Pruritus present −0.12

Muscle wastage present 0.12

Lethargy present  .

Panting present −0.10

Neurological signs present  .

ALKP not elevated −1.04

ALT not elevated −0.57

(Intercept) −0.93
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without a clinical suspicion of Cushing’s syndrome. When applied to comparison non-case populations, similar 
to those used in our study, the ACTH stimulation test specificity falls between 59 and 61%31, 32, 35. The LDDST 
has an estimated sensitivity between 85 and 97% and a specificity between 70 and 73%8, 34, 36. In primary-care 
practice, these tests may be performed in dogs with a low suspicion of Cushing’s syndrome which can add to the 
uncertainty of interpretation for veterinarians and multiple tests are often performed, increasing the financial 
cost during the diagnostic process to the dog owner4. A prediction tool with good reliability that could be used 
from the point of first suspicion would offer a minimally invasive and low cost diagnostic method to support 
the veterinarian. Insured dogs are four times more likely to be diagnosed with Cushing’s syndrome compared 
to non-insured dogs, suggesting a high level of under-diagnosis related to the financial burden of gaining a 
diagnosis for this disease2. Future application of the LASSO predictive algorithm could be used to develop a 
computer application for mobile devices or implement it within a clinical practice management system to provide 
automated prediction within the consultation room37.

The models in this study included the information available to veterinarians during the initial stages of disease 
investigation; therefore these data largely include the dog’s demographic factors and presenting clinical signs. 
The good performance of these models suggests that discrimination of dogs with and without Cushing’s syn-
drome can be correctly determined at the point of first suspicion based on these factors. Due to some laboratory 
tests performed at external laboratories, specific measurements were therefore not routinely captured within 
VetCompass unless laboratory results were manually recorded within the free text clinical notes. Inclusion of 
specific laboratory measurement data into our study was limited. The predictive ability of these models could be 
improved with inclusion of additional features, with further laboratory factors offering an opportunity of future 
model adjustment and improved predictive performance.

There are some limitations to this study. This study used supervised machine-learning methods that require 
structured data for model training. In veterinary EPRs there are some standardised coding systems in place, 
such as VeNom coding systems, however these are not commonly used in clinical practice with the majority of 
information recorded as clinical free text38. Clinical features in this study were extracted through manual revi-
sion of the clinical notes, restricting the sample size. Future work for feature extraction using natural language 
processing methods or classification of clinical features could be beneficial for the clinical application of such 
predictive algorithms to optimise the analysis of large datasets, like VetCompass39. Due to the retrospective col-
lection of the data, there is a possibility of feature misclassification and an introduction of noise, which could 
have diluted some predictive effects. The sample size included in this study is comparable to similar studies. 
However it is possible that additional training examples would support further improvements in prediction13, 16.  
Finally, further investigation on an independent dataset from a different cohort of dogs could examine the 
external validation of these models40.

In conclusion, this study applied four machine-learning models to predict the diagnosis of Cushing’s syn-
drome in dogs from the point of first suspicion of disease. The LASSO penalised regression model was the 
best performing model when applied to a held-out test dataset. The findings indicate machine-learning aided 
diagnosis could predict the diagnosis of a practising veterinarian and that utilising machine-learning methods 
as decision support tools, may contribute to improved diagnosis in Cushing’s syndrome in dogs. This study has 
shown that is it feasible to apply machine-learning methods to clinical data available within primary veterinary 

Table 3.   Training dataset and independent test dataset performance metrics of four machine-learning 
models for predicting a diagnosis of Cushing’s syndrome in dogs attending primary-care practice in the 
UK (training dataset: cases n = 259, non-cases: n = 367; testing dataset: cases = 139, non-cases = 174; dataset 
prevalence = 0.44). AUROC, Area under the receiver-operating characteristic curve; PPV, positive predictive 
value; NPV, negative predictive value; LASSO, least absolute shrinkage and selection operator; RF, random 
forest; SVM, support vector machine; RBF, radial basis function.

LASSO RF Linear SVM RBF SVM

Training dataset performance measures

AUROC (95% Confidence interval) 0.83 (0.80–0.86) 0.77 (0.73–0.81) 0.83 (0.80–0.87) 0.84 (0.81–0.87)

Sensitivity 0.66 0.54 0.72 0.67

Specificity 0.86 0.84 0.83 0.86

PPV 0.77 0.71 0.75 0.77

NPV 0.78 0.72 0.81 0.79

Accuracy (95% Confidence interval) 0.77 (0.74–0.81) 0.72 (0.68–0.75) 0.78 (0.75–0.82) 0.78 (0.75–0.81)

Kappa 0.53 0.40 0.55 0.54

Testing dataset performance measures

AUROC (95% Confidence interval) 0.85 (0.80–0.89) 0.74 (0.68–0.79) 0.73 (0.67–0.78) 0.72 (0.66–0.78)

Sensitivity 0.71 0.49 0.63 0.58

Specificity 0.82 0.83 0.73 0.74

PPV 0.75 0.70 0.65 0.64

NPV 0.78 0.67 0.71 0.69

Accuracy (95% Confidence interval) 0.77 (0.72–0.81) 0.68 (0.63–0.73) 0.68 (0.63–0.73) 0.67 (0.61–0.72)

Kappa 0.52 0.33 0.36 0.32



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9035  | https://doi.org/10.1038/s41598-021-88440-z

www.nature.com/scientificreports/

care EPRs for disease prediction and could open up the opportunities for further development in this area 
through application to other clinical problems.

Methods
Data were collected from the VetCompass programme, which collates EPRs from primary-care veterinary prac-
tices in the UK. To be included in the study, dogs in the VetCompass cohort were required to have been under 
veterinary care in 2016 which was defined as having at least one EPR recorded during 2016 and/or at least one 
EPR recorded both in 2015 and 2017. To identify dogs where Cushing’s syndrome was considered as a clinical 
diagnosis, search terms were applied to the EPRs: ‘Cushing*, HAC, hyperadren*, hyperA, trilos*, Vetory*’. A 
random selection of dogs identified by the search terms were reviewed through manual revision of the EPRs. 
Dogs were included as a case if, (i) an initial diagnosis of Cushing’s syndrome was recorded within their EPR 
between 1 January 2016 and 1 June 2018 and (ii) a record was present of a low dose dexamethasone suppression 
test (LDDST) or adrenocorticotropic hormone (ACTH) stimulation test being performed within the EPR prior 
to diagnosis. Dogs were excluded as a case if a diagnosis was made prior to their first available patient record 
during the study period or dogs were considered to have iatrogenic Cushing’s syndrome (had glucocorticoid 

Figure 1.   Receiver operating characteristic curve for the final prediction models for a diagnosis of Cushing’s 
syndrome evaluated in an independent test dataset, applied to dogs attending primary-care veterinary practices 
in the UK (n = 313; cases = 139 and non-cases = 174). LASSO, least absolute shrinkage and selection operator; RF, 
random forest; SVM, support vector machine; RBF, radial basis function.
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administration in the 30 days prior to first suspicion). Dogs were included as a comparison reference population 
of non-cases if, (i) there was a recorded suspicion of Cushing’s syndrome within the EPR, (ii) they subsequently 
had Cushing’s syndrome ruled out after undergoing a urine cortisol-creatinine ratio (UCCR) test, LDDST and/
or an ACTH stimulation test between 1 January 2016 and 1 June 2018 and (iii) an alternative diagnosis was 
made within the EPR. Dogs with no recorded information regarding clinical signs were excluded from analysis.

Multiple features (variables) were extracted for analysis. Demographic features including breed, sex, neuter 
status, date of birth and bodyweight were routinely recorded within the EPRs. Breeds were categorised according 

Figure 2.   Calibration plots of the final prediction models for a diagnosis of Cushing’s syndrome, applied to 
dogs attending primary-care veterinary practices in the UK (n = 313; cases = 139 and non-cases = 174). The plot 
describes the mean observed proportions of dogs with a diagnosis of Cushing’s compared to the mean predicted 
probabilities, by deciles of predictions. The 45 degree line denotes perfect calibration.

Table 4.   Confusion matrix for the Least Absolute Shrinkage and Selection Operator (LASSO) model test 
dataset predictions of Cushing’s syndrome in dogs attending primary-care practice in the UK (n = 313; 
cases = 139 and non-cases = 174).

Observed

Prediction Cushing’s +ve Cushing’s −ve

 Cushing’s +ve 98 32

 Cushing’s −ve 41 142
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to a standardised breed list adapted from the VeNom Coding Group system (Venom Coding Group 2019). Indi-
vidual breeds were specified if at least 10 dogs of that breed had been included as a case or non-case. All other 
purebreds were grouped into a ‘purebreed other’ category. Dogs classified as a crossbreed (e.g. poodle X) or a 
designer breed (e.g. cockapoo) were classified into a ‘crossbreed’ category. Sex was categorised to include neuter 
status: female-entire, female-neuter, male-entire or male-neuter. Age at first suspicion (years) was calculated by 
using the date of birth and date of first suspicion of Cushing’s syndrome. Bodyweight (kg) was the bodyweight 
value recorded closest to the date of first suspicion. A change in weight was calculated using the recorded weight 
at the date of first suspicion and that recorded one year previously, where available.

Additional data were extracted manually from the EPRs. Date of first suspicion was the earliest date with 
evidence in the EPRs that Cushing’s syndrome was being considered as a diagnosis, and subsequently led to the 
veterinarian to pursue the diagnosis through further investigation. Clinical signs and routine laboratory meas-
urements present at first suspicion (recorded one week prior and one week after the date of first suspicion) were 
extracted. Individual clinical signs were recorded as binary features: ‘present’ or ‘not present’ (‘not present’ was 
recorded if the clinical sign was specifically recorded as not present or if no information was recorded). ALKP 
and ALT were recorded as ‘elevated’, ‘not elevated’ or ‘unknown’ (either no test was performed or results were 
not reported). Proteinuria (based on a urine dipstick, including a trace recording or a urine protein-creatinine 
ratio) was recorded as ‘present’, ‘not present’ or ‘unknown. USG was recorded as ‘dilute’ (≤ 1.020), ‘not dilute’ 
(> 1.020) or ‘unknown’. Continuous data for recorded ALKP enzyme activities and USG measurements were also 
extracted. Treatment data (currently being received when first suspected of Cushing’s syndrome) for insulin, 
l-thyroxine supplementation and anti-hypertensive agents (amlodipine, benazepril, enalapril or telmisartan) 
were extracted41. Additionally clinical management data on whether dogs were hospitalised in the previous 
12 months before first suspicion was included9.

Data pre‑processing.  All analyses were performed in R version 4.0.042. Features were descriptively ana-
lysed with categorical data assessed using the counts and corresponding percentages. For continuous data, nor-
mally distributed data were summarised using the mean (standard deviation (SD)) and non-normally distrib-
uted data using the median (interquartile range (IQR) and range). Variance of the features for all dogs was 
assessed and those with zero or near-zero variance (proportion of unique values over the sample size was < 10%) 
were excluded from analysis22. Pairwise correlations between predictor features were explored to identify col-
linearity using correlation coefficients; correlations (r) > 0.80 were considered highly correlated43. When pairs 
of highly correlated predictor features were identified, the variable considered to be most complete within the 
dataset and most clinically relevant was selected for modelling43. Data were assessed for missing values with 
features excluded if > 50% of the data was missing44.

The selected data were randomly split into two parts. Two-thirds (67%) of the data were allocated to a train-
ing dataset and one-third (33%) to the test dataset. Features with ≤ 50% missing data were imputed separately 
for training and test sets using multiple imputation by chained equations using the mice package in R22, 45, 46. 
Continuous variables had a normal distribution and were standardised for analysis by converting to z-scores47. 
One-hot encoding was applied to nominal features; breed, neuter-status and weight change22.

Model training and optimisation.  Four prediction models using different supervised machine-learning 
algorithms were applied to the training set: LASSO, RF, a linear SVM and a non-linear SVM. For each algo-
rithm, hyperparameter tuning was conducted by cross-validation to optimise the models and to minimise model 
overfitting48. The hyperparameters tuned varied between the different algorithms.

	 (i)	 LASSO is a penalised regression method49. This method adds a penalty (lambda) to the sum of the abso-
lute coefficients which shrinks the coefficients towards the null, with each predictor coefficient shrunk 
differently. The addition of a penalty reduces the likelihood of the model overfitting the data to improve 
prediction accuracy22. Lambda was optimised by tenfold cross-validation50. The mean lambda from 
the cross-validation loops was applied to the training set to determine the final model coefficients and 
training set performance51. The model was applied using the glmnet package in R which automatically 
standardises the data for the estimation of predictor effects and back transforms the final regression 
coefficients on the original scale51.

	 (ii)	 RF is an ensemble learning based classification method22. It uses training data to construct multiple 
decision-trees by bootstrap resampling and classifies unseen data using the mode of the tree output 
decisions30. These decision trees have small randomised differences in characteristics, which improves 
generalisation performance. Tuning of the model was performed by changing the number of decision 
trees grown within the ensemble (‘ntree’) and the number of features randomly sampled as candidates 
at each tree split (‘mtry’). Variable importance was determined for each tree within the final optimised 
random forest model by calculating the permutation importance index as well as measuring the decrease 
in node impurity22, 52. Importance was assessed by mean decrease accuracy, indicating the mean decrease 
in model accuracy due to the exclusion of that feature, and by mean decrease Gini, indicating the mean 
decrease in node purity achieved by each feature. The model was applied using the rpart package in R53.

	 (iii)	 SVM models map training data into a multi-dimensional space and separate the binary outcome data 
by a hyperplane that is maximally distant from the two outcome groups26. This best separating hyper-
plane minimises classification error and maximises geometric margin of classification. Two models were 
assessed: a linear and a non-linear model (with a radial basis function (RBF) kernel). The non-linear 
kernel SVM model can learn more complex hyperplanes than a linear SVM model22. Model tuning was 
performed for the optimal cost hyperparameter for the linear SVM model using tenfold cross-validation. 
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The optimal cost and kernel function (gamma) hyperparameters were tuned for the non-linear RBF SVM 
model, using a grid search with tenfold cross-validation. The two SVM models were applied using the 
e1071 package in R18.

Models were optimised through cross-validation by maximising the area under the receiver operating charac-
teristic curve11. The optimum predictive thresholds for the LASSO and RF models were identified by maximising 
the PPV without a detrimental decrease in the NPV as this was deemed the most clinically valuable classifica-
tion for clinicians. Once the hyperparameters had been optimised via cross-validation on the training dataset, 
the final model parameters were then applied to the whole training dataset11, 21, 22. The training performance 
was presented by plotting the ROC curve, calculating the AUROC curve and examining the confusion matrix 
(outlining sensitivity, specificity, PPV, NPV, kappa statistic and accuracy). Confidence intervals for AUROC were 
calculated using the DeLong method54 and exact binomial confidence intervals were presented for accuracy55. 
The best performing model in the training set was defined by having the highest AUROC.

Final model performance.  Performance of the final, tuned models were assessed by applying the selected 
prediction model to the independent test dataset. Final model performance was assessed by a confusion matrix 
and AUROC curves to examine the discriminatory ability of the models (distinguishes between dogs that have 
the outcome and those that do not)22, 56. Calibration of the models (the agreement between the observed out-
comes and predictions) was assessed by calibration plots to assess the reliability of the probability estimates of 
the final models57, 58. The plots compared the mean observed proportions of dogs with a diagnosis of Cushing’s 
to the mean predicted probabilities by deciles of predictions. Perfect predictions should lie on the 45 degree 
line56, 57. The best performing model in the test set was defined as having the highest AUROC and a correspond-
ing calibration curve indicating good calibration.

Ethical approval.  Ethical approval was granted by the Royal Veterinary College Ethics and Welfare Com-
mittee (URN SR2018-1652). All methods were performed in accordance with the relevant regulations and the 
ARRIVE guidelines.
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