

ORIGINAL ARTICLE

OPEN

Noninvasive tests for nonalcoholic fatty liver disease in a multi-ethnic population: The HELIUS study

Anne-Marieke van Dijk¹ | Yasaman Vali² | Anne Linde Mak¹ |
 Henrike Galenkamp^{3,4} | Max Nieuwdorp¹ | Bert-Jan van den Born¹ |
 Adriaan Georgius Holleboom¹

¹Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands

²Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands

³Public and Occupational Health, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands

⁴Health Behaviors and Chronic Diseases, Amsterdam Public Health research institute, Amsterdam, The Netherlands

Correspondence

Anne-Marieke van Dijk, Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9 Room M0-118, 1105 AZ Amsterdam, the Netherlands.

Email: a.vandijk2@amsterdamumc.nl

Abstract

Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence and severity globally, prompting noninvasive testing, yet limited data exist on noninvasive liver tests (NITs) including transient elastography (TE) in ethnically diverse populations. Therefore, we studied prevalence and ethnic differences in NAFLD with NITs in the multi-ethnic HEalthy Life In an Urban Setting (HELIUS) cohort. NITs of liver steatosis (Fatty Liver Index [FLI]) and fibrosis (Fibrosis-4 index [FIB-4], and aspartate aminotransferase-to-platelet ratio [APRI]) were assessed in 10,007 participants. A subpopulation of 399 participants, selected on high-risk criteria for NAFLD (obesity, type 2 diabetes mellitus [T2DM], and/or elevated NITs), was examined with TE. FLI was ≥ 60 in 27.3% of 10,007 participants, indicating steatosis. Most participants (71.8%) had FIB-4 < 1.30 , excluding advanced liver fibrosis, and 1.1% ($n = 113$) had high FIB-4 (FIB-4 ≥ 2.67), indicating likely advanced liver fibrosis. In the TE subpopulation, 37.8% and 17.3% had steatosis and fibrosis (continuation attenuation parameter [CAP] ≥ 280 dB/m, liver stiffness measurement [LSM] ≥ 7.0 kPa, respectively). Turkish participants had highest adjusted odds ratio (OR) for elevated LSM (1.72, 95% confidence interval [CI] 0.59–5.01) and Ghanaians the lowest (0.24, 95% CI 0.09–0.65). Ghanaians had lowest adjusted OR for elevated CAP: 0.18 (95% CI 0.09–0.37). In diabetics, CAP and LSM were 17.6% and 14.6% higher than in nondiabetics, respectively. Correlations of FIB-4 and APRI with LSM were absent and weak. *Conclusion:* Liver steatosis proxy FLI was elevated in 27.3% of this multi-ethnic population. In Turkish background and in those with T2DM, proxies for steatosis and fibrosis were high, whereas in Ghanaian background, NITs were generally low. Together, this warrants awareness for NAFLD among high-risk populations, taking ethnic

Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website, www.hepcommjournal.com.

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. Copyright © 2022 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the American Association for the Study of Liver Diseases.

background into account. The absence of clear correlation between FIB-4 and APRI with LSM questions the accuracy of these fibrosis NITs to detect advanced fibrosis in the general population.

INTRODUCTION

In concurrence with the increasing prevalence of obesity and type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide.^[1] The pathophysiology of NAFLD is complex, with visceral obesity and insulin resistance as root causes. The NAFLD spectrum ranges from isolated steatosis to nonalcoholic steatohepatitis (NASH) to liver fibrosis and ultimately cirrhosis and hepatocellular carcinoma.^[2] Most patients with NAFLD, up to 80%, have isolated steatosis.^[3] Although the group of individuals who progress to fibrosis is smaller than those who remain having isolated steatosis, it is important to diagnose and stage NAFLD. NAFLD fibrosis strongly correlates with liver-related complications and liver-related all-cause mortality. Unfortunately, NAFLD including its advanced fibrotic stages often still remains underdiagnosed.^[4] Currently, the gold standard for identifying and staging NAFLD is liver biopsy, yet its invasive nature renders it unsuitable in routine clinical work-up or in most epidemiological studies. The increasing prevalence of NAFLD, including severe fibrotic stages, has prompted international guidelines to recommend early identification of NAFLD fibrosis with noninvasive liver tests (NITs).^[5]

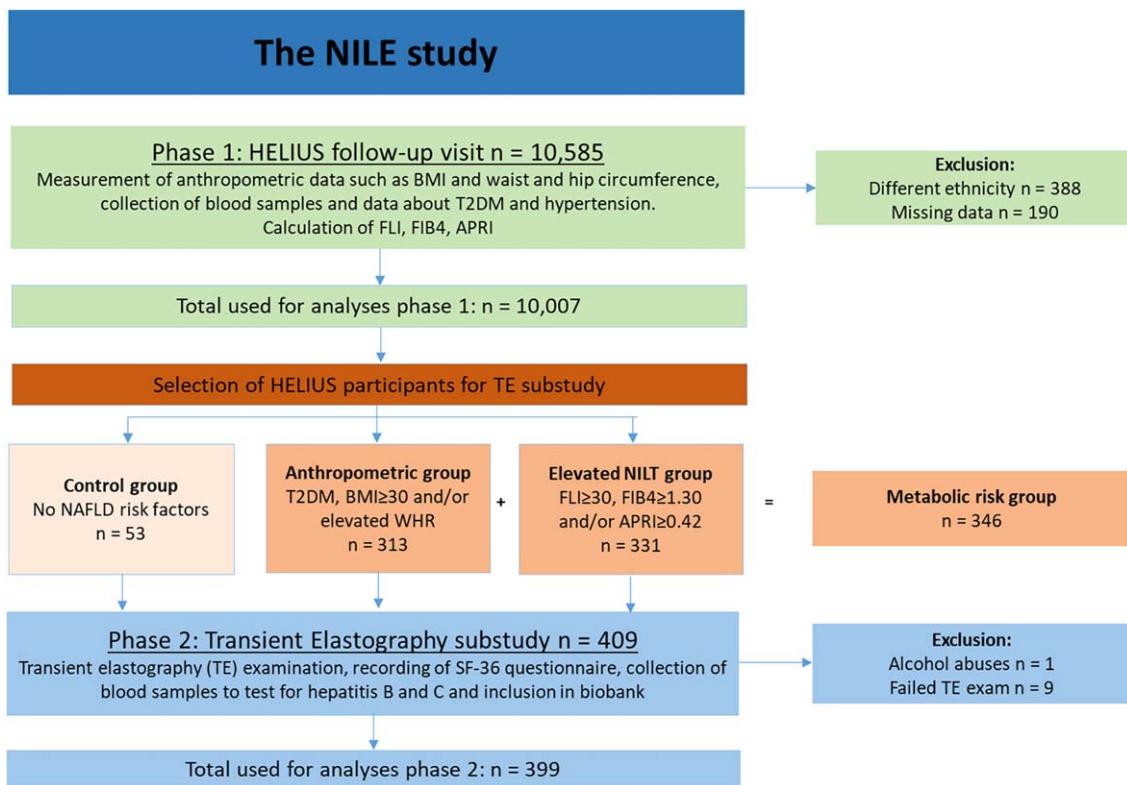
Multiple studies have evaluated the performance of Fibrosis-4 index (FIB-4) and aspartate aminotransferase (AST)-to-platelet ratio index (APRI) to identify NAFLD fibrosis.^[6,7] In addition to NITs for fibrosis, NITs to assess steatosis have also been developed. Because of wide availability and acceptable sensitivity of ultrasound, these steatosis NITs have not reached clinical care studies, but have shown value in epidemiological research. One of the best characterized and validated steatosis NITs is the Fatty Liver Index (FLI), an algorithm that combines body mass index, waist circumference, and plasma levels of gamma-glutamyltransferase, and triglycerides.^[8]

These steatosis and fibrosis NITs were derived and validated in populations of Western descent, but limited data are present from other ethnic backgrounds, constituting a clear knowledge gap, as NAFLD is a global problem affecting all ethnic backgrounds.^[9] Two studies from the United States using liver magnetic resonance spectroscopy or liver histology have reported on differences in the prevalence and severity of NAFLD between groups with different ethnic backgrounds. In these, American Hispanics were the most affected ethnic group, whereas African Americans were the least affected with NAFLD.^[10]

To increase our understanding of noninvasive assessment of NAFLD in diverse ethnic backgrounds, we conducted the NAFLD In the healthy Life in an urban

sEtting (NILE) study, nested in the multi-ethnic HEalthy Life In an Urban Setting (HELIUS) cohort study. Here we report on the differences in NAFLD prevalence and severity between ethnicities and between participants with different risk factors. Finally, we evaluated correlations between different NAFLD NITs.

METHODS


Design of the HELIUS cohort

The HELIUS study is a prospective observational cohort study into the impact of ethnicity on health in adults from different ethnic groups living in Amsterdam, the Netherlands. The detailed design has been published previously.^[11] Briefly, adults between 18–70 years of age from multiple ethnic groups were randomly selected from the municipal register, stratified by ethnicity. Included were people from Surinamese (both self-reported African or South-Asian Surinamese), Turkish, Moroccan, Ghanaian, and Dutch descent. Data for HELIUS baseline and follow-up visits were collected by physical examination, blood sampling, and a self-reported questionnaire (including alcohol use, T2DM, and cardiovascular history). All participants provided written informed consent. See the [Supporting Information](#) for more details.

Design of the NILE study

The NILE study consisted of two phases and therefore two different populations (see [Figure 1](#) for the design). Phase 1 consisted of the measurement of FLI, FIB-4, and APRI^[6–8] in all HELIUS follow-up participants ($n = 10,585$). More information about these NITs is found in the [Supporting Information](#) and Table S1. FLI was categorized into three groups: $FLI < 30$, $FLI 30–59$, and $FLI \geq 60$ as a proxy for no, potential, and likely liver steatosis, respectively. FIB-4 was categorized in three groups: $FIB-4 < 1.30$, $FIB-4 1.30–2.66$, and $FIB-4 \geq 2.67$ as a proxy for no, potential, and likely advanced liver fibrosis, respectively. APRI was categorized into two groups: $APRI < 0.42$ and $APRI \geq 0.42$ as a proxy for no and potential advanced liver fibrosis, respectively.

Phase 2, the transient elastography (TE) substudy, consisted of a nested substudy including TE measurement. This was conducted in a selected subpopulation of HELIUS follow-up participants ($n = 409$). We invited two groups: one at risk of NAFLD (metabolic risk group, $n = 346$) and one control group ($n = 53$). Participants were included in the

FIGURE 1 Flowchart of the NAFLD In the healthy Life in an urban sEtting (NILE) study. APRI, aspartate aminotransferase-to-platelet ratio index; BMI, body mass index; FIB-4, Fibrosis-4 index; FLI, Fatty Liver Index; HELIUS, HElthy Life In an Urban Setting; NAFLD, nonalcoholic fatty liver disease; SF-36, 36-Item Short Form Health Survey; T2DM, type 2 diabetes mellitus; TE, transient elastography; WHR, waist-hip ratio

metabolic risk group if one or more of the following criteria, measured during Phase 1, were met: (a) T2DM (self-reported and/or T2DM medication use), (b) obesity (body mass index [BMI] \geq 30 kg/m 2), (c) elevated waist-hip ratio (WHR), (i.e., \geq 0.90 for men and \geq 0.85 for women),^[12] (d) elevated FLI (\geq 30), (e) elevated FIB-4 (\geq 1.30), and/or (f) elevated APRI (\geq 0.42). The control group included participants who met none of these criteria. Exclusion criteria for the TE substudy were excessive alcohol use, defined as >21 units/week for men and >14 units/week for women, known history of hepatitis B or C, and use of systemic corticosteroids. HELIUS follow-up participants were checked for the inclusion and exclusion criteria and invited for an additional study visit. Selection was randomized by a computer, stratified for age groups and ethnicity.

TE substudy visits

During the TE visits, a 36-Item Short Form Health Survey (SF-36)^[13] was taken; anthropometric data and blood samples were collected; and a TE was performed by an experienced physician (AvD). TE has been validated against liver biopsy for identifying NAFLD steatosis and fibrosis in patients with NAFLD.^[14] In addition, blood pressure and heart rate were recorded following standard procedure. Blood samples were collected to be tested for hepatitis B and C and stored in the biobank. Medical history

was recorded including hypertension, T2DM, and medication use. TE included controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), recorded on a FibroScan 530 Compact (Echosens) with M or XL probe by guidance of the device's algorithm, in fasted condition (\geq 2 h), with a minimum of 10 measurements.^[14]

Data analyses

Participant characteristics are expressed per ethnicity as percentages, means with SD or medians with interquartile range (IQR), depending on the data distribution. BMI (kg/m 2) was categorized into three categories: normal (BMI 18–25 kg/m 2), overweight (BMI 26–29 kg/m 2), and obesity (BMI \geq 30 kg/m 2). Hypertension was defined as systolic blood pressure \geq 140 mm Hg, diastolic blood pressure \geq 90 mm Hg, or the use of anti-hypertensive medication.

In Phase 1, ethnic differences in NITs were analyzed against the total group (n = 10,007), and in Phase 2 against the total metabolic risk group (n = 346); the control group was not included in the comparisons of Phase 2. Unpaired Student's *t*-test or Mann–Whitney *U*-test was used depending on the data distribution. To adjust for confounding, three logistic regression models (Models A, B, and C) were used, with Dutch ethnicity as reference. All models were adjusted for age, sex, BMI, and T2DM.

These logistic regression models had three different outcome measures: Model A, dichotomous CAP measurement (≥ 280 dB/m); and Model B, dichotomous LSM (≥ 7.0 kPa) calculated in the total TE substudy ($n = 399$). The outcome measure of Model C was dichotomous LSM (≥ 7.0 kPa) calculated in all TE substudy participants with elevated CAP (≥ 280 dB/m, $n = 151$). Outcome measures were presented as adjusted odds ratios (ORs).

Pearson correlation coefficients were used for normally distributed data to calculate the correlation between TE and NITs, BMI, T2DM, and WHR. Where appropriate, skewed data were log-transformed before correlation analysis.

To examine whether ethnic differences could be explained by common risk factors for NAFLD, a stepwise logistic regression model was performed. The first model corrected for age and gender (Model 1); the second model consisted of Model 1 and BMI, T2M, and WHR (Model 2); and the third model consisted of all of these variables and hypertension and CVD 10 years risk according to Framingham (Model 3). These models and comprehensive methods are shown in the Supporting Information. In addition, the Supporting Information provides (1) an analysis comparing NITs between participants with T2DM and elevated BMI, (2) methods to assess relations between SF-36 data and NITs, and (3) a matching approach correcting for age, sex at birth, BMI, and T2DM.

RESULTS

Participant characteristics of the HELIUS follow-up population

We included 10,007 participants in the analysis. Mean age was 52.4 years ($SD = 13$); 56.7% were female; and 72.2% had another background than Dutch. Of the ethnic minority groups, 81.3% were first-generation migrants. We excluded Javanese Surinamese descent or unknown ethnic background ($n = 388$) and individuals with insufficient data to calculate NITs ($n = 190$). [Table 1](#) gives characteristics of the HELIUS follow-up population.

Average BMI in the HELIUS population was 27.3 kg/m^2 . A total of 1255 participants had T2DM (12.5%), with highest percentage in South-Asian Surinamese (22.2%). Liver enzymes and triglycerides were on average comparable between the different ethnic groups.

Prevalence and severity of NAFLD as assessed by NITs in the HELIUS follow-up population

In the total population, median FLI was 34.0, whereas 27.3% ($n = 2727$) had a FLI ≥ 60 . In the Turkish

subgroup, we observed the highest percentage of FLI ≥ 60 : 36.3% ($n = 397$).

Based on FIB-4, 71.8% ($n = 7189$) of the participants had no advanced liver fibrosis (FIB-4 < 1.30), whereas 1.1% ($n = 113$) had advanced fibrosis (FIB-4 ≥ 2.67). In the Ghanaian subgroup, we observed the highest percentage of FIB-4 ≥ 2.67 : 2.5% ($n = 22$). In all ethnic groups, more than 90% of participants were categorized in the low APRI category (APRI < 0.42), except for the Ghanaian subgroup. Mean FIB-4 and APRI were highest in Ghanaian participants ($FIB-4 = 1.30$ [$SD = 0.55$]; APRI = 0.31 [$SD = 0.15$]) compared with the total population. See [Figure 2](#) and [Table 1](#) for more data.

Participant characteristics of the TE substudy

An invitation for the NILE study was sent to 655 HELIUS follow-up participants, of whom 409 (62.4%) individuals responded and went to the TE substudy visit. Of these 409 participants, 9 were excluded due to failed TE measurements and 1 due to excessive alcohol use (> 30 units/week), rendering 399 participants for analysis across all six ethnic groups (median age = 58.0 and 48.6% female). Of these, 53 participants were controls, encompassing all six different ethnicities. The median of liver enzymes (AST, alanine aminotransferase, and GGT) were highest in Ghanaian and lowest in Turkish participants). The opposite trend is seen for triglycerides, with the lowest median in Ghanaian (0.77 mmol/L ; IQR 0.54–1.10) and highest median in Turkish participants (1.21 mmol/L ; IQR 0.66–1.54). For an overview of characteristics of the TE substudy (see [Table 2](#)).

Participants with T2DM were older than nondiabetic participants (66.0 vs. 56.0 years; $p < 0.001$). FLI was significantly higher in participants with T2DM compared with nondiabetics (70.4 vs. 51.1; $p < 0.001$), whereas FIB-4 and APRI were not significantly different between these groups ($p = 0.473$ and $p = 0.157$, respectively). See [Table S2](#) for more differences between participants with and without T2DM.

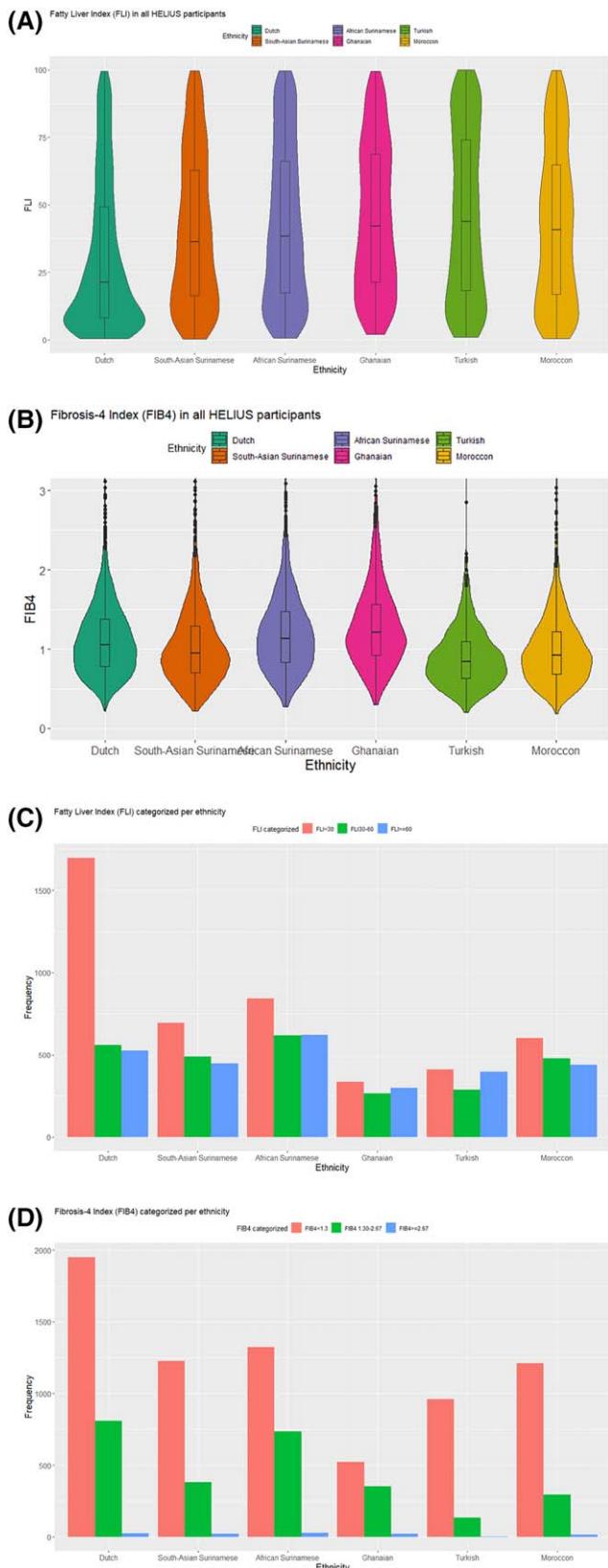

The median age of the metabolic risk group ($n = 346$) was higher compared with control (59.0 vs. 47.0 years; $p < 0.001$). The median FLI was 64 (IQR 35–84) in the metabolic risk group and 12 (IQR 6–20) in the control group ($p < 0.001$). A comparably large difference was seen for FIB-4 as fibrosis proxy with 1.40 (IQR 0.96–1.78) in the metabolic risk group and 0.77 (IQR 0.60–1.11) in the control group ($p < 0.001$). See [Table S2](#) for more differences between participants with and without T2DM, [Table 3](#) for more details about the metabolic risk group, and [Table S4](#) for all differences between metabolic risk and control groups.

TABLE 1 Characteristics of total HELIUS follow-up population

	Dutch	African Surinamese	Ghanaian	Moroccan	South-Asian Surinamese	Turkish	Total
N (%)	2784 (27.8)	2087 (20.9)	896 (9.0)	1518 (15.2)	1627 (16.3)	1095 (10.9)	10,007 (100.0)
Sex, female, n (%)	1458 (52.4)	1320 (63.2)	545 (60.8)	847 (55.8)	935 (57.5)	571 (52.1)	5676 (56.7)
Age, mean (SD)	53.70 (13.26)	55.85 (11.57)	52.32 (10.25)	47.89 (12.28)	52.96 (12.70)	47.53 (11.40)	52.35 (12.58)
Migration generation, NA, n (%)	2784 (100.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2784 (27.8)
First generation	0 (0.0)	1786 (85.6)	864 (96.4)	1118 (73.6)	1301 (80.0)	801 (73.2)	5870 (58.7)
Second generation	0 (0.0)	301 (14.4)	32 (3.6)	400 (26.4)	326 (20.0)	294 (26.8)	1353 (13.5)
BMI, mean (SD)	24.97 (4.06)	28.37 (5.29)	29.48 (4.70)	28.24 (4.78)	26.85 (4.66)	28.84 (5.16)	27.31 (4.99)
T2DM, n (%)	125 (4.5)	295 (14.1)	135 (15.1)	207 (13.6)	361 (22.2)	132 (12.1)	1255 (12.5)
WHR, mean (SD)	0.89 (0.09)	0.91 (0.08)	0.92 (0.08)	0.91 (0.09)	0.94 (0.09)	0.91 (0.09)	0.91 (0.09)
AST, median (IQR)	24 (21, 28)	24 (21, 29)	27 (23, 32)	23 (20, 27)	24 (20, 29)	23 (19, 27)	24 (20, 28)
ALT, median (IQR)	22 (17, 28)	20 (16, 27)	23 (18, 29)	21 (16, 28)	23 (18, 31)	23 (17, 32)	22 (17, 29)
GGT, median (IQR)	19 (14, 28)	25 (18, 35)	28 (21, 38)	20 (14, 29)	21 (15, 32)	21 (14, 32)	22 (15, 32)
Thrombocytes, mean (SD)	262 (60)	273 (68)	248 (67)	266 (64)	281 (66)	271 (63)	268 (64)
Triglycerides, median (IQR)	1.10 (0.73)	0.95 (0.56)	0.78 (0.41)	1.08 (0.59)	1.26 (0.82)	1.33 (0.90)	0.91 (0.64, 1.32)
FLI, mean (SD)	21 (8, 49)	38 (17, 66)	42 (21, 69)	41 (17, 65)	36 (16, 63)	44 (18, 74)	34 (14, 63)
FLI < 30, n (%)	1697 (61.0)	844 (40.4)	335 (37.4)	604 (39.8)	695 (42.7)	411 (37.5)	4586 (45.8)
FLI ≥ 60, n (%)	527 (18.9)	623 (29.9)	297 (33.1)	438 (28.9)	445 (27.4)	397 (36.3)	2727 (27.3)
FIB-4, mean (SD)	1.05 (0.78, 1.38)	1.13 (0.84, 1.47)	1.21 (0.92, 1.57)	0.92 (0.68, 1.22)	0.95 (0.70, 1.29)	0.85 (0.63, 1.09)	1.02 (0.75, 1.35)
FIB-4 1.30–2.66, n, (%)	809 (29.1)	735 (35.2)	351 (39.2)	294 (19.4)	382 (23.5)	134 (12.2)	2705 (27.0)
FIB-4 ≥ 2.67, n (%)	25 (0.9)	29 (1.4)	22 (2.5)	14 (0.9)	20 (1.2)	3 (0.3)	113 (1.1)
APRI, mean (SD)	0.23 (0.19, 0.29)	0.23 (0.18, 0.30)	0.28 (0.21, 0.37)	0.23 (0.18, 0.29)	0.22 (0.17, 0.29)	0.22 (0.17, 0.28)	0.23 (0.18, 0.30)
APRI ≥ 0.42, n (%)	132 (4.7)	148 (7.1)	139 (15.5)	82 (5.4)	97 (6.0)	50 (4.6)	648 (6.5)

Note: BMI shown in kg/m², AST, ALT, and GGT in U/L, thrombocytes in 10^9 /L, triglycerides in mmol/L, CAP in dB/m, and LSM in kPa.

Abbreviations: ALT, alanine aminotransferase; APRI, AST to platelet ratio; AST, aspartate aminotransferase; BMI, body mass index; FIB4, fibrosis-4 index; FLI, fatty liver index; GGT, gamma-glutamyltransferase; IQR, interquartile range; NA, not applicable; T2DM, type 2 diabetes mellitus; WHR, waist-to-hip ratio.

FIGURE 2 Violin plots and bar plots of FLI (A) FIB-4 (B), categorized FLI (C), and categorized FIB-4 (D), respectively, in HELIUS follow-up population stratified by ethnicity; every ethnicity was significantly different from the total group

NAFLD as assessed with NITs in the TE substudy population adjusted for confounders

Dichotomized CAP and LSM (cutoff 280 dB/m and 7.0 kPa, respectively) were corrected for age, gender, BMI, and WHR using logistic regression models. South-Asian Surinamese participants had the highest adjusted OR for elevated CAP (1.30, 95% confidence interval [CI] 0.73–2.32; Table 3, Model A). Turkish participants had the highest adjusted OR for elevated LSM (1.72, 95% CI 0.59–5.01, Model B), followed by South-Asian Surinamese participants (adjusted OR 1.04, 95% CI 0.53–2.01). Ghanaian participants showed the lowest adjusted OR (0.18, 95% CI 0.09–0.37 and 0.24, 95% CI 0.09–0.65) for elevated CAP and LSM, respectively.

Dichotomized LSM adjusted ORs were also calculated for all participants with elevated CAP ($n = 151$, Model C). In this population, the highest adjusted OR for elevated LSM was found in Turkish participants (adjusted OR 3.19, 95% CI 0.56–18.16) and the lowest in Moroccan participants (adjusted OR 0.38, 95% CI 0.27–3.30).

Severity of NAFLD as assessed by NITs in the metabolic risk group

In the metabolic risk group, 41.3% ($n = 143$) of the participants had steatosis according to an elevated CAP compared with 15.1% ($n = 8$) in the control group. In South-Asian Surinamese participants, the median CAP was highest at 288 dB/m (IQR 251–338), whereas in Ghanaian participants, both median FLI and CAP were lowest (50.0, IQR 27.2–69.2 and 245 dB/m, IQR 222–276, respectively). Median FLI was highest in Turkish participants (87.9, IQR 51.9–89.4).

According to high LSM, 17.3% ($n = 69$) of the participants in the metabolic risk group had indications for liver fibrosis. Among Turkish participants, this percentage was highest at 38.5% ($n = 5$) and among Ghanaian participants lowest at 6.7% ($n = 4$). A FIB-4 ≥ 2.67 was most common in South-Asian Surinamese participants with 11.8% ($n = 9$).

Figure 3 shows violin plots of CAP and LSM stratified per ethnicity, including the control group. Clinical characteristics of the metabolic risk group stratified per ethnicity can be found in Table S3.

Stratification for BMI and T2DM of NITs in the metabolic risk group

Compared with the normal weight group, the obesity group had higher median CAP values in all ethnicities. The obese Dutch, South-Asian Surinamese, and Turkish participants had median CAP levels above the cutoff for liver steatosis (312 dB/m, IQR 281–361;

TABLE 2 Characteristics of the participants in the NILE TE substudy (n = 399)

	Dutch	African Surinamese	Ghanaian	Moroccan	South-Asian Surinamese	Turkish	Total group
N (%)	102 (25.6)	90 (22.6)	63 (15.8)	34 (8.5)	89 (22.3)	21 (5.3)	399 (100)
Sex, female, n (%)	50 (49.0)	44 (48.9)	29 (46.0)	16 (47.1)	44 (49.4)	11 (52.4)	194 (48.6)
Age, median (IQR)	58.5 (49.2, 69.8)	59.0 (48.2, 69.8)	58.0 (51.0, 63.0)	53.0 (44.2, 67.2)	60.0 (48.0, 67.0)	46.0 (38.0, 56.0)	58.0 (48.0, 67.0)
BMI, median (IQR)	27.4 (23.8, 32.4)	30.6 (26.9, 34.0)	29.1 (26.6, 32.4)	28.7 (25.7, 32.5)	27.8 (24.3, 31.1)	26.7 (23.6, 34.4)	28.8 (25.0, 32.5)
T2DM, n, (%)	10 (9.8)	16 (17.8)	16 (25.4)	7 (20.6)	22 (24.7)	1 (4.8)	72 (18.0)
WHR, mean (SD)	1.0 (0.1)	1.0 (0.1)	1.0 (0.1)	1.0 (0.1)	1.0 (0.1)	0.9 (0.1)	1.0 (0.1)
AST, median (IQR) ^a	28 (23, 32)	27 (22, 35)	29 (24, 35)	25 (20, 28)	27 (22, 36)	22 (20, 25)	27 (22, 33)
ALT, median (IQR) ^a	27 (19, 36)	25 (18, 36)	27 (20, 35)	22 (17, 28)	26 (19, 38)	19 (15, 34)	25 (19, 35)
GGT, median (IQR) ^a	22 (16, 35)	29 (22, 50)	31 (23, 40)	23 (17, 33)	22 (16, 35)	19 (16, 31)	22 (16, 35)
Thrombocytes, median (IQR) ^a	232 (190, 276)	251 (202, 293)	239 (180, 277)	272 (222, 312)	246 (207, 303)	266 (229, 305)	232 (190, 276)
Triglycerides, median (IQR) ^a	1.06 (0.75, 1.49)	0.96 (0.62, 1.31)	0.77 (0.54, 1.10)	0.89 (0.80, 1.30)	1.07 (0.85, 1.56)	1.21 (0.66, 1.54)	1.06 (0.75, 1.49)
FLI, median (IQR) ^a	49 (21, 87)	68 (40, 82)	50 (25, 69)	54 (28, 83)	45 (23, 81)	27 (14, 89)	56 (24, 82)
FLI < 30, n, (%)	40 (39.2)	17 (19.1)	21 (33.3)	9 (26.5)	30 (33.7)	11 (52.4)	128 (32.2)
FLI ≥ 60, n, (%)	47 (46.1)	53 (59.6)	27 (42.9)	15 (44.1)	38 (42.7)	8 (38.1)	188 (47.2)
FIB-4, median (IQR) ^a	1.39 (0.93, 1.69)	1.35 (0.95, 1.70)	1.40 (1.03, 1.83)	0.94 (0.76, 1.24)	1.41 (0.87, 1.76)	0.70 (0.61, 1.03)	1.39 (0.93, 1.69)
FIB-4 1.30–2.66, n, (%)	49 (48.5)	43 (48.3)	29 (46.0)	7 (21.9)	38 (42.7)	2 (9.5)	168 (42.5)
FIB-4 ≥ 2.67, n, (%)	8 (7.8)	4 (4.4)	7 (10.8)	0 (0.0)	9 (10.1)	0 (0.0)	28 (7.0)
APRI, median (IQR) ^a	0.30 (0.21, 0.45)	0.30 (0.21, 0.43)	0.33 (0.23, 0.46)	0.22 (0.18, 0.31)	0.28 (0.20, 0.47)	0.23 (0.16, 0.29)	0.30 (0.21, 0.45)
APRI ≥ 0.42, n, (%)	30 (29.4)	24 (26.7)	23 (36.5)	2 (5.9)	30 (33.7)	1 (4.8)	110 (27.6)
CAP, median (IQR)	266 (219, 319)	258 (219, 298)	243 (218, 276)	258 (213, 302)	280 (245, 320)	244 (219, 281)	261 (222, 306)
CAP ≥ 280, n, (%)	44 (43.1)	30 (33.3)	14 (22.2)	13 (38.2)	44 (49.4)	6 (28.6)	151 (37.8)
LSM, median (IQR)	4.9 (4.0, 6.4)	5.0 (4.1, 6.0)	4.5 (3.9, 5.2)	5.3 (4.2, 6.5)	4.9 (4.0, 6.6)	5.0 (4.0, 6.9)	4.90 (4.00, 6.20)
LSM ≥ 7.0, n, (%)	21 (20.6)	16 (17.8)	4 (6.3)	6 (17.6)	17 (19.1)	5 (23.8)	69 (17.3)

Note: BMI is shown in kg/m², AST/ALT/GGT in U/L, thrombocytes in * 10e9/L, triglycerides in mmol/L, CAP in dB/m, and LSM in kPa.

Abbreviations: ALT, alanine aminotransferase; APRI, AST to platelet ratio; AST, aspartate aminotransferase; BMI, body mass index; CAP, controlled attenuation parameter; FIB4, fibrosis-4 index; FLI, fatty liver index; GGT, gamma-glutamyltransferase; LSM, liver stiffness measurement; T2DM, type 2 diabetes mellitus; TE, transient elastography; WHR, waist-to-hip ratio.

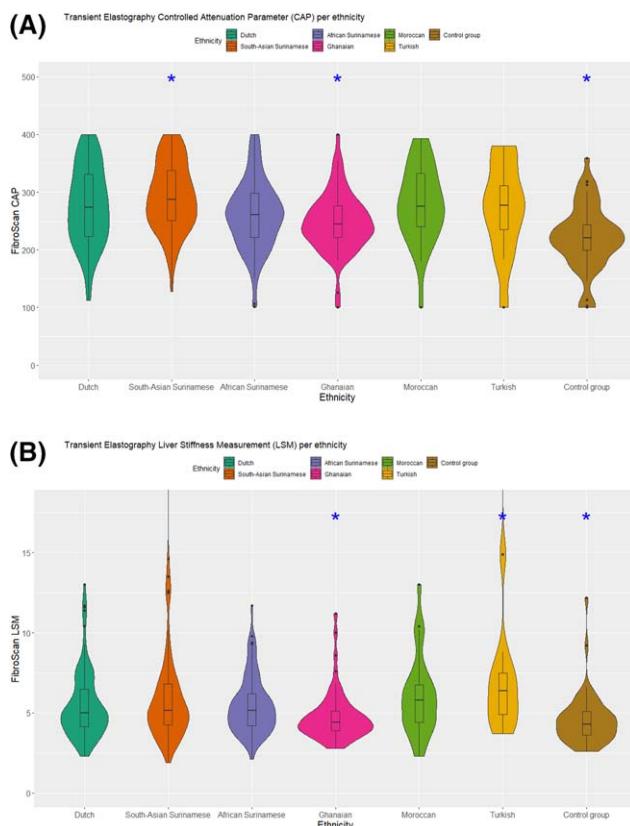

^aBlood values measured during the HELIUS follow-up visit.

TABLE 3 Logistic regression to assess prevalence and severity of NAFLD as assessed by NITs, with Dutch ethnicity as reference (all models are adjusted for age, gender, BMI, and T2DM)

	Adjusted odds ratio Model A	CI 95%	Adjusted odds ratio Model B	CI 95%	Adjusted odds ratio Model C	CI 95%
Intercept	0.00	0.00–0.00	0.00	0.00–0.00	0.00	0.00–0.00
South-Asian Surinamese	1.30	1.30–0.73	1.03	0.53–2.01	1.24	0.50–3.12
African Surinamese	0.29	0.16–0.53	0.62	0.32–1.20	1.94	0.75–5.01
Ghanaian	0.18	0.09–0.37	0.24	0.09–0.65	0.69	0.03–1.11
Moroccan	0.46	0.20–1.05	0.74	0.30–1.86	0.38	0.27–3.29
Turkish	0.35	0.12–1.05	1.72	0.59–5.01	3.19	0.56–18.16
Age	1.00	1.00–1.01	1.03	1.01–1.05	1.03	1.00–1.06
Sex	1.95	1.27–2.99	2.02	1.23–3.33	5.11	2.32–11.25
BMI	1.28	1.22–1.35	1.16	1.10–1.21	1.20	1.11–1.31
T2DM	3.44	2.03–5.85	1.38	0.77–2.45	1.79	0.83–3.85

Note: Model A: logistic regression for CAP (cutoff ≥ 280 dB/m) in the TE substudy ($n = 399$); Model B: logistic regression for LSM (cutoff ≥ 7 kPa) in the TE substudy ($n = 399$); Model C: logistic regression for LSM (cutoff ≥ 7 kPa) in participants with elevated CAP ($n = 151$).

Abbreviation: NIT, noninvasive liver test.

FIGURE 3 Violin plot of controlled attenuation parameter (CAP) (A) and liver stiffness measurement (LSM) (B) in the TE substudy participants stratified per ethnicity, including the control group. Significance was calculated per ethnicity in comparison with the metabolic risk group ($n = 346$). In addition, the median CAP and LSM in the control group were both significantly different from the metabolic risk group. *Indicates significant difference compared with metabolic risk group ($n = 346$)

296 dB/m, IQR 276–355; and 281 dB/m, IQR 258–337; respectively).

Median CAP and LSM scores were higher in participants with T2DM compared with nondiabetics (CAP = 300 dB/m, IQR 259–362 vs. 260 dB/m, IQR 227–302, respectively; and LSM = 5.6 kPa, IQR 4.5–7.0 vs. 4.9 kPa, IQR 4.1–6.2, respectively). Within the group of participants with T2DM, median CAP (367 dB/m, IQR 323–391) and LSM (7.40 kPa, IQR 5.95–7.80) were highest in the Dutch participants. The median LSM in the Dutch participants was already above the cutoff for liver fibrosis.

The Ghanaian participants without T2DM had the lowest median CAP and LSM (245 dB/m, IQR 224–270 and 4.35 kPa, IQR 3.85–5.10, respectively). See more details of stratification for T2DM in Figures S1 and S2.

Interrelations between NITs and biometric data

FIB-4 and LSM were not correlated, whereas APRI and LSM were significantly, but weakly correlated ($R = 0.15$, $p = 0.002$). CAP and LSM both correlated with BMI ($R = 0.45$, $p < 0.001$ and $R = 0.26$, $p < 0.001$, respectively), with waist circumference ($R = 0.52$, $p < 0.001$ and $R = 0.32$, $p < 0.001$, respectively), with WHR ($R = 0.31$, $p < 0.001$ and $R = 0.28$, $p < 0.001$, respectively), and, remarkably, with plasma triglycerides ($R = 0.41$, $p < 0.001$ and $R = 0.20$, $p < 0.001$, respectively).

DISCUSSION

This study investigated the prevalence and severity of NAFLD in a multi-ethnic population by studying NITs for

liver steatosis and fibrosis. Three notions stand out. First, liver steatosis in this multi-ethnic adult population was highly prevalent. This was highest in the metabolic risk group of the TE substudy: 41.3%, with 17.3% concomitant prevalence of liver fibrosis.

Second, we found noticeable differences in NITs across the different ethnic groups. Despite a higher-than-average prevalence of obesity and T2DM, Ghanaian participants had lowest steatosis scores, based on both FLI in the Ghanaian subgroup of the entire HELIUS cohort and CAP within the TE substudy population. After adjustment for age, sex, BMI and T2DM, we observed a trend of Ghanaian participants having the lowest ORs for both elevated CAP and LSM. In contrast, Turkish participants had the highest FLI scores in both the entire HELIUS population and in the metabolic risk group. Although the 95% CIs were large for all of the adjusted ORs, a trend was observed for Turkish participants having the highest adjusted OR for LSM, compared with the Dutch participants.

The third main finding was the absence of correlation between LSM and FIB-4 within the total TE substudy group and within the different ethnic subgroups. For example, while Turkish participants had the highest LSM, they had the lowest FIB-4 scores in both the total HELIUS and the TE substudy group. This may imply that FIB-4 has variable diagnostic value across different ethnicities.

High prevalence of NAFLD steatosis and fibrosis

In the HELIUS population, 27.3% of the participants had steatosis with FLI ≥ 60 , which was comparable to the Dutch population-based Lifelines Cohort Study with 167,729 participants, reporting a prevalence of 22.0%. However, in the Lifelines Cohort Study, no participants with migration background were included.^[15] Fortunately, most participants diagnosed with NAFLD have isolated steatosis. However, the detection of NAFLD remains important for early detection of NASH and/or fibrosis.^[3] According to a FIB-4 ≥ 2.67 , 1.1% of the HELIUS participants were likely to have advanced liver fibrosis. The National Health and Nutrition Examination Survey performed in the United States (1999–2016) had similar results with prevalence of FIB-4 ≥ 2.67 of 1.4%.^[3]

HELIUS participants with T2DM had higher median FLI compared with nondiabetics in all six ethnicities. This fits with the notion of insulin resistance of visceral and peripheral adipose tissue as a consequence of calorie overload. Indeed, several studies show that insulin resistance and compensatory hyperinsulinemia result in increased hepatopetal flux of free fatty acids and increased *de novo* lipogenesis, respectively.^[16]

This relation and our findings warrant awareness among diabetes health care professionals to keep in mind silent NAFLD progression toward advanced fibrotic stages.

Differences in NAFLD between ethnicities

Interestingly, despite highest BMI and high prevalence of T2DM, Ghanaian participants tended to have lowest liver steatosis and fibrosis. However, it should be noted that the 95% CI of these adjusted ORs are large. In line, prevalence of NAFLD, as assessed with ultrasound, was 24% in African Americans compared with a higher prevalence in European Americans and Hispanics of 33% and 45%, respectively, in an American population study.^[17] The mechanisms underlying these ethnic prevalence differences are incompletely understood due to lack of well-characterized multi-ethnic cohort studies. Ancestry can play a role in ethnic differences in the occurrence of steatosis. Romeo et al. previously found that the phospholipase domain-containing 3 (PNPLA3) gene was strongly associated with increased liver fat content. The PNPLA3 variant S453I—protective against liver fat accumulation—was more prevalent in African Americans (Minor allele frequency = 0.104) when compared with European Americans.^[18]

Interestingly, our study had two different groups with African background: African Surinamese and Ghanaians. In contrast to Ghanaians, African Surinamese participants in our study did not have less NAFLD steatosis and fibrosis. We have no explanation for this difference, yet it raises two hypotheses. First, these groups may differ in average dietary pattern, in particular Western diet, in turn affecting risk for obesity and NAFLD. Indeed, a dietary study in HELIUS showed that African Surinamese participants scored high in the consumption of sugar-sweetened beverages, enriched in fructose, a known inducer of hepatic steatosis.^[19] In contrast, a study among the Ghanaian population in European cities including Amsterdam showed a highly diverse diet that may protect from NAFLD.^[20] When following this notion that African background may offer relative protection against severe stages of NAFLD, another explanation for the disparity in NAFLD prevalence in African Surinamese versus Ghanaian participants might pertain to a potentially more mixed background in African-Surinamese participants. Dutch, South-Asian, and native American admixture is known to be present, and these backgrounds may offer relatively less protection against NAFLD. Further studies including genetics may shed light on these apparent differences and could point to new protective genetic factors for NAFLD and even leads for therapy.

No correlation between FIB-4 and LSM, yet positive findings for WHR

Another notable finding was the absence of correlation between LSM and FIB-4, both in the total TE substudy population and within the ethnic subgroups. In participants from African descent, the levels of LSM and FIB-4 showed almost an opposite trend. Although Ghanaian participants scored lowest on fibrosis according to LSM, they had highest FIB-4 and APRI values. In addition, African-Surinamese participants of the TE substudy scored second highest on median FIB-4 and APRI. We have no explanation for the discrepancy between fibrosis measured with LSM and with FIB-4 and APRI, yet in concordance a recent study also reported a poor correlation between LSM and FIB-4 in populations at risk for NAFLD. This study suggested waist circumference to be a better first screening tool to identify high liver stiffness and fibrosis in at-risk populations.^[21] This is in line with visceral adipose tissue as the root cause of NAFLD.^[22] Our TE substudy supports this notion, with significant correlations between waist circumference as well as WHR and both CAP and LSM. Interestingly, WHR also had the highest precision in predicting T2DM in the HELIUS population.^[23] Together, this warrants caution in relying on FIB-4 as a first-line test for NAFLD in clinical care paths, especially in ethnically diverse populations. Second, it may suggest that waist circumference and WHR can be potential tools to screen for liver steatosis and even fibrosis.

Strengths and limitations

Studies of NAFLD in population-based studies with different ethnicities from across the globe are scarce. Our large and diverse study makes a robust contribution to this clinically relevant topic. We assessed the general population for NAFLD using NITs. In addition, we studied an at-risk subpopulation using TE. In the control group of this substudy, we included all six ethnicities to provide a representative comparator to our metabolic risk group.

Limitations include absence of histological assessment of NAFLD, yet this is ethically and technically implausible in such large population studies. All used NITs have been derived in original studies against NAFLD liver histology, the current gold standard, and have acceptable diagnostic accuracy. However, they are not equally accurate as this gold standard, which necessitates some caution when interpreting our findings. Indeed, we do not provide histological validation of diagnostic accuracy of NITs in different ethnic backgrounds, which remains a clear knowledge gap in the field. Our manuscript does provide prevalence of elevated NITs in different ethnic populations, another clear knowledge gap in the field, under the reasonable assumption that NITs perform comparably well in

different ethnic populations.^[6,7,14] Another limitation was the relatively high mean age of the metabolic risk and diabetics groups compared with controls, in the TE substudy, which might have resulted in overestimation of severe cases of NAFLD. In the TE substudy, Moroccan and Turkish participants were relatively underrepresented, which could have caused insufficient power to show differences between these ethnic groups. For example, the 95% CIs were large in the logistic regression models in which we adjusted for confounders. Furthermore, we recommend future research into the differences in NAFLD prevalence and severity in multi-ethnic populations with histological validation.

CONCLUSIONS

The high prevalence of liver steatosis and fibrosis, especially in the presence of cardiometabolic risk factors, warrants clinical awareness for NAFLD among high-risk populations in general practice and endocrinology practices. The absence of clear correlation between FIB-4 and APRI with LSM questions the accuracy of these fibrosis NITs to detect advanced fibrosis in a multi-ethnic general population. Differences in NAFLD between ethnic backgrounds, especially the indications for less NAFLD in Ghanaian participants and potentially more NAFLD in Turkish participants, have consequences for clinical management of NAFLD. Guidelines and screening strategies for NAFLD should be mindful of potential differences in ethnic risk profiles.

AUTHOR CONTRIBUTIONS

Study design: AMD and AGH. *Protocol draft preparation:* AMD, AGH, and HG. *Manuscript draft:* AMD. *Statistical analyses and interpretation:* AMD and HG. *Design of the HELIUS study:* HG and BJB. All authors reviewed and critically revised the manuscript.

ACKNOWLEDGMENT

The authors thank Sjoerd Dingerink, Ömer Koc, Aros Salah, and Brigitte Scheffer for their research assistance during the transient elastography substudy. They also thank the participants of the HELIUS study and the management team, specifically Annemarie Teitsma.

FUNDING INFORMATION

The HELIUS study is conducted by the Amsterdam University Medical Centers (location AMC) and the Public Health Service of Amsterdam. Both organizations provided core support for HELIUS. The HELIUS study is also funded by the Dutch Heart Foundation (2010 T084), the Netherlands Organization for Health Research and Development (200500003), the European Union (FP-7; 278901), and the European Fund for the Integration of non-EU immigrants (2013EIF013). We

are most grateful to the participants of the HELIUS study and the management team, research nurses, interviewers, research assistants, and other staff who have taken part in gathering the data of this study. The study reported here was additionally supported by an additional grant from Novo Nordisk. MN is supported by a ZONMW VICI grant 2020 (09150182010020). AGH is supported by the Amsterdam UMC Fellowship, TKI-PPP Health~Holland grants, and grants from the Dutch Gastroenterology Foundation.

CONFLICT OF INTEREST

Nothing to report.

DATA AVAILABILITY STATEMENT

The HELIUS data are owned by the Amsterdam University Medical Centers, location AMC in Amsterdam, the Netherlands. Any researcher can request the data by submitting a proposal to the HELIUS Executive Board as outlined at <http://www.heliustudy.nl/en/researchers/collaboration> (email: heliuscoordinator@amsterdamumc.nl). The HELIUS Executive Board checks proposals for compatibility with the general objectives, ethical approvals, and informed consent forms of the HELIUS study. There are no other restrictions to obtaining the data, and all data requests will be processed in the same manner.

ETHICS APPROVAL STATEMENT

The HELIUS study has been approved by the institutional review board of the AMC at the University of Amsterdam.

ORCID

Anne-Marieke van Dijk <https://orcid.org/0000-0003-0831-527X>

Anne Linde Mak <https://orcid.org/0000-0002-2101-161X>

REFERENCES

- Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*. 2016;64:73–84.
- Ballestri S, Nascimbeni F, Romagnoli D, Lonardo A. The independent predictors of non-alcoholic steatohepatitis and its individual histological features: insulin resistance, serum uric acid, metabolic syndrome, alanine aminotransferase and serum total cholesterol are a clue to pathogenesis and candidate targets for treatment. *Hepatol Res*. 2016;46:1074–87.
- Golabi P, Paik JM, Herring M, Younossi E, Kabbara K, Younossi ZM. Prevalence of high and moderate risk nonalcoholic fatty liver disease among adults in the United States, 1999–2016. *Clin Gastroenterol Hepatol*. 2021 Dec 17. <https://doi.org/10.1016/j.cgh.2021.12.015>. [Epub ahead of print]
- Alexander M, Loomis AK, Fairburn-Beech J, van der Lei J, Duarte-Salles T, Prieto-Alhambra D, et al. Real-world data reveal a diagnostic gap in non-alcoholic fatty liver disease. *BMC Med*. 2018;16:130.
- Marchesini G, Day CP, Dufour JF, Canbay A, Nobili V, Ratziu V, et al. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. *J Hepatol*. 2016;64:1388–402.
- Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. *Hepatology*. 2006;43:1317–25.
- Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. *Hepatology*. 2003;38:518–26.
- Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. *BMC Gastroenterol*. 2006;6:33.
- Vanni E, Bugianesi E. Editorial: Utility and pitfalls of Fatty Liver Index in epidemiologic studies for the diagnosis of NAFLD. *Aliment Pharmacol Ther*. 2015;41:406–7.
- Mazi TA, Borkowski K, Newman JW, Fiehn O, Bowlus CL, Sarkar S, et al. Ethnicity-specific alterations of plasma and hepatic lipidomic profiles are related to high NAFLD rate and severity in Hispanic Americans, a pilot study. *Free Radic Biol Med*. 2021;172:490–502.
- Stronks K, Snijder MB, Peters RJ, Prins M, Schene AH, Zwinderen AH. Unravelling the impact of ethnicity on health in Europe: the HELIUS study. *BMC Public Health*. 2013;13:402.
- World Health Organisation (WHO). Waist circumference and waist-hip ratio. Report of a WHO Expert Consultation. Geneva, Switzerland: WHO; 2008.
- Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I: Conceptual framework and item selection. *Med Care*. 1992;30:473–83.
- Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. *Gastroenterology*. 2019;156:1717–30.
- Van Den Berg EH, Amini M, Schreuder TCMA, Dullaart RPF, Faber KN, Alizadeh BZ, et al. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: a large Dutch population cohort. *PLoS One*. 2017;12:e0171502.
- Donnelly KL, Smith CL, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. *J Clin Invest*. 2005;115:1343–51.
- Sherif ZA, Saeed A, Ghavimi S, Nouraei SM, Laiyemo AO, Brim H, et al. Global epidemiology of nonalcoholic fatty liver disease and perspectives on US minority populations. *Dig Dis Sci*. 2016; 61:1214–25.
- Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. *Nat Genet*. 2008; 40:1461–5.
- Yau A, Adams J, White M, Nicolaou M. Differences in diet quality and socioeconomic patterning of diet quality across ethnic groups: cross-sectional data from the HELIUS Dietary Patterns study. *Eur J Clin Nutr*. 2020;74:387–96.
- Galbete C, Nicolaou M, Meeks KA, de Graft Aikins A, Addo J, Amoah SK, et al. Food consumption, nutrient intake, and dietary patterns in Ghanaian migrants in Europe and their compatriots in Ghana. *Food Nutr Res*. 2017;61:1341809.
- Graupera I, Thiele M, Serra-Burriel M, Caballeria L, Roulot D, Wong GL, et al; Investigators of the LiverScreen Consortium. Low accuracy of FIB-4 and NAFLD fibrosis scores for screening for liver fibrosis in the population. *Clin Gastroenterol Hepatol*. 2021 Dec 29. <https://doi.org/10.1016/j.cgh.2021.12.034>. [Epub ahead of print]

22. Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. *JHEP Rep.* 2019; 1:312–28.
23. Zethof M, Mosterd CM, Collard D, Galenkamp H, Agyemang C, Nieuwdorp M, et al. Differences in body composition convey a similar risk of type 2 diabetes among different ethnic groups with disparate cardiometabolic risk—the HELIUS study. *Diabetes Care.* 2021;44:1692–8.

How to cite this article: van Dijk A-M, Vali Y, Mak AL, Galenkamp H, Nieuwdorp M, van den Born B-J, et al. Noninvasive tests for non-alcoholic fatty liver disease in a multi-ethnic population: The HELIUS study. *Hepatol Commun.* 2023;7:e2109. <https://doi.org/10.1002/hep4.2109>