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Abstract
This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM)

fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux

model. This model has tendency to capture the characteristics of thermal relaxation time.

The governing partial differential equations even after employing the boundary layer

approximations are non linear. Accurate analytic solutions for velocity and temperature dis-

tributions are computed through well-known homotopy analysis method (HAM). It is noticed

that velocity decreases and temperature rises when stronger magnetic field strength is

accounted. Penetration depth of temperature is a decreasing function of thermal relaxation

time. The analysis for classical Fourier heat conduction law can be obtained as a special

case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for

three-dimensional viscoelastic flow problem is just introduced here.

Introduction
The phenomenon of heat transfer has widespread industrial and biomedical applications such
as cooling of electronic devices, nuclear reactor cooling, power generation, heat conduction in
tissues and many others. The heat flux model proposed by Fourier [1] has been the most suc-
cessful model for understanding heat transfer mechanism in diverse situations. One of the limi-
tations of this model is that it often leads to a parabolic energy equation which indicates that
initial disturbance is instantly experienced by the medium under consideration. This physically
unrealistic feature is referred in the literature as “Paradox of heat conduction”. In order to over-
come this enigma, various researchers have proposed alterations in the Fourier’s heat conduc-
tion law. Cattaneo [2] modified this law through the inclusion of thermal relaxation time
which is defined as the time required establishing heat conduction once the temperature gradi-
ent is imposed. Christov [3] further modified the Cattaneo model by replacing the ordinary
derivative with the Oldroyd’s upper-convected derivative. He also presented the energy equa-
tion for arbitrary velocity and temperature fields. Straughan [4] applied Cattaneo-Christov
model to study thermal convection in horizontal layer of incompressible Newtonian fluid
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under the influence of gravity. Ciarletta and Straughan [5] proved the uniqueness and stability
of the solutions for the Cattaneo-Christov equations. Tibullo and Zampoli [6] investigated the
uniqueness of solutions for an incompressible flow problem by using Cattaneo-Christov
model. Han et al. [7] considered the two-dimensional flow and heat transfer of viscoelastic
fluid over a stretching sheet using the Cattaneo-Christov heat flux model. In this study the ana-
lytic solutions were achieved by homotopy analysis method (HAM). Mustafa [8] developed
both numerical and homotopy solutions for rotating flow of Maxwell fluid through Cattaneo-
Christov theory. Later, Khan et al. [9] presented numerical approximations for viscoelastic
flow over an exponentially stretching surface with the consideration of Cattaneo-Christov
model. In a recent paper Hayat et al. [10] discussed the impact of Cattaneo-Christov heat con-
duction on the flow problem involving oldroyd-B fluid.

The analysis of magnetohydrodynamic (MHD) in viscous or non-newtonian flow is impor-
tant in MHD generators, plasma studies, thermal therapy for cancer treatment, contrast
enhancement in magnetic resonance imaging (MRI), nuclear reactors, geothermal energy
extraction and many others. More precisely, MHD flow caused by the deformation of the walls
of vessel containing the fluid has special value in modern metallurgical and metal working pro-
cesses. Several recent attempts have been put forward in this direction in which Zheng et al. [11]
studied the velocity slip and temperature jump conditions for MHD flow and heat transfer due
to shrinking surface. Gul et al. [12] used Adomian Decomposition Method (ADM) to investi-
gate the thin film flow of third grade fluid under the influence of magnetic field. In another
paper, Gul et al. [13] analytically explored the heat transfer characteristic for unsteady MHD
thin film flow of second grade fluid using two different approaches. Unsteady MHD thin film
flow of Oldroyd-B fluid was discussed by Gul et al. [14]. Mixed convection flow of nanofluid
under the influence of magnetic force was numerically explored by Dhanai et al. [15]. Mabood
et al. [16] describe the influence of magnetic field on the nanofluid flow driven by a non-linearly
stretching surface. Second order slip effects on the boundary layer flow of nanofluid adjacent to
stretching/shrinking sheet were discussed by Abdul Hakeem et al. [17]. Rashidi et al. [18]
numerically explored the magnetic field effects on mixed convection flow of nanofluid in a verti-
cal channel having sinusoidal walls. Hayat et al. [19] analytically investigates the peristaltic
transport of in inclined channel under inclined magnetic field effects. In another paper Hayat
et al. [20] discussed the MHD peristaltic motion of nanofluid in complaint wall channel.

Present work is undertaken to study the heat transfer in MHD three-dimensional flow of
upper-convected Maxwell fluid by using Cattaneo-Christov heat flux model. Maxwell fluid is
one of the popular viscoelastic models that can address the influence of fluid relaxation time.
The boundary layer flows of Maxwell fluid have received remarkable attention in the past.
Some interesting flow problems involving Maxwell fluid can be found in refs. [21–30]. The
equations are formulated and then solved for convergence of series solution by homotopic
approach. Liao [31] proposed the homotopy analysis method (HAM) which is based on homo-
topy, a fundamental concept of topology and differential geometry. This method is considered
to be better than other approximate analytical methods due to various reasons. For instance,
perturbation techniques require the existence of perturbation quantity in the problem. How-
ever most of the non-linear problems in science and engineering do not contain such quanti-
ties. This serious restriction makes the perturbation methods valid only for weakly non-linear
problems. Unlike non-perturbation approaches namely homotopy perturbation method
(HPM), Adomian Decomposition method and δ-expansion method, HAM provides flexibility
to choose proper base functions in order to get better approximation of the solutions. Moreover
HAM provides a convenient way to control the convergence of series solutions in the form of
an auxiliary parameter ℏ [32]. Graphs are sketched to see the influence of important parame-
ters on the velocity and temperature fields.
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Problem formulation
Consider the flow of upper-convected Maxwell fluid induced by an elastic sheet stretching in
two lateral directions. The sheet is coincident with the plane z = 0, whereas the fluid occupies
the region z� 0. The electric field is absent while induced magnetic field is neglected due to the
consideration of small magnetic Reynolds number. The velocities of the stretching sheet along
the x− and y− directions are uw(x) = ax and vw(y) = by respectively. The sheet is kept at con-
stant temperature Tw, whereas T1 is the ambient value of the temperature such that Tw > T1.
Considering the velocity vector V = [u(x, y, z), v(x, y, z), w(x, y, z)] and the temperature T (see
Fig 1). The boundary layer equations for three-dimensional flow and heat transfer of Maxwell
fluid can be expressed as below:
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where u, v and w are the velocity components along the x−, y− and z− directions respectively, ν
is the kinematic viscosity, cp is the specific heat, σ is the electrical conductivity, ρ is the fluid
density, T is the fluid temperature, λ1 is the fluid relaxation time and q is the heat flux which

Fig 1. Geometry of the problem.

doi:10.1371/journal.pone.0153481.g001
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satisfies the following relationship [3].
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in which λ2 is the thermal relaxation time and k is the thermal conductivity of the fluid. Follow-
ing Christov [3], we eliminate q from Eqs (4) and (5) to obtain the following:
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Boundary conditions for the present problem are:

u ¼ uwðxÞ ¼ ax; v ¼ vwðyÞ ¼ by; w ¼ 0; T ¼ Tw at z ¼ 0;

u ! 0; v ! 0; T ! T1 as z ! 1:
ð7Þ

Considering the following similarity transformations

Z ¼
ffiffiffi
a
n

r
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an
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:

ð8Þ

Eq (1) is identically satisfied and Eqs (2), (3), (4) and (5) take the following forms:
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ð12Þ

where λ = b/a is the ratio of the stretching rate along the y− direction to the stretching rate
along the x− direction, β = λ1 a is the non-dimensional fluid relaxation time, γ = λ2 a is the
non-dimensional relaxation time for heat flux and Pr is the Prandtl number. It can be noticed
that when λ = 0, the two-dimensional case is jumped. Further λ = 1 corresponds to the case of
axisymmetric flow.

Analytic solutions by homotopy analysis method
In this section, we deal with series solutions by homotopy analysis method (HAM) [31] for
non-linear coupled eqs (9), (10) and (11) with boundary conditions Eq (12). In order to
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proceed, we choose initial approximations for functions f0, g0 and θ0 as follows:

f0ðZÞ ¼ 1� e�Z; g0ðZÞ ¼ lð1� e�ZÞ; y0ðZÞ ¼ e�Z: ð13Þ

The auxiliary linear operators Lf , Lg and Ly are selected as

Lf ðZÞ ¼ f 000 � f 0; LgðZÞ ¼ g 000 � g 0; LyðZÞ ¼ y00 � y: ð14Þ

Now consider the non-linear operatorsN f ,N g andN y as below:
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� @ĝðZ; pÞ
@Z

� �2

þ ðM2bþ 1Þðf̂ ðZ; pÞ þ ĝðZ; pÞÞ
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The auxiliary linear operators in Eq (14) satisfy the following:
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in which Ci(i = 1−8) are constants.
Following the basic idea of HAM [31], we express the zeroth-order deformation problems

for Eqs (9)–(11) are listed as

ð1� pÞLf f̂ ðZ; pÞ � f0ðZÞ
h i

¼ pħN f f̂ ðZ; pÞ; ĝðZ; pÞ
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ð1� pÞLg ĝ ðZ; pÞ � g0ðZÞ½ � ¼ pħN g f̂ ðZ; pÞ; ĝðZ; pÞ
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The boundary-conditions are
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where p 2 [0, 1] is an embedding parameter and ℏ is the non-zero convergence control param-
eter. When p = 0 and p = 1 we have:
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Now expanding f̂ ðZ; pÞ, ĝðZ; pÞ and ŷðZ; pÞ in Taylor’s series about p = 0.
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The auxiliary parameter ℏ can be chosen in such a way that the series Eqs (24)–(26) converges
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at p = 1. Substituting p = 1 in Eqs (24)–(26), we obtain

f ðZÞ ¼ f0ðZÞ þ
X1
m¼1

fmðZÞ; ð28Þ
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The problems at mth-order satisfy the following:
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Ry
mðZÞ ¼
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wm ¼ 0; ifm � 1

1; ifm > 1

(
:

Eqs (31)–(34) are linear and can be solved exactly by using computational software MATHE-
MATICA for different values ofm. When β = γ = 0.25, Pr = 1,M = λ = 0.5 and ℏ = −0.8, the
solutions containing first four terms are as under:

f ðZÞ ¼ 1

19353600000
e�7Zð603525� 5921786eZ þ 13057328914e7Z � 7e2Zð2091179þ 2045250

ZÞ þ 14e3Zð29205533þ 5324400ZÞ þ 35e4Zð�34260887þ 34637760Zþ 4920750Z2Þ
þ210e5Zð13036859� 19327940þ 7533000e2Þ þ 3e6Zð�4994953069þ 3521387310Z

�1243100250Z2 þ 191362500Z3ÞÞ:

gðZÞ ¼ e�28Zð�0:00145444e21Z þ 0:0289861e22Z þ e24Zð0:733927� 0:217469ZÞ þ e23Zð�0:211133

þ0:0152893ZÞ þ e25Zð�1:32775þ 0:929162Z� 0:0400452Z2Þ þ e26Zð1:51166� 1:43126Z

þ0:311133Z2Þ þ e27Zð�1:30892þ 0:8552Z� 0:200826Z2 þ 0:0148315Z3ÞÞ:

yðZÞ ¼ e�28Zð�0:0488963e21Z þ 0:595323e22Z þ e24Zð6:32871� 2:32886ZÞ þ e23Zð�2:76871þ
0:33542ZÞ þ e25Zð�7:85534þ 5:18209Z� 0:405422Z2Þ þ e26Zð5:70957� 4:48284Z

þþ 0:828883Z2Þe27Zð�2:68653þ 1:1697Z� 0:208538Z2 þ 0:0127943Z3ÞÞ:

Convergence of homotopy series solutions
Note that the series solutions given in Eqs (28)–(30) contain an auxiliary parameters ℏ which
has an important role in controlling the convergence of homotopic solutions. To select an
appropriate value of ℏ, we have plotted the so-called ℏ− curves for f00(0), g00(0) and θ0(0) in Fig
2. Here the valid range of ℏ lies where the ℏ− curves are parallel to ℏ− axis. From Fig 2, we
expect that series solutions for f, g and θ would converge in the range −1.5� ℏ� −0.4. Table 1
is plotted to see the convergence rate of the solutions. We observe that tenth-order approxima-
tions are sufficient for convergent solutions at ℏ = −0.8.

Results and Discussion
This section focuses on the physical interpretation of the behaviour of the embedded parame-
ters on the solutions. For this purpose, we display graphical results in Figs 3–12. Table 2
includes the numerical values of wall temperature gradient θ0(0) for different value of β, γ and
M. The entries of this table are obtained at suitable choice of ℏ. It is observed that θ0(0) has
direct relationship with the thermal relaxation time. However it is a decreasing function of the
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Fig 2. ℏ− curves for the functions f(η), g(η) and θ(η).

doi:10.1371/journal.pone.0153481.g002

Table 1. Convergence of HAM solutions for different orders of approximations when β = γ = 0.25,
Pr = 1,M = λ = 0.5 and ℏ = −0.8.

Order of approximations f0 0(0) g0 0(0) θ0(0)

5 -1.31282 -0.57423 -0.71696

10 -1.31296 -0.57435 -0.71497

15 -1.31296 -0.57435 -0.71492

20 -1.31296 -0.57435 -0.71491

25 -1.31296 -0.57435 -0.71491

30 -1.31296 -0.57435 -0.71491

35 -1.31296 -0.57435 -0.71491

40 -1.31296 -0.57435 -0.71491

doi:10.1371/journal.pone.0153481.t001

Fig 3. Effect of β on f0(η).

doi:10.1371/journal.pone.0153481.g003
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fluid relaxation time β. The presence of magnetic field also causes diminution in the magnitude
of heat transfer rate from the surface.

The behavior of non-dimensional relaxation time β on both the x− and y− components of
velocity can be observed from Figs 3 and 4 respectively. The velocity profiles are tilted towards
the wall when β is increased indicating that velocity and boundary layer thickness are decreas-
ing function of β.

Physically, bigger β indicates stronger viscous force which restricts the fluid motion and
consequently the velocity decreases. Figs 5 and 6 show the impact of stretching rates ratio λ on
the velocity fields f0 and g0 respectively. Bigger values of λ indicates larger rate of stretching
along the y− direction compared to x− direction. Therefore, with an increase in λ, the velocity
in the y− direction increases and velocity in the original x− direction decreases simultaneously.

In Figs 7 and 8, the velocity distributions are presented for different value of Hartman num-
berM. Velocities in both x− and y− directions decrease upon increasing theM. This decrease
in the velocity is due to resistance offered by the Lorentz force acting in the normal direction.

Fig 4. Effect of β on g0(η).

doi:10.1371/journal.pone.0153481.g004

Fig 5. Effect of λ on f0(η).

doi:10.1371/journal.pone.0153481.g005
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From Fig 9, we observe that the resistance associated with Lorentz force supports the penetra-
tion depth of temperature.

In Fig 10, the temperature profiles are presented for different Prandtl numbers. Here γ = 0
indicates the corresponding results for the classical Fourier law. Prandtl number has inverse
relationship with thermal diffusivity. Therefore an increase in Pr reduces conduction and
hence causes a reduction in the penetration depth of temperature. The results are qualitatively
similar in both Fourier and Cattaneo-Christov heat flux models.

The effects of non-dimensional relaxation time γ on temperature distribution can be ana-
lyzed from Fig 11. Temperature θ decreases and profiles smoothly descend to zero at shorter
distance from the sheet when γ is incremented. This indicates that there will be thinner thermal
boundary layer when relaxation time for heat flux is larger. Here the profiles become steeper in
the vicinity of the boundary as γ increases which is an indication of the growth in wall slope of
temperature θ.

Fig 7. Effect ofM on f0(η).

doi:10.1371/journal.pone.0153481.g007

Fig 6. Effect of λ on g0(η).

doi:10.1371/journal.pone.0153481.g006
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The impact of stretching rates ratio on the temperature distribution can be analyzed
through Fig 12. Although we do not include the results for entrainment velocity here but our
computations indicate that entrainment velocity f(1) + g(1) is an increasing function of λ.
Due to this reason, an increase in λ enhances the intensity of the cold fluid at the ambient
towards the hot stretching surface. Consequently the fluid temperature drops within the
boundary layer, when λ is increased.

Conclusions
Cattaneo-Christov heat flux model is employed to study the MHD three-dimensional visco-
elastic flow above a bi-directional stretching surface. The problems are first modeled and then
solved via HAM for different values of the parameters. The main results of this work are listed
below:

Fig 9. Effect ofM on θ(η).

doi:10.1371/journal.pone.0153481.g009

Fig 8. Effect ofM on g0(η).

doi:10.1371/journal.pone.0153481.g008
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• The velocity and boundary layer thickness are decreasing functions of the fluid relaxation
time λ1.

• The velocity gradients f00(0) and g00(0) are found to increase upon increasing the fluid relaxa-
tion time λ1.

• Hartman numberM supports the thickness of thermal boundary layer.

• Temperature and thermal boundary layer have inverse relationship with relaxation time for
heat flux λ2.

• The vertical component of velocity at far field boundary increases when stretching rates ratio
λ is increased.

Fig 11. Effect of γ on θ(η).

doi:10.1371/journal.pone.0153481.g011

Fig 10. Effect of Pr and γ on θ(η).

doi:10.1371/journal.pone.0153481.g010
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• The behavior of fluid relaxation time λ1 is qualitatively similar in both Fourier and Cattaneo-
Christov heat flux models.

• The present model reduces to the case of Newtonian fluid by choosing β = 0.
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