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Re‑analysis of single cell and spatial 
transcriptomics data reveals B cell landscape 
in gastric cancer microenvironment and its 
potential crosstalk with tumor cells for clinical 
prognosis
Xing Cai1,2†, Jinru Yang1,2,6†, Yusheng Guo3,4†, Yanchao Yu5, Chuansheng Zheng3,4* and Xiaofang Dai1,2* 

Abstract 

Background  At present, immunotherapy has become a powerful treatment for advanced gastric cancer (AGC), 
but not all patients can benefit from it. According to the latest research, the impact of B cell subpopulations 
on the immune microenvironment of gastric cancer (GC) is unknown. Exploring whether the interaction between B 
cells and tumor cells in GC affects the effectiveness of immunotherapy has attracted our interest.

Methods  This study involved the re-analysis of single-cell RNA (scRNA) and spatial transcriptomics (ST) data 
from publicly available datasets. The focus was on investigating the subpopulations and differentiation trajectories 
of B cells in the gastric cancer (GC) tumor immune microenvironment (TIME). Spatial transcriptomics (ST) and mul-
tiple immunofluorescence (mIF) revealed a clear co-localization pattern between B cells and tumor cells. Multiple 
immunotherapy datasets were collected to identify unique immunotherapy biomarkers. The unique immunothera-
peutic potential of targeting CCL28 was validated through a mouse gastric cancer model. In addition, flow cytometry 
revealed changes in the tumor immune microenvironment targeting CCL28.

Results  The re-analysis of ST data from multiple cancer types revealed a co-localization pattern between B cells 
and tumor cells. A significant number of IgA plasma cells were identified in the GC TIME. Five different tumor-infil-
trating B cell subpopulations and two unique B cell differentiation trajectories were characterized, along with seven 
GC-related states. By analyzing the communication between GC cells and B cells, it was further discovered that tumor 
cells can influence and recruit plasma cells through CCL28-CCR10 signaling. Additionally, there was a crosstalk 
between GC cells and B cells. Finally, we identified the LAMA/CD44 signaling axis as a potential prognostic marker 
for immunotherapy through a large amount of immunotherapy data. We also validated through various animal tumor 
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Introduction
At present, the incidence and mortality rate of gastric 
cancer (GC) are relatively high worldwide, which seri-
ously threatens the life expenditure and quality of human 
life. According to Global Cancer Statistics 2020 [1], the 
incidence rate ranks fifth and the mortality ranks fourth, 
which is at a high level in all tumors. The vast majority of 
GC patients are already in the advanced stage when dis-
covered. Currently, common treatment strategies such as 
surgery, radiotherapy, and chemotherapy have little effi-
cacy for advanced gastric cancer (AGC) patients. With 
the improvement of our understanding of the tumor 
microenvironment (TME), immunotherapy is gradu-
ally emerging, greatly improving the survival rate and 
time of patients with AGC. In 2021, the Food and Drug 
Administration (FDA) officially approved the combina-
tion of nivolumab and chemotherapy for first-line treat-
ment of advanced or metastatic GC, gastroesophageal 
junction, and esophageal adenocarcinoma patients. This 
is the first FDA approved first-line immunotherapy for 
gastric cancer and an important milestone in advanced 
GC immunotherapy. The immune escape of tumor cells 
is one of the important mechanisms of GC pathogenesis. 
Programmed death factor ligand 1 (PD-L1) expressed on 
tumor cells binds to PD-1 on activated T lymphocytes to 
provide inhibitory signals, induce T cell apoptosis, and 
thereby suppress immune response. Immune checkpoint 
inhibitors (ICIs) such as PD-1/PD-L1 inhibitors specifi-
cally block the interaction between the two, enhance the 
immune activity of T cells, inhibit tumor immune escape, 
and kill tumor cells. The high expression of PD-L1 in GC 
tissue provides a possibility for ICIs to be used for the 
treatment of advanced GC. However, not all patients can 
benefit from immunotherapy, which attracted our atten-
tion. Why do some patients benefit while others do not? 
Is it due to the different tumor immune microenviron-
ment (TIME)? If the principles and mechanisms can be 
found, it will greatly help to improve the treatment effi-
cacy of AGC patients.

TME refers to the internal environment in which 
tumors occur and live, including not only the tumor cells 
themselves, but also various cells closely related to tumor 
cells, such as fibroblasts, immune and inflammatory cells, 

glial cells, etc [2]. In the past decade or so, the mecha-
nism of immune cells in controlling the occurrence and 
development of cancer has gradually become clear. The 
role of T cells in tumor immune monitoring has been 
widely studied, but there is relatively little research on B 
cells. In recent years, some studies have found that B cells 
play a huge role in anti-tumor immunity, and their pres-
ence and function can be an important factor in cancer 
prognosis [3]. B cells are a type of cell with the ability to 
secrete antibodies, derived from multifunctional stem 
cells in the bone marrow. On the one hand, B cells stimu-
lated by antigens will proliferate and differentiate into a 
large number of plasma cells, secrete antibodies and cir-
culate in the blood, indirectly exercising their functions 
through antibody mediated cytotoxicity (ADCC). On the 
other hand, as an antigen presenting cell (APC), B cells 
can directly activate T cells and macrophages, which is 
particularly prominent in the TME. In tumor areas infil-
trated by plasma cells, even in small quantities, a large 
number of cytokines and antibodies can be produced, 
driving ADCC and phagocytosis, complement activation, 
and enhancing the antigen presentation of dendritic cells 
(DC), promoting tumor immunity [4].

In our study, single-cell RNA sequencing (scRNA-seq) 
and spatial transcriptomics (ST) sequencing techniques 
were used to investigate the immune landscape of tumor 
tissue in GC patients and found its correlation with B 
cells. However, the functional of B cells in tumors is still 
unclear, especially in the GC microenvironment. The 
communication between cancer cells and immune ele-
ments is a determining factor for tumor progression or 
regression. In addition, the influence of tumor infiltrat-
ing lymphocytes (TIL) on tumor growth and treatment 
response is becoming increasingly evident. Many stud-
ies have focused on the role of T cell response in anti-
tumor immunity, and little is known about the role of B 
cells in solid tumors. This study provides a detailed anal-
ysis of the infiltrating B cell status and tumor cell char-
acteristics of GC. The spatial co-localization of B cells 
and tumor cells further reveals the potential therapeutic 
value of the signal axis targeting B cells and tumor cells. 
We also found that targeting CCL28 may promote the 
therapeutic effect of PD1 monoclonal antibody, and the 

models that targeting CCL28 can significantly promote CD8+T cell infiltration and function in the TME by regulating B 
cell and plasma cell functions, and has the ability to synergize immunotherapy.

Conclusion  The co-localization and crosstalk between GC cells and B cells significantly affect the efficacy of immu-
notherapy, and inhibiting the CCL28-CCR10 signal axis is a potential immunotherapy target for GC. Meanwhile, LAMA/
CD44 pair may be a potential adverse indicator for immunotherapy and tumor prognosis.

Keywords  Gastric cancer, Spatial transcriptome, Single cell RNA sequencing, Immunotherapy, CCL28-CCR10, LAMA/
CD44
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LAMA-CD44 score may have unique clinical immuno-
therapy predictive value.

Materials and methods
Gene expression and clinical data acquisition
In total, gene expression profiles of GC tissues and nor-
mal adjacent tissues were obtained from the Cancer 
Genome Atlas, TCGA-STAD (n = 373) database, and 
9 public Gene Expression Omnibus (GEO) datasets 
GSE84437 (n = 357), GSE115821 (n = 37), GSE126044 
(n = 16), GSE135222 (n = 27), GSE179351 (n = 54), 
GSE19860 (n = 40), GSE35640 (n = 65), GSE78220 
(n = 28), and GSE79691 (n = 10), respectively. The 
metaGSE cohort was combined from all GEO datasets. 
The single cell and the spatial transcriptome profiles 
were obtained from OMIX001073 [5] and GSE203612, 
respectively. The gene expression profiles with immuno-
therapy information were obtained from 12 published 
datasets, including Nathanso cohort (n = 24) [6], Check-
Mate (n = 250) [7], and IMvigor210 (n = 298) [8]. All data 
analyzed during this study are freely available in previous 
publications or the public domain all bulk-seq datasets 
were converted to transcripts per million (TPM) format 
and corrected for batch effects using the “combat” func-
tion of the “sva” package. Prior to analysis, all data were 
log-transformed.

Single‑cell RNA sequencing (scRNA‑seq) data processing
Single-cell RNA sequence (scRNA-seq) data from 
OMIX001073 [5] cohorts were obtained in the study. We 
created Seurat objects for total and individual cell types 
belonging to the scRNA-seq gene expression matrix 
using the R package “Seurat”, then ScaleData and Run-
PCA functions were performed to obtain the number of 
principal components (PC) based on the Seurat objects. 
We used uniform manifold approximation and projec-
tion (UMAP) dimensionality reduction to further sum-
marize the top principal components. Finally, with the 
annotated information for each cell in GC supported by 
the previous article [9, 10], the Idents and Dimplot func-
tions were used to annotate and visualize the cells of 
the major TME cell types or subtypes. The FindMarkers 
function was used to list the markers of each cluster of 
each cell type in GC, with selection parameters including 
logFc.threshold = 1, min.pct = 0.25, only.pos = T. Based 
on these marker genes among different TME cell types, 
the “clusterprofiler” R package was used to detect Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way database, and gene sets with adjusted p-value < 0.05 
were considered significantly enriched. The Cellchat R 
package was used to calculate the interaction strength 
of cell–cell communication, and further calculate the 
L/R signal scores through Lmean + Rmean, representing 

the average expression value of ligand genes plus recep-
tor gene expression value. In addition, the PAGA, and 
Slingshot methods in SCP R package were applied to 
reconstruct the differentiation trajectories and infer cell 
differentiation states. Furthermore, the pySCENIC pack-
age, a Python-based implementation of the SCENIC 
pipeline was used to investigate the gene regulatory net-
work of transcription factors (TFs) in GC. Furthermore, 
the ‘SCP’ R package was used during the data visualiza-
tion process.

Spatial transcriptomics data analysis
To explore the spatial specific immune microenviron-
ment in tumor tissue, we employed 10 × Genomics spa-
tial transcriptome (ST) technology in GSE203612 [11] 
cohort, which the tissues were collected from 19 fresh 
primary untreated patient tumors immediately after 
surgery, with 9 cancer types, including carcinoma of the 
ovarian cancer (OVCA), uterine corpus endometrial 
carcinoma (UCEC), breast invasive carcinoma (BRCA), 
prostate adenocarcinoma (PRAD), kidney clear cell car-
cinoma (KIRC), liver hepatocellular carcinoma (LIHC), 
colon adenocarcinoma (COAD) and pancreatic ductal 
adenocarcinoma (PDAC), as well as gastrointestinal stro-
mal tumor (GIST).

Multiplex immunofluorescence staining and imaging
We collected section from paraffin-embedded tissues of 
human gastric cancer and peritumor from Cancer Center, 
Union Hospital, Tongji Medical College, Huazhong Uni-
versity of Science and Technology. Multiplex immuno-
fluorescence (mIF) analysis was performed for detection 
of EPCAM, CCL28, CCR10, and CD138. All the images 
were captured using a Leica DM 2500 microscope.

Establishment of animal models and flow cytometry
To verify our hypothesis in vivo, we constructed subcu-
taneous tumor models using two cell lines, the mouse 
gastric cancer MFC cell line and the mouse colon can-
cer MC38 cell line, on 615 mice (n = 24) and C57 mice 
(n = 24), respectively. The shCCL28 cell line was trans-
fected with lentivirus and inoculated (CCL28-1 F:CCG​
GGC​TGT​CAT​CCT​TCA​TGT​TAA​ACT​CGA​GTT​TAA​
CAT​GAA​GGA​TGA​CAG​CTT​TTTG; R:AAT​TCA​AAA​
AGC​TGT​CAT​CCT​TCA​TGT​TAA​ACT​CGA​GTT​TAA​
CAT​GAA​GGA​TGA​CAGC; CCL28-2 F:CCG​GCC​CGC​
ACA​ATC​GTA​CTT​TGA​ACT​CGA​GTT​CAA​AGT​ACG​
ATT​GTG​CGG​GTT​TTTG;R:AAT​TCA​AAA​ACC​CGC​
ACA​ATC​GTA​CTT​TGA​ACT​CGA​GTT​CAA​AGT​ACG​
ATT​GTG​CGGG; CCL28-3 F:CCG​GCT​GAG​GTG​TCT​
CAT​CAT​GTT​TCT​CGA​GAA​ACA​TGA​TGA​GAC​ACC​
TCA​GTT​TTTG;R:AAT​TCA​AAA​ACT​GAG​GTG​TCT​
CAT​CAT​GTT​TCT​CGA​GAA​ACA​TGA​TGA​GAC​ACC​
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TCAG). The experiment was divided into four groups: 
IgG group, shCCL28 group, anti PD-L1 group, and 
shCCL28 + anti PD-L1 (Comb) group, with 6 mice in 
each group. Each mouse was inoculated with 3 × 10^5 
tumor cells, then the size and weight of the tumor were 
measured. Further, flow cytometry was used to observe 
the TME, we detected the extracellular (CD45, CD3, 
CD4, CD8, CD19, CD20, CD11b, CD11c, F4/80, CD86, 
and NK1.1) and intracellular indicators (CD206, GZMB, 
and IFNγ), respectively.

Related in vitro experiments
Besides, the effects of CCL28 gene on MFC and MC38 
tumor cells were verified through relevant in vitro experi-
ments, including cell proliferation experiment, colony 
formation assay, cell cycle checkpoint detection, apop-
tosis flow cytometry, and cell invasion and migration 
experiment, the experiment was conducted according to 
previously published protocols [12].

Detection of CCL28
Collect CTRL and shCCL28 cell culture supernatant for 
CCL28 detection. According to the instructions for using 
the FineTest CCL28 ELISA kit (EM1932), take the kit 
at room temperature. Add 100  μL diluted standard and 
test sample, 100 μL Detection Reagent A, 100 μL Detec-
tion Reagent B, 90 μL Substrate Solution, and 50 μL Stop 
Solution to each hole in sequence, and finally measure 
the absorbance using an enzyme-linked immunosorbent 
assay (ELISA) reader.

Statistical analysis
R software (version 4.1.3) was used for statistical analy-
sis and draw charts. Correlations between two continu-
ous variables were assessed via spearman’s correlation 
coefficients. The Chi-square test and student’s-t test 
were used for categorical variables and continuous vari-
ables, respectively. The “survminer” package was used 
to determine the optimal cut-off value. Cox regression 
and Kaplan–Meier analyses were performed via the 
survival package. All tests performed were two sided, 
and P values < 0.05 indicated statistically significant (* 
meant p value < 0.05, ** meant p value < 0.01, *** meant 
p value < 0.001, **** meant p value < 0.0001, ns meant p 
value > 0.05).

Results
Spatial transcriptomic revealed B cell aggregation 
around tumor cells in various tumor microenvironments
Re-analysis of various tumor spatial transcriptome (ST) 
data, including breast invasive carcinoma (BRCA), gas-
trointestinal stromal tumor (GIST), liver hepatocellular 
carcinoma (LIHC), ovarian cancer (OVCA), pancreatic 

ductal adenocarcinoma (PDCA), and uterine corpus 
endometrial carcinoma (UCEC), we found that B cell 
aggregation typically existed in the tumor microenviron-
ment (TME), and the proximity of the B cell population 
to tumor cells indicated crosstalk between B cells and 
tumor cells. As shown in Fig.  1A and sFig.1A,B, the B 
cells identified in BRCA sections were very close to the 
tumor cells in spatial distribution, and the IgG and IgA 
antibody genes in cancer samples had similar abundance, 
which was similar to the literature reports [13]. While in 
GIST, the expression of IgA gene was dominant (Fig. 1B), 
in OVCA, the secretion of IgG antibodies was dominant 
(Fig.  1C), in PDCA, the abundance of B cells identified 
was low (Fig. 1D), in UCEC, the secretion of IgG antibod-
ies was dominant (Fig. 1E), and in LIHC, rich expression 
of IgG antibody genes was observed (sFig.1D) [14, 15].

ScRNA‑seq landscape of infiltrating B cell subsets in GC
To generate a thorough transcriptional atlas of B cells 
in GC, we first reanalyzed the public scRNA profiles of 
166,533 cells from 10 GC patients in a previous study 
[5] and identified 12 distinct clusters, including T cells 
& NK cells (98809), myloid cells (6572), B cells (16247), 
mast cells (2896), erythrocytes (69), B cells (plasma cells) 
(6201), epithelial cells (20535), endothelial cells (2911), 
endocrine cells (1843), fibroblasts (3111), and smooth 
muscle cells (1424) (Fig.  2A). After further subcluster 
analysis by extracting all B cells and plasma cells, we 
identified naïve_B cells in CD20+cells, germinal center 
B cells (GC_B cells), memory_B cells, and at the same 
time, a group of plasma_cells expressed CD138 were 
also identified (Fig. 2B). Being consistent with a previous 
report [16], naïve_B cells were characterized by the spe-
cific expression of PRPSAP2, MYO1E, ELL3, LRMP, and 
RGS13, GC_B cells were characterized by YBX3, IL4R, 
TCL1A, FCER2, and IGHD, memory_B cells were char-
acterized by LDLRAD4, NR4A2, TNFRSF13B, AIM2, 
CD27, whereas plasma_cells specifically expressed the 
markers of JCHAIN, FKBP11, DERL3, MZB1, SDC1, 
SUGCT (Fig.  2C). As shown in the bar chart (Fig.  2D), 
compared to peripheral blood, the TME infiltrates more 
plasma cells. However, it is interesting that GC_B cells 
are almost exclusively present in the TME, indicating 
the presence of a very small number of tertiary lymphoid 
structures (TLS) in the GC microenvironment, which is 
consistent with previous reports [17, 18].

Antibody class switching to IgA in the GC tumor 
microenvironment
The distribution of plasma cells and antibody isotypes 
in the GC TME was not yet clear, therefore, we fur-
ther analyzed the plasma cell infiltration status of GC 
patients. Principal component analysis (PCA) was used 
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Fig. 1  Spatial distribution of B cells in various tumor immune microenvironments and their relationship with regional tumor epithelium. A-E 
the spatial distribution of tumor epithelial cells, B cells, IgA, and IgG antibody genes in BRCA (A), GIST (B), OVCA (C), PDCA (D), UCEC (E)
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for dimensionality reduction based on antibody genes. 
We observed that cells with high expression of IGHG or 
IGHA constituted almost all principal components (PC), 
and there was overlap in cells with multiple IgA subtypes 
[19] (sFig.2D). The scatter plot also showed significant 
differences between the two cell types (Fig.  2E), which 
indicated that IgA PC was the main PC type for GC. 
Similarly, from the results of bulk RNA-seq, we found 
that the expression levels of IgA related genes (IGHA1, 
IGHA2) in tumor samples were higher than those of IgG 
related genes (IGHG1, IGHG3, and IGHG4) (sFig.2A). 
To further explore its functional characteristics, cells 
with high IGHG and low IGHA expression were defined 
as IgG PC, while cells with low IGHG and high IGHA 
expression were defined as IgA PC (Fig.  2F–G, sFig.2B, 
C). Among them, IgA PCs were mainly involved in the 
regulation of phagocytic pathways, such as phagocytosis, 
and engulfment, while IgG PCs were associated with B 
cell immune response and MHC class I antigen presen-
tation, such as regulation of B cell activation, indicated 
that IgG PCs might be more likely to participate in anti-
tumor immune regulation, and IgA PCs might be more 
involved in promoting tumor immunity [20]. To investi-
gate the effects of IgA and IgG PC on cancer progression 
and patient survival, we analyzed the correlation between 
plasma cell infiltration and patient prognosis in the 
TCGA-STAD cohort. The results showed that the higher 
the abundance of IgA infiltration, the shorter the patient’s 
survival time. However, IgG plasma cells did not show 
any correlation with prognosis (sFig.3B). Surprisingly, 
the bar graph shows that there are no more IgA plasma 
cells in the GC TME than in the surrounding and periph-
eral blood, indicating that IgA PC in the GC microenvi-
ronment mainly comes from the periphery. Therefore, 
tumor cells may recruit IgA PC through certain signal-
ing pathways (Fig.  2G). Therefore, we analyzed the cel-
lular relationship between B cells and tumor cells in 
the GC microenvironment, and the results showed that 
CCL28 is mainly expressed by tumor cells, while CCR10 
is mainly expressed in plasma cells as shown in Fig. 2H, 
which might be one of the mechanisms underlying the 
abundance of IgA PCs in the GC microenvironment. The 
multiple immunofluorescence (mIF) also validated the 
CCL28-CCR10 axis difference between immune therapy 

responder (R) and non-responder (NR) (Fig. 2I, sFig.2E). 
Therefore, targeting the CCL28-CCR10 axis may be one 
of the potential targets for enhancing immunothera-
peutic efficacy in GC. Through patient samples under-
went immunotherapy, it was found that CCL28 mainly 
originated from tumor epithelial cells, while CCR10 and 
CD138 were co-located. At the same time, patients with 
high expression of CCL28 had more CD138+cells and a 
shorter survival time, while patients with low expression 
of CCL28 had a longer survival time.

Gastric cancer infiltrating CD20+B cells exhibited two 
unique differentiation trajectories
In order to further analyze the subtype status of B cells 
infiltrating in gastric cancer, we identified five B cell 
clusters by extracting all CD20+B cells for further sub-
cluster analysis, including B_cells_C1_RGS13, B_cells_
C2_TCL1A, B_cells_C3_CD99, B_cells_C4_GPR183, 
and B_cells_C5_NR4A1 (Fig. 3A). For example, B_cells_
C1_RGS13 were mainly associated with aerobic respira-
tion, B_cells_C2_TCL1A were mainly associated with B 
cell activation, B_cells_C3_CD99 were mainly associated 
with cytoplasmic translation, B_cells_C4_GPR183 were 
mainly associated with regulation of lymphocyte prolif-
eration, and B_cells_C5_NR4A1 were mainly associated 
with intrinsic apoptotic signaling pathway (sFig.4A-E). 
Figure  3B showed the corresponding markers of each 
cluster. The bar chart showed that compared to periph-
eral blood, gastric cancer microenvironment infiltrates 
more C1, C4, and C5 (Fig.  3C). Furthermore, we deter-
mined the possible involvement of regulons in all five 
cluster B cells by single-cell regulatory network inference 
and clustering (SCENIC) analysis (Fig. 3D), to determine 
the changes in transcription factors (TFs) during B cell 
differentiation.(C1: CUX1 [21], H2AFY [22], MYBL1 
[23], ZNF236 [24], SMARCA4 [25]; C4: FOXO3 [26], 
ZFHX2 [27], RXRA [28], RXRB [29], GRHL2 [30], TGIF1 
[31]). At the same time, the unique state of C1-C5 B cells 
was also displayed in the functional enrichment analysis 
(Fig.  3I, sFig.4F). In pseudotime analysis, we found that 
C1 cells were located at the beginning of the cell trajec-
tory, while C4 and C5 were located at the end, respec-
tively (Fig.  3E-G). Figure  3H showed high abundance 
of TGFb expression in GC infiltrating B cells, while C4 

(See figure on next page.)
Fig. 2  B cell profiles of immune microenvironment in human gastric cancer. A Unified manifold approximation and projection (UMAP) of 166,533 
single cells from 10 patients, colored by main cell types. B Umap plot of B cells. C Bubble plot showing the expression of marker genes in major 
B cell subpopulations. D Histography of the different B cells components in each tissue. E Scatter plot showing the independent cell distribution 
based on the expression of IgG and IgA. F Bubble plot showing the expression of marker genes in major plasma cell subpopulations. G Histography 
of the different plasma cells components in each tissue. H Umap plot showing the gene expression of CCL28 (Up) and CCR10 (Down). I The mIF 
showed the expression levels of EPCAM, CCL28, CCR10, and CD138 in NR (PFS = 2.07 m, up) and R (PFS = 11.1 m, down)
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Fig. 2  (See legend on previous page.)
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cells in the terminal differentiation state expressed IL-10, 
and C5 cells secreted IL-35, further suggesting that GC 
infiltrating B cells gradually evolved into B cells in dif-
ferent immunosuppressive states. Previous studies have 
reported the detection of Breg cells in the peripheral 
blood of GC, which were immunosuppressive cells char-
acterized by IL-10, IL-35, TGFb, and PD1, thereby pro-
moting tumor progression [32, 33]. Interestingly, cells 
exhibited high expression of NR4A1, NR4A2, ZFP35, 
and EGF1 in lineage 2, which was not present in line-
age 1, indicated differences in the function of CD20+B 
cells with two different lineages. For example, lineage 2 
is associated with response to amphetamine, fat cell dif-
ferentiation, response to amine, interleukin production, 
T cell differentiation, etc. (Fig. 3I). These data indicated 
that GC infiltrating CD20+B cells had unique immuno-
suppressive functions and important subtypes that affect 
the effectiveness of immunotherapy.

Identification of seven tumor cell states
Due to the high heterogeneity of tumor cells, we con-
ducted non-negative matrix factorization (NMF) analy-
sis, and identified a total of 40 metagenes that were 
preferentially co-expressed by subpopulations of malig-
nant cells across tumors. Then, hierarchical clustering 
was used to characterize these 40 metagenes into gene 
expression signatures, and high concordance was shown 
among their signatures (Fig.  4A, B). Seven tumor cell 
states, including Cell Cycle (140), WH (1258), Metal 
(1560), OP (727), Interferon (159), Epi_dif2 (2711), and 
Epi_dif1 (2650) in GC were identified and used to assess 
the intrinsic functional characteristics of tumor cells 
(Fig. 4C–K). The tumor cells in different states were found 
to be involved in different regulatory functions (Fig. 4M). 
For example, Cell-Cycle cells were mainly associated with 
chromosome segregation, WH cells were mainly associ-
ated with regulation of leukocyte migration, Metal cells 
were mainly associated with cellular transition metal ion 
homeostasis, OP cells were mainly associated with oxida-
tive phosphorylation, Epi_dif1 cells were mainly associ-
ated with MHC protein complex assembly, Epi_dif2 cells 
were mainly associated with response to virus. Addition-
ally, it is worth noting that interferon-like tumor cells 

were found to be involved in adaptive immune response. 
Then, we evaluated the impact of different tumor cell 
states on patient survival (sFig.5A-H). In the non-immu-
notherapy TCGA-STAD cohort (n = 373), high expres-
sion of Epi-dif1 (P = 0.026), and cell cycle (P = 0.054) were 
associated with better OS, while low expression of Wh 
(P = 0.0049), interferon (P = 0.056), OP (P = 0.19), Epi-dif2 
(P = 0.015), and OS (P = 0.013) were associated with bet-
ter OS.

Crosstalk landscape between tumor cells and B cells
Next, we studied the communication between all cells. 
Generally, fibroblasts and smooth muscle cells (SMC) in 
stromal cells, and myeloid cells and T cells&NK cells in 
immune cells were usually the strongest signal senders 
and receivers, respectively (sFig.6A). B cells and plasma 
cells were more likely to receive signals from stromal 
cells and send them to T cells and myeloid cells [2, 3] 
(sFig.6B), which indicated B cells and plasma cells might 
be an important immune mediator regulating intercellu-
lar communication in the TME of GC.

When analyzing the pathway between tumor cells and 
B cells-based L/R pair, ADGRE5, APP, and macrophage 
migration inhibitory factor (MIF) signaling pathways 
were the most significant enrichment pathways (Fig. 5A, 
sFig.6C,D). We further found that the ADGRE5 signal-
ing pathway was mainly enriched in tumor cells, rather 
than in B cells. In the MIF signaling pathway, tumor 
cells were the main output cells, especially interferon 
like tumor cells, which were also the main signal cells in 
all pathways, while B cells were the main receiving cells 
(sFig.6C). In summary, these data indicated that the 
communication mode between tumor cells and B cells 
dynamically changed with the progression of GC.

The L/R pairs of MIF/(CD74, CD44, or CXCR4) 
and APP/CD74 were the most prominent interactions 
involved in signal transduction from tumor cells to B 
cells (Fig. 5A, B). Some studies have reported the tumor 
promoting effects of MIF and APP, and their potential 
association with B cells may explain other mechanisms 
of tumor progression [34–36]. Some L/R pairs mediated 
signal transduction from tumor cells to B cells, while oth-
ers mediated signal transduction from B cells to tumor 

Fig. 3  Human gastric cancer CD20+B cells exhibit two unique differentiation trajectories. A UMAP visualization of 14,536 CD20+B cells across 10 
cancer patients. B Bubble plot showing the expression of tag genes between B cells clusters. C Histography of the different B cells components 
in each tissue. D Regulons enriched in each B cell cluster detected via pySCENIC analysis. E–H Developmental trajectory of B cells in five different 
states inferred by PAGA (E) and Slingshot (F), colored by Lineage1 and Lineage2 (G). The UMAP plots showed the expression levels of IL10, IL12A, 
TGFB1, and EBI3 genes in CD20+B cells (H). The scale represents the predictive differentiation trajectory. The higher value represents the degree 
of differentiation. I Heatmap display of the expression of highly variable genes (left) and GO, KEGG pathway functional enrichment (right) 
along the pseudotime of the Lineage1 trajectory and the Lineage2 trajectory

(See figure on next page.)
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cells, such as MDK/SDC1 [37, 38]. In addition, further 
research was conducted on the expression levels of 81 
L/R pairs involved in significant communication between 
tumor cells and PC. In the TCGA-STAD cohort, 41 
molecules were differentially expressed between tumor 
and normal samples (FDR < 0.05), of which 35.1% were 
upregulated in tumor samples (Fig. 5C). In the GSE84437 
cohort [39], 25 molecules were differentially expressed 
between peritoneal metastatic and non-metastatic sam-
ples (FDR < 0.05), of which 24% were upregulated in peri-
toneal metastasis samples (Fig.  5D). In the IMvigor210 
cohort treated with anti PD-L1 [8], 15 molecules were 
differentially expressed in both treatment responsive and 
non-responsive patients, but only 1% of the molecules 
were upregulated in responsive patients (Fig. 5E). These 
data suggested that B-cell signal perturbations may sig-
nificantly affect the response of cancer patients to immu-
notherapy. Therefore, we speculated that global crosstalk 
between tumor cells and PC might promote cancer devel-
opment and be associated with adverse reactions to 
immune checkpoint blockade (ICB) treatment. In order 
to further select reliable L/R pairs between tumor cells 
and B cells, we evaluated their expression levels in tissue 
slices using ST data analysis. Based on the expression and 
biological localization analysis of L/R pairs, we identi-
fied four pairs of L/R pairs (LAMA3/CD44, MDK/SDC1 
(Fig. 5F), CCL28/CCR10, and GDF/TGFBR2 (sFig.7A,B)) 
with high reliability between tumor cells and B cells and 
these L/Rs were also observed in tumor epithelial cells 
and B cells (Fig. 5G, H).

LAMA‑CD44 crosstalk between GC cells and B cells 
is a potential predictive marker for immunotherapy 
and tumor prognosis
To analyze the clinical value of B cell and tumor cell 
crosstalk, we calculated a score based on 37 L/R pairs 
and then conducted a univariate COX regression analy-
sis based on average value of receptor gene expression 
(GeneRmean) and ligand gene expression (GeneLmean). 
As shown in Fig. 6E (left), in Nathanso cohorts (n = 24), 
the crosstalk of LAMA (LAMA3/5), LAMB (LAMB2/3), 
LAMC (LAMC1/2), and CD44 was associated with 
poor prognosis of GC, with most of them were sig-
nificant (P < 0.05). Both L/R pairs were associated with 
poor prognosis, indicated that the relationship between 

tumor epithelial cells and B cells in GC microenviron-
ment might be related to promoting tumor progression. 
Also, in two large immunotherapy cohorts (CheckMate 
(n = 250), and IMvigor210 (n = 298)), LAMA/CD44 
pairs were associated with poor prognosis. Therefore, 
we further calculated the AUC values of these L/R pairs 
for predicting immunotherapy effects in nine immu-
notherapy cohorts, including GSE115821, GSE126044, 
GSE135222, GSE179351, GSE19860, GSE35640, 
GSE78220, GSE79691, and Nathanso cohort (Fig.  6A 
(right)). LAMA/CD44 pairs had a higher AUC value 
(average 0.7), indicated that the LAMA/CD44 axis might 
be a potential immunotherapy prediction marker for 
GC immunotherapy. LAMA/CD44 in the TCGA-STAD 
cohort was also associated with poor disease-free sur-
vival (DFS) (P = 0.026), and in multiple immunotherapy 
cohorts, LAMA/CD44 pair was also associated with poor 
OS.

To explore the immune status reflected by the LAMA/
CD44 score, we analyzed the relationship between the 
LAMA/CD44 score and immune modulators. As results 
shown in Fig.  6G, high LAMA/CD44 score suggested 
higher levels of immune infiltrating cells and immune 
modulators, indicated that high LAMA/CD44 was a rela-
tively immunosuppressive microenvironment. The com-
bination of LAMA/CD44 blockers and immunotherapy 
might be a new treatment method for GC. Subsequently, 
in GSE7961 (P = 0.067), GSE19860 (P = 0.013), Check-
Mate cohorts (P = 0.072), Nathanso cohorts (P = 0.038), 
and IMvigor210 cohorts (P = 0.016), compared to 
immunotherapy non-responders (NR), immunotherapy 
responders (R) had lower LAMA/CD44 scores (Fig. 6H-
M). These data indicated that LAMA/CD44 had the 
potential to become a unique prognostic factor for clini-
cal immunotherapy.

Targeting CCL28 significantly inhibited tumor growth, 
activated TIME, and enhanced anti‑PDL1 effect
The specific expression of CCL28 in tumor epithelial cells 
may be a unique potential target, in order to verify that 
targeting CCL28 can synergistically enhance the efficacy 
of immunotherapy, we conducted in  vivo and in  vitro 
experiments. In the experiment, we used two cell lines, 
the mouse gastric cancer MFC cell line and the mouse 
colon cancer MC38 cell line. The shCCL28 cell line was 

(See figure on next page.)
Fig. 4  Seven unique subtypes were identified in human gastric cancer epithelial cells. A Heatmap depicts pairwise correlations of 40 intra-tumoral 
programs derived from ten tumors. Clustering identifies seven coherent expression programs across tumors. B UMAP visualization of the 7 tumor 
cell states. C-J 7 epithelial (tumor) cell state scores calculated by the AUCell R package. K The CNV scores (left) and tumor score (right) were different 
among cells of the six tumor cell states. M Heatmap display of differential genes (left) and GO, KEGG pathway functional enrichment (right) in 7 
tumor transcriptional states
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transfected with lentivirus on both MFC and MC38 cells. 
In  vitro experiments, we conducted cell proliferation 
experiment, colony formation assay, cell cycle checkpoint 
detection, apoptosis flow cytometry, and cell invasion 
and migration experiment (sFig.7). However, there were 
no statistical differences in all results, which confirmed 
that inhibiting CCL28 alone did not work in  vitro, and 
it was speculated that it may work within TME. There-
fore, we conducted relevant in  vivo experiments. We 
constructed subcutaneous tumor models using MFC and 
MC38 tumor cells on 615 mice (n = 24) and C57BL/6  J 
mice (n = 24), respectively. The experiment was divided 
into four groups: IgG group, shCCL28 group, anti PD-L1 
group, and shCCL28 + anti PD-L1 (Comb) group, with 
6 mice in each group. Each mouse was inoculated with 
1 × 106 tumor cells and the size of the tumor was meas-
ured. Finally, we took the photographs of the tumor, a 
statistical map of the tumor weight, and a growth curve 
(Fig.  7A–G, J–M). We performed flow cytometry on 
tumor tissue to detect the infiltration and function of B, 
CD3+T, CD8+T, CD4+T, IFN+CD8+T, GZMB+CD8+T, 
MDSC and DC (Fig. 7H, I, sFig.8, sFig.9C, D). The above 
results showed that knocking down CCL28 can signifi-
cantly promote immune cell infiltration and enhance the 
therapeutic effect of anti PD-L1. To sum up, through cell 
experiments, we have demonstrated that CCL28 alone 
does not work in vitro, suggesting that it may play a role 
in TME. Then, tumor cells were implanted into mice, by 
analyzing the tumor volume, weight and overall survival 
rate, we found that knock down CCL28 can significantly 
inhibit tumor growth, this effect is amplified when com-
bined with anti PD-L1. Further, FASC indicated that tar-
geting CCL28 can significantly promote the infiltration 
and function of CD8+T cell by regulating B cell function, 
and has the ability to synergize immunotherapy.

Discussion
In recent years, with the rise of immunotherapy, the sur-
vival of tumor patients has been greatly improved. Gastric 
cancer is a malignant tumor with high incidence rate and 
mortality rate worldwide. Due to the slow progression 
of the disease, GC rarely presents early symptoms, with 
over 70% of patients developing advanced diseases, while 

the five-year survival rate of patients with AGC is only 
6%. At present, in the first-line treatment of advanced 
gastric cancer, immunotherapy has become a consensus 
[40–42]. However, not all AGC patients can benefit from 
immunotherapy. It is necessary to explore the potential 
mechanisms and powerful biomarkers to predict the effi-
cacy and prognosis of tumor immunotherapy.

Tumor infiltrating T cells and B cells are necessary 
and synergistic components in TME. However, cur-
rent research mainly focuses on T cells, and their role in 
tumor immune monitoring has been widely studied. The 
mechanism of controlling the occurrence and develop-
ment of tumors is gradually becoming clear, but there 
is relatively little research on B cells, which makes their 
roles in different types of cancer controversial. In this 
study, we systematically and comprehensively plotted the 
transcriptional characteristics of gastric cancer infiltrat-
ing B cells by deciphering their single-cell transcriptom-
ics and spatial transcriptomics.

By using ST data, we explored the spatial-specific 
immune microenvironment in tumor tissues, all data 
were obtained from public cohorts in the GEO database. 
By analyzing scRNA and ST profiles, we found that B 
cells and tumor cells have certain co-localization in vari-
ous cancer species, such as breast invasive carcinoma 
(BRCA), gastrointestinal stromal tumor (GIST), ovar-
ian cancer (OVCA), pancreatic ductal adenocarcinoma 
(PDCA), and uterine corpus endometrial carcinoma 
(UCEC), which has the significance of further studying 
the interaction between B cells and tumor cells. There-
fore, based on scRNA and ST sequence analysis, this 
study explores relevant scientific issues and elucidates the 
research potential of targeting B cells and clinical trans-
formation, laying a solid theoretical foundation for clini-
cal research.

Our findings align with previous studies indicating 
that B cells play significant roles in the TIME [43]. How-
ever, the infiltration and function of B cells vary in dif-
ferent types of cancer. The presence and behavior of B 
cells in the tumor microenvironment can affect tumor 
progression and patient prognosis. In some cancers, such 
as breast cancer and lung cancer, B cells inhibit tumor 
growth by secreting antibodies, neutralizing tumor 

Fig. 5  Crosstalk in cellular communication between gastric cancer cells and B cells. A-B Crosstalk pattern diagram showing signaling from tumor 
cells to B and plasma cells and from B and plasma cells to tumor cells. The internal heatmap shows the communication probability of the selected 
L/R pair crosstalk between tumor cells of 7 different states and 4 types of B cells and 4 types of plasma cells. The differentially expressed L/R 
pairs between tumor and normal samples from the TCGA-STAD cohort are marked in red, those between samples from R versus NR patients 
from IMvigor210 are marked in green, and those in both cohorts are marked in dark green. C-E Bubble plots showing the change in the expression 
of L/R pairs between tumor and normal samples from the TCGA-STAD cohort (C), GSE84437 (D) and IMvigor210 cohort (E). Pie chart (right) showing 
the ratio of upregulated to downregulated molecules in the two groups. F The expression of selected genes in tissue sections. G, H The selected 
genes expression of 11 main cell types and 7 tumor cell states

(See figure on next page.)
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antigens, promoting anti-tumor immune response, and 
activating T cells, helping to improve the prognosis of 
patients [44, 45]. In other cancers, such as gastric cancer 
and colorectal cancer, specific subgroups of B cells such 
as regulatory B cells (Breg) and IgA secreting cells may 

inhibit T cell activity, promote tumor growth and metas-
tasis, and lead to poor prognosis by secreting immuno-
suppressive cytokines (such as IL-10) [46, 47]. Therefore, 
understanding the mechanism of action of B cells in spe-
cific tumor types is of great significance for developing 

Fig. 6  LAMA-CD44 crosstalk between GC cells and B cells is a potential predictive marker for immunotherapy and tumor prognosis. A Forest plot 
(left) showing the hazard ratio (HR) of 37 L/R pairs based on stepwise Cox regression analysis. Heat map (right) displays a score based on 37 L/R 
pairs to predict the corresponding AUC values of immunotherapy across 8 immunotherapy cohorts. B Kaplan–Meier curves of DFS according 
to the LAMA-CD44 pair score in TCGA-STAD cohort. C-F Kaplan–Meier curves of OS according to the LAMA-CD44 pair score in mateGSE cohorts 
(C), checkmate cohorts (D), Nathanso cohorts (E), and IMvigor210 cohorts (F). G Heatmap showing the correlation between LAMA-CD44 pair 
score and immune checkpoint molecules. (H-M) The distribution of LAMA-CD44 pair score between R and NR of immunotherapy in GSE7961 (H), 
GSE19860 (I), CheckMate cohorts (J), Nathanso cohorts (K) and IMvigor210 cohorts (M)
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tumor therapies targeting B cells. By regulating the func-
tion or specific subgroups of B cells, new strategies and 
potential for cancer immunotherapy can be provided. 
Consistent with these studies, our data indicate abun-
dant IgA plasma cell infiltration in the GC TIME. Addi-
tionally, we confirmed the recruitment of CCR10+IgA 
plasma cells by tumor-secreted CCL28, a mechanism 
previously suggested but not extensively validated in 

GC. In gastric cancer, we found that tumor cells can 
secrete chemokine CCL28, which can attract IgA posi-
tive plasma cells expressing CCR10. The enrichment of 
these CCR10+IgA+plasma cells in the tumor microenvi-
ronment is closely related to poor prognosis of patients. 
IgA positive plasma cells may inhibit anti-tumor immune 
responses by secreting immunosuppressive cytokines, 
thereby promoting tumor progression and metastasis.

Fig. 7  Inhibiting CCL28 can promote the inhibition of tumor progression and the effectiveness of immunotherapy. A-I 615 mice were implanted 
with 1 × 106 MFC cells and received (1) IgG isotype control (IgG); (2) shCCL28, (3) PD-L1 mAb, or (4) shCCL28 plus PD-L1 mAb (Comb). A schematic 
view of the treatment plan (A), tumor image (B), tumor volume (D, E), weight (F), and overall survival (G) were measured every 2 days, n = 6 mice 
per group. C Representative diagram of flow cytometry. H, I The percentages of tumor-infiltrating B, CD3+T, CD8+T, CD4+T, IFN+CD8+T, GZMB+CD8+T, 
MDSC and DC were analyzed by flow cytometry. n = 5–6/group. J-M The tumor volume (J, K), weight (L), and overall survival (M) of MC38 cell line 
in vivo
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Despite these advancements, several questions remain 
unresolved. The study’s limitations include a relatively 
small sample size and the need for multi-center data to 
validate the prediction model. Furthermore, no pro-
spective randomized clinical trials (RCTs) have been 
conducted to confirm these findings. The mechanisms 
underlying the interaction between GC cells and B cells 
require deeper exploration. Future research should focus 
on large-scale studies to validate these results, conduct 
RCTs to confirm the therapeutic potential of targeting 
CCL28, and investigate the detailed molecular mecha-
nisms of B cell and tumor cell interactions.

The role of B cells in the tumor microenvironment is 
complex and multifaceted. Understanding the mecha-
nism of action of B cells in specific tumor types is of great 
significance for developing tumor therapies targeting 
B cells. B cell targeted therapy has shown great poten-
tial in cancer treatment. By blocking specific signaling 
pathways, such as CCL28/CCR10, anti-tumor immune 
responses can be significantly activated, enhancing the 
efficacy of PD-L1 monoclonal antibodies. In addition, 
combining with other targeted therapies such as blocking 
the LAMA/CD44 signaling pathway may further improve 
the prognosis of gastric cancer and other cancer patients. 
Future research should focus on large-scale studies and 
clinical trials to validate the efficacy and safety of these 
strategies, in order to provide more effective treatment 
options for cancer patients.

Conclusion
To sum up, in our study, we identified a significant 
amount of crosstalk between GC cells and B cells 
through scRNA-seq and ST-seq analyses, revealing two 
differentiation trajectories of GC B cells, which tended 
to be inhibitory B cell states with IL-10 and IL-35 termi-
nal states. And by analyzing the L/R pairs, we creatively 
found that the expression of LAMA/CD44 signal axis is 
a predictive marker for immunotherapy and tumor prog-
nosis. Animal experiments also confirmed that targeting 
CCL28 can significantly promote immune cell infiltration 
and enhance the therapeutic effect of anti PD-L1. The 
combination of LAMA/CD44 or CCL28/CCR10 blockers 
and PD-1/PD-L1 may be a new treatment for GC.
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Additional file 1: Supplementary Figure 1. Spatial transcriptomics 
explained the distribution characteristics of marker genes in various 
types of cancer epithelium and B cells.Epcam, MS4A1, SDC1 gene 
expression in multiple cancers, including BRCA, GIST, LIHC, OVCA, PDCA, 
and UCEC.

Additional file 2: Supplementary Figure 2. Single cell landscape of 
human gastric cancer plasma cells.  Box plots showing the expression 
levels of IgA and IgG related genes.Uniform manifold approximation and 
projectionof 5518 cells from 10 patients, colored by major cell types. Violin 
plot showing the expression of antibody-relatedgenes in subclusters of 
plasma cells.UMAP visualization of antibody-related genes expression 
showing IgG and IgA cells are the dominated PCs based on dimension 
reduction of PCA with selected gene.the immunofluorescence quantita-
tive bar chart of CD138 cell, CCR10+/CD138+ cell and CCL28+/EPCAM+ 
cell.

Additional file 3: Supplementary Figure 3. The correlation between 
plasma cells and clinical practice.The histogram shows the significantly 
enriched pathways of plasma cell clusters, including IgA Pc, IgG Pc, IgA 
high_IgG high Pc, and IgA low_IgG low Pc. The survival curves show the 
relationship between plasma cell infiltration levels and prognosis in four 
Pc groups.

Additional file 4: Supplementary Figure 4. Functional enrichment 
and trajectory analysis of gastric cancer B cells.The histogram shows 
the significantly enriched pathways of B cell clusters. Gaussian process 
regression curves with a 95% confidence interval showing the dynamic 
expression of TCL1A, NR4A1, CD99 and GPR183 along the pseudotime of 
the Lineage1 trajectoryand the Lineage2 trajectory.

Additional file 5: Supplementary Figure 5. Correlation between epi‑
thelial transcription status and clinical prognosis in gastric cancer. 
KM plots of seven tumor epithelial cell states, including Epi-dif1, Wh, cell 
cycle, interferon, OP, Epi-dif2, unknown, and Metal.

Additional file 6: Supplementary Figure 6. Disturbance of 
communication between various cells in the gastric cancer 
microenvironment.Crosstalk networks show B cells tend to send signals 
to T&NK cells and myeloid cells but receive signals from stromal cells. Dot 
plot shows the incoming and outgoing signal strength in different cell 
types. Dot plots show the incoming and outgoing interaction strength 
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of tumor cell states in all signaling pathways, MK/MIF signaling, ADGRE5/
CD55 signaling and APP/CD74 signaling.Heat map shows the signaling 
pathways enriched by each tumor cell states in both incoming and outgo-
ing signaling patterns.

Additional file 7: Supplementary Figure 7. Related cell phenotype 
experiments on MFC and MC38 tumor cells.The line chart showed no 
statistical difference in OD valuesbetween shCCL28 and shNC on both 
MFC and MC38 cells.  ELISA showed a decrease in protein levels of CCL28 
in MFC-shCCL28 and MC38-shCCL28 cell lines, respectively.  The colony 
formation graphand corresponding bar graphshowed that there was no 
statistical difference in clone formation between shCCL28 and shNC on 
both MFC and MC38 cells.Cell cycle checkpoint detection showed no 
difference in the percentage of G2 between MFC and MC38 cells.  Flow 
cytometry showed no statistically significant difference in the apoptotic 
effects of shCCL28 and shNC on MFC and MC38 cells.  Cell invasion 
and migration experiments showed no statistical differences between 
shCCL28 and shNC on MFC and MC38 cells.

Additional file 8: Supplementary Figure 8. Gating strategies for flow 
cytometry in specific immunity and innate immunity, respectively. 

Additional file 9: Supplementary Figure 9. Inhibiting CCL28 can 
promote the inhibition of tumor progression and the effectiveness 
of immunotherapy. C57BL/6J mice were implanted with 1×106 MC38 
cells and received treatment as 615 mice.A schematic view of the treat-
ment plan.Tumor image, tumors were measured every 2 days, n=6 mice 
per group.Representative diagram of flow cytometry.The percentages of 
tumor-infiltrating B, CD3+T, CD8+T, CD4+T, IFN+CD8+T, GZMB+CD8+T, 
MDSC and DC were analyzed by flow cytometry. n=6-8/group.
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