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Purpose: To develop a statistical method of combining multimodal MRI (mMRI) of adult glial brain tumours to
generate tissue heterogeneity maps that indicate tumour grade and infiltration margins.

Materials and methods: We performed a retrospective analysis of mMRI from patients with histological diagnosis
of glioma (n = 25). 'H Magnetic Resonance Spectroscopic Imaging (MRSI) was used to label regions of “pure”
low- or high-grade tumour across image types. Normal brain and oedema characteristics were defined from
healthy controls (n = 10) and brain metastasis patients (n = 10) respectively. Probability density distributions
(PDD) for each tissue type were extracted from intensity normalised proton density and T,-weighted images, and
p and q diffusion maps. Superpixel segmentation and Bayesian inference was used to produce whole-brain tissue-
type maps.

Results: Total lesion volumes derived automatically from tissue-type maps correlated with those from manual
delineation (p < 0.001, r = 0.87). Large high-grade volumes were determined in all grade III & IV (n = 16)
tumours, in grade II gemistocytic rich astrocytomas (n = 3) and one astrocytoma with a histological diagnosis of
grade II. For patients with known outcome (n = 20), patients with survival time < 2years (3 grade II, 2 grade
III and 10 grade IV) had a high-grade volume significantly greater than zero (Wilcoxon signed rankp < 0.0001)
and also significantly greater high grade volume than the 5 grade II patients with survival > 2 years (Mann
Witney p = 0.0001). Regions classified from mMRI as oedema had non-tumour-like 'H MRS characteristics.
Conclusions: "H MRSI can label tumour tissue types to enable development of a mMRI tissue type mapping
algorithm, with potential to aid management of patients with glial tumours.

1. Introduction

Gliomas are the most common primary brain tumour and have
heterogeneous patterns of infiltrative growth (Burger et al., 1988).
Determination of glioma grade, identifying viable tumour core and
infiltration margins are paramount for optimal patient management.
Histopathological grading and genetic phenotyping of targeted surgical
biopsy determines first line treatment (Weller et al., 2017), however

subsequent radiotherapy planning and to assess treatment response.
While conventional MRI does indicate likely tumour grade (Lasocki
et al., 2015), it fails to determine the extent of tumour infiltration into
surrounding normal appearing brain (Yamahara et al., 2010). This is
reflected in current radiotherapy treatment guidelines, recommending
fixed irradiation margins of 2-3 cm beyond T1-weighted contrast en-
hancement for high-grade gliomas (Stupp et al., 2009) that aims to also
irradiate and treat any infiltrative tumour tissue that is present. Con-

this cannot provide spatial information which is essential for sequently, such generalised radiation margins can result in
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“overtreatment” of healthy brain tissue, under treatment of tumour
infiltration and hamper urgently needed dose-escalation strategies tar-
geted to the macroscopic tumour volume rather than a generalised
clinical target volume. These current shortcomings in high grade glioma
treatment are illustrated by the fact that almost all high grade gliomas
recur, with around 80% showing recurrence in the high dose fields and
20% showing more distant recurrence associated with tumour infiltra-
tion beyond this clinical target volume (Minniti et al., 2010).

Techniques such as perfusion weighted imaging (PWI) (Akbari
et al., 2016), diffusion tensor imaging (DTI) (Price et al., 2006), and 1H
magnetic resonance spectroscopy (MRS) (Ken et al., 2013; Raschke
et al., 2015; Stadlbauer et al., 2007) provide additional information
regarding tumour grade and infiltration. Multimodal magnetic re-
sonance imaging (mMRI) combined with pattern recognition techni-
ques can provide nosologic images that identify likely tissue-type
(Akbari et al., 2016; De Edelenyi et al., 2000; Luts et al., 2009; Verma
et al., 2008). Development of mMRI classifiers requires tissue-type la-
belling of training data, however, expert labelling is subjective and
often limited to small regions of high label confidence (Akbari et al.,
2016; Verma et al., 2008). Magnetic resonance spectroscopy imaging
(MRSI) has been used to create tissue-type maps both as a single
modality (Ken et al., 2013; Raschke et al., 2015) and in combination
with MRI (De Edelenyi et al., 2000; Luts et al., 2009). 1H MRS shows
good accuracy for classifying glioma grade (Raschke et al., 2012) and
MRSI has been used to map underlying tissue-type components for glial
tumours (Raschke et al., 2015). However, compared to MRI, MRSI is
technically difficult, has long acquisition times and does not easily
provide whole brain coverage.

The goal of this study was to develop an analysis method to combine
mMRI to provide tissue classification and thus determine the grade,
spatial extent and heterogeneity of brain tumours. Here we present the
proof-of-principle in a cohort of 25 low grade and high grade glioma
patients. Our approach called tissue-type mapping, uses an expandable
Bayesian analysis of mMRI data. Previous Bayesian tissue segmentation
techniques have assumed Gaussian probability distributions in appli-
cation to MRI data (e.g. (Zhang et al., 2001; Ashburner and Friston,
2005; Prastawa et al., 2004)), and often use spatial priors. The novel
technique applied in our study is not limited by the underlying as-
sumptions of Gaussian statistics and does not require tissue spatial
priors — a particular advantage in tissue segmentation of tumours that
are heterogeneous in location and presentation.

We use non-Gaussian, non-spatial priors constructed from the
properties of mMRI. In an initial step, MRSI is used to objectively define
regions of pure high-grade and low-grade glial tumour tissue from
which the distributions of isotropic diffusion, p, anisotropic diffusion, g,
proton density weighted (PDw) and T2-weighted (T2w) intensities as-
sociated with these tissue types are extracted. The image intensity
distributions within this 4D space are used to provide prior tissue-type
probability density distributions (PDDs) for input to a Bayesian classi-
fication scheme that generates whole brain tissue probability maps. We
used isotropic, p and anisotropic, g diffusion maps as input data for the
tissue-type technique as they have been shown to identify tumour in-
filtration (Price et al., 2006;Lu et al., 2004). Furthermore, in this pilot
study we also use intensity normalised proton density weighted (PDn)
and T2-weighted (T2n) images as input data, as they represent surro-
gates of fully quantitative MRI. In this study we demonstrate the po-
tential of our tissue-type mapping technique to identify tumour grade
and its spatial distribution and investigate the relationship between
high-grade tissue volumes identified by the tissue-type mapping tech-
nique and patient survival.

2. Methods
2.1. Subjects

35 brain tumour patients with histopathological diagnosis (mean
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age 53 + 13years) were studied retrospectively: WHO grade II (5
diffuse astrocytomas, 3 gemistocytic rich astrocytomas, 1 oligoas-
trocytoma); WHO grade III (3 anaplastic astrocytoma, 1 anaplastic
oligoastrocytoma); WHO grade IV (11 glioblastomas, 1 gliosarcoma);
and 10 brain metastases (MET). (Note: these subtypes reflect histo-
pathological terminology at the time of original diagnosis, whereas in
the current WHO 2016 classification (Louis et al., 2016), what may
have been defined as oligoastrocytoma is now defined as either astro-
cytoma or oligodendroglioma according to 1p19q status). Patients were
newly diagnosed and treatment naive. The 2D MRSI data of the 25
glioma patients has been previously analysed (Raschke et al., 2015;
Yang et al., 2015b). We used previous results (Raschke et al., 2015) to
select MRSI voxels corresponding to pure tumour (see Section 2.4.) in
the current study. MRI data for characterisation of healthy brain tissue
was obtained from a subset of 10 age-matched individuals that were
previously scanned using the same mMRI protocol as part of the St
George's Neuroimaging in the Elderly (GENIE) study (Charlton et al.,
2006). All data were obtained in accordance with local ethics proce-
dures.

2.2. Magnetic resonance image acquisition and pre-processing

Multimodal MRI data was acquired on a 1.5-T Signa Horizon (GE
Medical Systems, Milwaukee, WI, USA) equipped with 22 mTm™!
gradients using a quadrature head coil and comprised standard clinical
MRI with the addition of DTI and 2D 1H MRSI.

Whole brain 3D T1-weighted images were acquired with a gradient
echo with field of view (FOV) 240 mm X 240 mm X 186 mm and
0.9375 mm in-plane resolution with 1.5 mm slice thickness with data
acquired pre- and post- intravenous injection of a Gd-based contrast
agent.

Whole brain T2-weighted FLAIR images were acquired with FOV
220mm X 220 mm, a 256 X 256 acquisition matrix across 29 slices
with 5mm thickness (TE = 133 ms, TR = 9000 ms, TI = 2200 ms).

PD-weighted (PDw) and T2-weighted (T2w) images were acquired
using a dual spin echo sequence (TE = 14/98 ms, TR = 3500 ms) with
FOV of 240 mm X 240 mm, a 256 X 256 acquisition matrix, and 29
slices with 5mm thickness. Image intensity normalisation using histo-
gram matching was applied across the entire dataset of T2w and PDw
images to enable semi-quantitative comparisons of T2w and PDw
images between patients (Verma et al., 2008). Prior to intensity nor-
malisation the T2w and PDw images were skull stripped using Brain
Extraction Tool (FMRIB software library, Oxford University, United
Kingdom, https://fsl.fmrib.ox.ac.uk/fsl/, BET, (Smith, 2002)) and the
intensity histograms were translated and scaled to minimise the L2
norm of the difference to a randomly chosen reference T2w and PDw
histogram respectively (Verma et al., 2008; Zacharaki et al., 2009).
Intensity normalised T2w and PDw images are referred to as T2n and
PDn throughout this manuscript.

DTI data was acquired using a diffusion-weighted spin-echo with an
echo-planar imaging sequence (TE = 80 ms, TR = 7000 ms) in 12 dif-
fusion gradient directions with b = 1000smm™ and four averages.
Eight b = 0 smm™ images were also acquired. Contiguous whole brain
coverage was obtained (50 slices 2.8 mm thick) using two interleaved
acquisitions with slice spacing 2.8 mm (FOV 240 mm x 240 mm using a
96 X 96 acquisition matrix). DTI data was interpolated to a 256 x 256
matrix by zero filling to provide an in-plane voxel resolution of
0.9375 mm®. Motion and eddy current correction was applied and the
diffusion tensor was computed at each voxel. Isotropic p and aniso-
tropic g diffusion were used to quantify isotropic and anisotropic dif-
fusion tensor components, respectively, and were calculated as pro-
posed by Pena et al. (Pena et al., 2006). Data were skull stripped using
BET (Smith, 2002).

MRSI data was acquired with the GE PROBE-SI protocol using
PRESS localisation (TE = 30ms, TR = 2000 ms), outer volume sup-
pression and a full k-space 16 x 16 phase-encoded matrix for a single
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slice with nominal voxel size of 13.75mm X 13.75mm X 15 mm. MRSI
data was zero filled to 32 x 32 voxels resulting in a nominal voxel size
of 6.875mm X 6.875mm X 15mm. Only MRSI voxels fully within the
PRESS excitation volume were used for analysis using LCModel
(Provencher, 2001) as described in Section 2.4.

2.3. Magnetic resonance image co-registration

To allow voxel-wise multimodal analysis all MRI for each patient
were co-registered and resliced to the orientation and spatial resolution
of the DTI data. The T2n image was co-registered and resliced to the
DTI (i.e. to the image without diffusion sensitisation, b = 0smm™)
using a rigid body transform estimated using normalised mutual in-
formation in Statistical Parametric Mapping software (SPM12, http://
www.fil.ion.ucl.ac.uk/spm/). The same rigid transform was applied to
the PDn image, ensuring all images were aligned to the DTI data. The
Tlw and FLAIR images were also co-registered and resliced to the
b = 0smm™ image using a rigid body transform estimated using nor-
malised mutual information in SPM. Although FLAIR images have
generally superseded dual-echo for radiological assessment (Bynevelt
et al.,, 2001) and post-contrast T1w images are a key diagnostic mod-
ality, we extracted the prior PDDs from the p, ¢, T2n, and PDn images
only, as a precursor to fully quantitative T2 and PD acquisitions in fu-
ture studies.

2.4. Constructing a priori probability density distributions for each tissue
type

Prior probability density distributions (PDDs) were generated from
D> g9, T2n, and PDn images for the following tissue-types: GIV glioma,
GII glioma, GIV necrotic tissue, vasogenic oedema, normal grey matter,
normal white matter and cerebrospinal fluid. Tissue-type PDDs were
derived from mMRI within regions with the highest confidence of being
a single tissue class. The following regions of interest (ROIs) were se-
lected.

Tumour tissue ROIs: Within each MRSI voxel, LCModel was used to
linearly decompose the 1H spectrum into normal brain, grade II
(GII) and grade IV (GIV) components (Raschke et al., 2015). GII and
GIV ROIs were automatically defined from MRSI voxels for which
the spectrum was comprised of > 90% GII or > 90% GIV glioma
components from GII and GIV gliomas respectively.

Normal tissue ROIs: Multichannel tissue segmentation (SPM12,
http://www.fil.ion.ucl.ac.uk/spm/) was applied to T2n and PDn
images of normal controls. A probability threshold of 0.95 was used
to create binary maps of grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF).

Vasogenic oedema ROIs: Manual ROIs were drawn by an expert
(neurosurgeon TLJ) around visible oedema on p diffusion maps of
the MET cases, with specific exclusion of the tumour core, using
MRIcro (http://www.mccauslandcenter.sc.edu/crnl/tools).

The tissue specific ROIs described above were used to extract p, q,
T2n, and PDn voxel intensities. The necrotic tissue ROIs was created by
extracting mMRI data from GIV MRSI voxels with
p > 4 x 10"*mm?s™. The tissue PDDs were generated by mapping
the mMRI ROI voxel intensities to a 4D space with axes represented by
D, ¢, T2n, and PDn data. Each 4D histogram was normalised to unit
volume with 50 bins along each axis, thus creating a 4D PDD for each
tissue-type. Fig. 1 illustrates the PDD computation process for p and q
data from a pure GIV voxel. PDDs for GM, WM, vasogenic oedema (VO),
GII, GIV and necrotic tissue (Ne) are shown in Fig. 2 (the PDDs for CSF
are not shown). The 4D tissue PDDs were used as a priori information in
a Bayesian model to compute tissue probability maps.
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2.5. Computation of tissue probability maps

Bayes' theorem was used to calculate the posterior probability P
(Ci|X) of each voxel intensity X, belonging to tissue class C; where ie{1,
...,7} using,
pcyix) = PEPKIC)
2 P(CHpXIG)
j @

where P(C)) is the a priori probability of a voxel intensity X, belonging
to tissue class C; and p(X|C)) is the probability of tissue class C; for a
specific value of X. In this study, X = (x3, x2, X3, X4) is a feature vector
comprising the four mMRI intensities (i.e. p, ¢, T2n & PDn, see red
rectangle in Fig. 3a). The a priori probabilities were calculated from the
4D tissue PDDs as follows,
pXIC;)

2 p(XICG)

J (2)
Tissue probability maps (Fig. 3b) were computed for all tumour

patients on a voxel-wise basis using the data from the four image
modalities.

P(C) =

2.6. Superpixel segmentation — Identification of local homogeneous tissue
regions

Superpixels are polygonal shaped regions for which the image
voxels within them have similar imaging characteristics and can be
used to aid tissue-type classification (Soltaninejad et al., 2017). Here
they are used to provide local averaging of the probability maps to
reduce the presence of spurious tissue-type classifications arising from
noise. Superpixels were created using the Simple Iterative Clustering
(SLIC) algorithm (Achanta et al., 2012) implemented as jSLIC (Borovec
and Kybic, 2014) in Fiji ((Schindelin et al., 2012), http://fiji.sc/) where
the minimisation function includes spatial and intensity information
across three image channels. We selected PDn, FLAIR, and p images as
the minimum dataset that gave a segmentation with visually distinct
tissue-types within each superpixel. FLAIR was included to ensure the
superpixel segmentation correctly distinguished between CSF and oe-
dema. The q diffusion image was excluded because of its heterogeneity
within white matter. Prior to segmentation the image data was inter-
polated to a 1024 by 1024 matrix, and the default jSLIC values of grid-
size 30 and regularisation parameter 0.2 were used, which ensured the
superpixel contours followed the major normal and pathological tissue
boundaries. The superpixel mesh was then mapped onto the raw
probability maps (Fig. 3c) from which the average tissue type was
calculated within each superpixel.

2.7. Tissue-type colour maps

Probabilities provided by the voxelwise tissue probability maps
(Fig. 3b) were averaged within each superpixel (Fig. 3c) and normalised
within each superpixel to sum to 1. These tissue-type probabilities were
used to automatically segment the entire lesion using the following
inequality,

p(VO) + p(GII) + p(GIV) + p(Ne) > 0.5, 3

and extracting the largest connected 3D superpixel component. Super-
pixels were then coloured according to a RGB colour scheme (Fig. 3d)
to identify high-grade cellular dense tissue (red), low-grade core and
tumour infiltrated tissue (green), necrotic tissue (blue) or vasogenic
oedema (black). Colour channels were assigned according to:

Red: p(GIV)

Green:p(GII)
Blue:p (Ne) 4)
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p

Fig. 1. Schematic illustration showing the extraction of p and q diffusion imaging information from a region of interest defined by MRSI for a GIV voxel to create
PDDs. The green ROI represents the metabolite spectrum for an MRSI voxel with pure GIV metabolic characteristics (far left). All imaging voxels within this ROI are
identified on the p and g diffusion maps. Over the cohort of high-grade tumour patients the (p,q) information within all MRSI defined high-grade regions is
represented as a 2D histogram distribution (far right), where red represents the highest probability density. This histogram is a 2D projection of the full 4D
probability density distribution used in our classification scheme. The 2D probability density distribution (far right) contains distinct tissue sub-types of hetero-
geneous, but cellular, high-grade tumour, and of necrotic tissue (which has a higher magnitude of isotropic (p) diffusion).

Resulting colours were normalised to unit length and intensity
modulated according to the probability of presence of tumour tissue
(i.e. p(GID + p(GIV) + p(Ne)). The modulation technique ensures re-
gions of vasogenic oedema appear black in the colour map. An example
tissue-type colour map is shown in Fig. 3e. The colour wheel associated
with our tissue-type mapping and its interpretation is illustrated in
Fig. 4.

2.8. Evaluation of the tissue-type mapping technique

The results of this study were evaluated in three ways to assess their
validity:

—

. The tissue proportions estimated by the mMRI tissue-type technique
were directly compared to those obtained by 1H MRSI using
LCModel tissue type analysis (Raschke et al., 2015). To enable di-
rect voxel-by-voxel comparison of tissue-type probabilities as de-
termined by MRI and MRS the voxelwise tissue probability maps
(Fig. 3b) were resampled to match the MRSI location and resolution.
Tissue probabilities for non-tumorous brain (p(GM) + p(WM) + p
(CSF) + p(V0)), low-grade tissue (p(GID), and high-grade tissue (p

(a) White matter Grey matter Vasogenic oedema

High-grade tissue Necrosis

iii.

(b)

=

ii.

=4

(GIV) + p(Ne)) computed from the tissue probability maps were
compared with the LCModel MRS decomposition into normal brain,
GII and GIV components. The Distance Correlation technique
(Székely et al., 2007) was used to investigate the relationship be-
tween these two 3D spaces (i.e. the two subspaces with axes re-
presented by normal brain, low-grade and high-grade tissue values).
Statistical analysis was performed after exclusion of the training
MRSI voxels (i.e. without the mMRI data that were used to generate
the a priori tumour tissue PDDs).

Total lesion volume calculated from manually drawn margins on
FLAIR images was compared with the abnormality volume auto-
matically delineated by the tissue-type mapping technique.
Comparison of ROI volumes was performed using Pearson's corre-
lation with systematic volume differences assessed using a Bland-
Altman analysis. Similarities between the ROIs were evaluated
using the Dice coefficient, Jaccard index and Overlap coefficient.
The tissue-type mapping technique provides the volume of high-
grade tumour tissue within a lesion according to a given probability
threshold. To evaluate the technique we compared the estimated
high-grade tissue volumes extracted using a probability threshold of
p(GIV) > 0.5 with the clinically defined grade from routine

White matter Grey matter Vasogenic oedema

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Low-grade tissue High-grade tissue Necrosis

s

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Fig. 2. 2D projections of the 4D tissue-type probability density distributions (PDDs) are shown in (a) the (p,q) plane, and (b) the (PDn,T2n) plane for each tissue type.
Well-defined clusters are identified for white matter and grey matter in the (PDn,T2n) plane indicating an accurate intensity normalisation across the imaging data.
High-grade tumour data is separated into sub-types of cellular tumour and necrotic tissue on the basis of the magnitude of the isotropic (p) diffusion parameter. The
low-grade and necrosis PDDs show heterogeneous distributions with multiple clusters identified in the (PDn,T2n) PDDs that may indicate different tissue sub-tissue

types.
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(b) Tissue Probability Maps
Whitg Matter

Low-grade

Necrosis

(d) Superpixel Probability Density Maps (e) Tissue-type Map

Fig. 3. Illustration of the method for computation of tissue-type maps. (a) Data acquisition included T1w, T2w and PDw, FLAIR and diffusion tensor images (from
which isotropic p and anisotropic ¢ maps were computed). All acquired images were co-registered and resliced to the DTI space. (b) p, g, T2-weighted and PD-
weighted images (red box) were used to compute voxelwise tissue probability maps by application of Bayesian statistics and tissue-type prior probability density
distributions. Tissue probability maps were computed for grey matter, white matter, cerebrospinal fluid (CSF), vasogenic oedema, low-grade tissue, high-grade tissue
and necrosis. (c) p, FLAIR and PD-weighted images (yellow box) were used to compute the superpixel map. The superpixel spatial resolution was chosen to identify
major tissue boundaries. (d) Mean tissue probabilities were calculated within each superpixel and were used to identify high-grade tumour tissue (i.e. p(GIV)) shown
in red, low-grade core or tumour infiltrated tissue (i.e. p(GII)) in green, and necrotic tissue (p(Ne)) in blue. (e) The composite RGB tissue-type colour map generated
by the images illustrated in (d) is shown overlaid on the FLAIR image and provides a visual tissue-type assessment for all superpixels that contain abnormal tissue (i.e.
p(VO) + p(GID) + p(GIV) + p(Ne) > 0.5). Red regions correspond to high-grade tissue, green regions to low-grade or tumour infiltrated tissue, blue regions to
necrotic tissue and black regions to vasogenic oedema. A colour wheel showing all possible tissue-type colours is illustrated in Fig. 4.

Low-grade/Infiltrated Partial Volume (Tumour/HGG)

) I
Tumour Tissue >&ﬁ&”‘”

Partial
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(Tumour/ Oedema
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Necrotic Tissue Partial Volume (Necrosis/HGG)

/
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Grade
(z[€16))]
Tissue

\

Fig. 4. Colour wheel indicating the tissue types and partial
volume information represented by the tissue-type colour
maps. Red represents high-grade tissue, green - low-grade or
infiltrated tissue, blue — necrotic tissue, and black — vasogenic
oedema. Partial volume voxels are represented as colour
mixtures such that yellow indicates partial volume of high-
grade and low-grade/infiltrated tissue, magenta — partial vo-
lume of high-grade and necrotic tissue, and cyan — partial
volume of low-grade/infiltrated tissue and necrosis. The
colour scheme is consistent with low- and high-grade core
tissue having distinct colour coding since their mMRI char-
acteristics are different, whereas tissue infiltrated by high-
grade tumour becomes indistinguishable in mMRI character-
istics from low-grade tumour at low tumour partial volumes.
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Grade IV Glioblastoma

(d) FLAIR (e) Tissue-type Map

Necrosis

Fig. 5. Whole brain 3D tissue-type maps of a grade II astrocytoma and grade IV glioblastoma. The astrocytoma example shows (a) FLAIR and (b) tissue-type colour
maps in coronal, sagittal and axial slices through the tumour. The tissue-type colour map shows the extent of the tumour and identifies vasogenic oedema (black)
surrounding a low-grade tissue tumour core (green). The margins of MRSI data acquisition are shown by the yellow lines on the tissue-type colour maps. The
glioblastoma example shows (c) T1-weighted + Gadolinium contrast agent, (d) FLAIR and (e) tissue-type colour maps. The tissue-type map shows the extent of the
tumour abnormality and includes the T1-weighted and FLAIR abnormality. With the proposed colour scheme, regions of tumour infiltration are represented as green,
with regions exhibiting high-grade tumour features in red, necrosis in blue and vasogenic oedema as black. In (e) the whole of the green margin zone must be

interpreted as tumour infiltration arising from a high-grade core.
histology and patient survival.

3. Results
3.1. Probability density distributions

Fig. 2 shows 2D projections from the 4D PDDs computed from tissue
specific ROIs for WM, GM, VO, GII, GIV and Ne tissue types. In (p,q)
diffusion space (Fig. 2a), PDDs are non-Gaussian except for WM and VO
and within healthy tissues the PDDs show less heterogeneity than in
tumour tissue. The VO PDD has greater p and q diffusivity compared to
tumour tissue. In (T2n,PDn) space (Fig. 2b) the GM and WM distribu-
tions are well-defined and clearly separated, confirming accurate tissue
identification and effectiveness of T2w and PDw intensity normalisation
across subjects. Abnormal tissue types are characterised by increased
PDn and T2n compared to GM and WM, with clusters that may re-
present abnormal tissue subgroups within each tumour grade.

3.2. Tissue-type maps and comparison with MRSI

Whole brain tissue-type colour maps for a GII astrocytoma and a
GIV glioblastoma are shown in Fig. 5. A low-grade tumour core sur-
rounded by vasogenic oedema is identified for the GII astrocytoma case.
The tissue-type map provides a 3D segmentation that identifies a whole
lesion boundary similar to the edge of the FLAIR abnormality region
both within and beyond the limit of the PRESS MRSI region from which
the tumour PDDs were initially sampled. Within the glioblastoma, a
high-grade tumour core (red) with necrosis (blue) surrounded by tu-
mour infiltrated tissue (green) and vasogenic oedema (dark) is found.

The mMRI defined high-grade tumour core region includes regions of
T1-weighted contrast enhancement, although contrast enhanced MRI
was not used in developing our tissue-type mapping technique. Ap-
parent tumour infiltration (green) extends beyond the FLAIR hyper-
intensities visible in the coronal and sagittal slices (Fig. 5d-e).

Figs. 6 and 7 illustrate the tissue-type segmentation and its re-
lationship to 1H spectra within the PRESS MRSI localisation region for a
GII astrocytoma (Fig. 6a), GII gemistocytic astrocytoma (Fig. 6b) and a
GIV glioblastoma (Fig. 7). The tissue-type map generated from mMRI
data identifies regions of vasogenic oedema, low-grade and high-grade
tumour tissue that are consistent with the associated MRSI spectra.
High-grade tumour tissue regions are identified in the GII gemistocytic
astrocytoma and GIV glioblastoma consistent with regions of T1-
weighted contrast enhancement and high-grade tissue 1H spectra. For
comparison, tissue-type maps were also calculated at MRSI resolution
and MR spectra of selected voxels that were not used for PDD devel-
opment are shown.

Fig. 8 shows average 1H spectra identified by mean tissue-type
probabilities computed within each MRSI voxel. In Fig. 8(a-d) the
average spectra are taken from MRSI voxels with > 75% tissue prob-
ability for: normal tissue (Fig. 8a), vasogenic oedema (Fig. 8b), and GII
and GIV glioma (Figs. 8c-d). Note that MRSI voxels used to define the
low-grade and high-grade tumour PDDs priors were excluded from the
average spectra shown in Fig. 8 (a-f). The vasogenic oedema spectrum
(Fig. 8b) has elevated glutamate plus glutamine (Glx) and the presence
of lactate compared to the characteristic normal brain spectrum
(Fig. 8a). Fig. 8c and d show typical tumour metabolic profiles of re-
duced N-acetyl aspartate (NAA), elevated total cholines (tCho), reduced
total creatines (tCr) and the presence of lactate. The average tCho/tCr
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(b) Grade Il Astrocytoma (Gemistocytic rich)
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44% low grade

Fig. 6. Comparison of tissue-type colour maps and MRSI data for (a) a GII astrocytoma and (b) a GII gemistocytic rich astrocytoma. MRSI spectra are shown for voxels
with predominantly low-grade, high-grade and vasogenic oedema as identified from probabilities computed by the MRI tissue-type analysis after resampling to the
MRSI grid. Tissue-type probabilities are given for each illustrated metabolite spectrum. The tissue-type colour map is applied to the MRSI voxel grid and represents
the mean tissue-type probabilities computed within each MRSI voxel. The corresponding FLAIR images and MRI tissue-type colour maps are shown at superpixel

resolution.

Grade IV Glioblastoma

88% oedema 99% normal

39% high grade 51% high grade
49% low grade 35% low grade

4 3 2 1

(b) Tissue-type Map

Ty

Fig. 7. Comparison of tissue-type colour maps and MRSI spectra for a grade IV glioblastoma. Panel (a) shows MRSI spectra for voxels with normal, oedematous, low-
grade and high-grade features as identified from probabilities computed by the MRI tissue-type analysis. The MRSI voxel grid is coloured based on the mean tissue-
type probabilities computed within each MRSI voxel. Mean tissue-type probabilities are indicated as percentages for each spectrum. Panel (b) shows the MRI tissue-
type map at superpixel resolution. Panel (c) shows the corresponding contrast enhanced T1-weighted (CE-T1w) image and (d) shows the FLAIR image. The region of
contrast enhancement corresponds to the location of high-grade spectra and high-grade tissue identified by the tissue-type analysis in panel (b). Note that the
superpixel tissue-type classification technique did not include data from the CE-T1w image.
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>75% (a) Normal (b) Oedema

75% - 50% | (e) Low-grade (f) High-grade

N=93 N=42

(g) Initial low-grade (h) Initial high-grade

4 3 2 1 0 4 3 2 1 0

Fig. 8. Average MRSI spectra categorised according to the MRI tissue-type analysis (a-f) and from regions used for computing prior MRI probability density
distributions for Bayesian statistical analysis (g,h). Mean and standard deviations are shown for each tissue-type. (a) Normal tissue spectrum for all MRSI voxels
where p(GM) + p(WM) + p(CSF) > 0.75. (b) Vasogenic oedema spectrum (i.e. all MRSI voxels where p(VO) > 0.75). (c) Low-grade tissue spectrum (i.e. all MRSI
voxels where p(GII) > 0.75). (d) High-grade tissue spectrum (i.e. all MRSI voxels where p(GIV) > 0.75). (e) Low-grade tissue spectrum where 0.75 > p
(GII) > 0.5. (f) High-grade tissue spectrum where 0.75 > p(GIV) > 0.5. Spectra (g) and (h) show average spectra for the MRSI voxels used to identify the initial
imaging probability density distributions (priors) within the tissue-type analysis for (g) low-grade and (h) high-grade tissue. MRSI spectra included in (g) and (h) are
not included in spectra (a) to (f).
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Fig. 9. Scatterplots showing the relationship between lesion volumes (in millilitres) obtained manually by expert region drawing and automatically using the tissue-
type analysis. Graph (a) shows the relationship between manual and automatic volumes. Pearson's correlation coefficient reveals a significant positive correlation
between the measurements (p < 0.001, r = 0.87). Graph (b) shows a Bland-Altman plot of the same data with mean and 95% confidence limits shown. A single
outlier is identified of a diffuse low-grade tumour for which the automated tissue-type volume underestimates the manual volume.

and lactate/tCr ratios are greatest in high-grade gliomas. Although the
PDM analysis aims to separate viable high grade glioma tissue and
necrosis, the average MRSI spectrum for high grade glioma (Fig. 8d)
will inevitably contain some partial volume effects with necrosis in-
creasing the visible lipid and lactate proportions. For MRSI voxels with
calculated tissue-type probabilities between 75% and 50% (Fig. 8e-f)
the average metabolic characteristics are less well-defined in terms of
distinct glioma grade. Average spectra from the MRSI voxels of low-
and high-grade glioma that were used initially to calculate the mMRI
tumour PDDs are shown in Fig. 8g & h, respectively. These spectra show
the typical metabolic profiles for low- and high-grade tissue and were
used to define the a priori PDDs as they represent tissue with a pre-
dominant tumour grade.

3.3. Evaluation

We investigated whether the MRI derived tissue-type probabilities
computed within each MRSI voxel were related to our LCModel tissue-
type classification analysis (Raschke et al., 2015). The Distance Corre-
lation technique (Székely et al., 2007) gave correlation coefficients of
r = 0.84 across all MRSI voxels, and r = 0.79 when MRSI voxels used to
define the a priori tumour tissue PDDs were excluded.

Comparison of total lesion volume from FLAIR images and the ab-
normality volume delineated by the tissue-type mapping show good
correspondence (Fig. 9) over all tumour grades (Pearson's correlation
coefficient, p < 0.001, r = 0.87). Bland-Altman analysis revealed that

Table 1

the automatically segmented volumes were generally larger than those
determined by manual delineation, especially for high-grade gliomas
(see Fig. 9b). Good correspondence between manually and auto-
matically segmented lesion boundaries was obtained: Dice coefficient
0.77 +* 0.13, Jacard index 0.64 *+ 0.14, Overlap coefficient
0.9 + 0.08.

High-grade tissue volumes estimated from the tissue-type analysis
for all superpixels with p(GIV) > 0.5 are presented according to his-
topathological grade in Table 1. GII astrocytoma and GII oligoas-
trocytoma cases are characterised by an extremely low volume of high-
grade tissue (range 0-0.3ml), but include one outlier with 49 ml of
high-grade tissue. GII gemistocytic rich astrocytoma, GIII anaplastic
astrocytoma and GIV glioblastoma all had comparatively greater vo-
lumes of high-grade tissue. Comparison of high-grade tumour volume
with patient survival (where available) is shown in Table 2. Patient
survival was =2 years for GII tumours, except for one GII astrocytoma
(< lyear) and the two GII gemistocytic rich astrocytomas (1 to
1.5 years). GIII anaplastic astrocytoma and Grade IV glioblastoma cases
were characterised by greater volumes and poorer survival
(< 1.5years). Patients with survival time < 2years (3 grade II, 2
grade III and 10 grade IV) had a high-grade tissue volume significantly
greater than zero (Wilcoxon signed rank p < 0.0001) and volumes
significantly greater than those of the 5 GII patients with survival > 2
years (Mann Witney p = 0.0001). One GII astrocytoma showed con-
trast-enhancement (CE), but had negligible high-grade tissue volume
(0.3ml) and survival > 2 years. Conversely the GII astrocytoma with

Comparison of histopathological diagnosis and grade with automatically segmented volume (in millilitres) of high-grade tissue obtained by
the tissue-type analysis. High-grade tissue is identified at a probability threshold of > 50% (i.e. p(GIV) > 0.5). GII - grade II, GIII - grade III,

GIV - grade IV.

Histological diagnosis (n = 25)

High-grade tissue volume (ml) (mean [range])

GII astrocytoma (n = 5)
GII oligastrocytoma (n = 1)
GII gemistocytic rich astrocytoma (n = 3)

GIII anaplastic astrocytoma (n = 3), GIII anaplastic oligoastrocytoma (n = 1)

GIV glioblastoma (n = 11), GIV gliosarcoma (n = 1)

0.15 [0,0.3] (n = 4), outlier 49 (n = 1)
0

6[1,11]

10 [2,18]

52 [4,182]
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Table 2
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Comparison of patient survival time with automatically segmented volume of high-grade tissue and histopathological tumour grade. High-grade tissue is
identified at a probability threshold of > 50% (i.e. p(GIV) > 0.5). GII — grade II, GIII — grade III, GIV — grade IV.

Survival time (n = 20)

High-grade tissue volume (mean [range])

Histological Diagnosis

=2years (n = 5) 0.2 [0,0.3]
1 to 1.5years (n = 7) 42 [7,88]
< lyear (n = 8) 45 [2182]

GII astrocytoma (n = 4)

GII oligoastrocytoma (n = 1)

GII gemistocytic rich astrocytoma (n = 2)
GIV glioblastoma (n = 4)

GIV gliosarcoma (n = 1)

Grade II astrocytoma (n = 1)

Grade III anaplastic astrocytoma (n = 2)
Grade IV gliobastoma (n = 5)

poor survival (< 1year) showed no CE but a large high-grade tissue
volume (46 ml).

4. Discussion

Our results indicate that mMRI signal intensities and their dis-
tributions can be used directly via a multi-dimensional Bayesian fra-
mework to grade and create tissue-type maps of glial tumours. In a
single dimension of one MRI parameter there can be extreme overlap
between different tissue PDDs, but a multi-dimensional framework al-
lows cluster separation as can be observed for the low- and high-grade
tumour tissue clusters in the T2n — PDn space, for which there is cor-
related variability but also cluster separation (Fig. 2b). Furthermore the
probability functions of Egs. (1) and (2) can be expanded to incorporate
other tissue classes or imaging modalities to potentially improve clas-
sification simply by addition of new PDDs or expanding the PDD di-
mensions respectively.

A current general strategy is to incorporate MRSI as an addition to
an mMRI protocol for aiding brain tumour characterisation (De
Edelenyi et al., 2000; Luts et al., 2009). By using 1H MRS and its unique
metabolic information, we more objectively label tumour regions for
extraction of image parameter PDDs as compared to manual labelling
(Akbari et al., 2016; Verma et al., 2008). The strong correlation of the
tissue estimates obtained from the tissue-type analysis and those ob-
tained from the LCModel tissue type analysis (Raschke et al., 2015),
indicates, similar information to that is contained within MRS data can
be extracted from our mMRI data. This major finding might enable us in
future to create comprehensive tissue PDDs from a training set of cases
with a full MRI protocol including MRSI, which could then be applied to
cases who have not received a MRSI exam.

To the best of our knowledge, this study is the first to use 1H MRSI
purely as a tool for tissue type labelling to enable mMRI tissue classi-
fication over the whole brain despite the initial restricted 1H MRSI
coverage. Within the MRSI volumes, classification accuracy was as-
sessed with average spectra. Voxels with mMRI derived prob-
abilities > 75% for either low- or high-grade glioma tissue had average
spectra (Fig 8c,d) in good agreement with the average 1H spectra for
voxels used for the original definition of the PDD (Fig 8g,h). The su-
perpixel classification maps have more clearly defined tissue-types in
their core than the MRSI voxels, which have partial volume estimates
across several superpixels due the large MRSI slice thickness and since
the MRSI grid will not necessarily match with actual tissue boundaries,
whereas the superpixel boundaries are based on the image character-
istics (Fig. 6b & 7). Hence for MRSI voxels with single tissue-type
probabilities of 50% to 75%, the average spectra show mixed tumour
grades (Fig 8¢, d). Voxels classified with probability > 75% oedema do
not have elevated tCho/tCr compared to normal brain (Fig. 8a,b) sug-
gesting there is no tumour infiltration (Stadlbauer et al., 2007). The
elevation of Glx could be related to excitoxicity (Ricci et al., 2007) due
to tumour generated lactate diffusing into the peritumoural space.

Over the whole brain, the mMRI classification derives a total lesion
volume that correlates well with manual delineation, but is slightly
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larger (Fig. 9). However, the lesion volume is determined by the chosen
probability threshold for classifying abnormal tissue. A longitudinal
study is needed to determine the optimal probability threshold for
mapping tumour infiltration beyond the clinical target volume used for
post-surgical radiotherapy dose planning.

There is good evidence that metabolic information from 1H MRSI
has applications for tumour biopsy targeting, radiotherapy planning
(Ken et al., 2013) and to aid prognosis (Neill et al., 2017). Mapping the
MRI characteristics from tissue regions with specific 1H MRS profiles
provides a surrogate metabolic marker in the form of a Bayesian ana-
lysis of mMRI. The results from our Bayesian model and PDD priors are
also consistent with observations that diffusion and T2 parameters have
potential to detect tumour infiltration (Price et al., 2006; Lu et al.,
2004; Oh et al., 2005). The presence of mMRI derived high-grade tu-
mour volume showed good agreement with overall patient survival
(Table 2), albeit a prospective evaluation with a larger, longitudinal
dataset is needed. High-grade mMRI characteristics were observed in all
three gemistocytic tumours, in keeping with their more aggressive be-
haviour compared to other low-grade gliomas (Krouwer et al., 1991),
and also in a non-enhancing GII astrocytoma of a patient with < 2 yrs.
survival. Such identified high-grade volumes may present promising
treatment targets for future studies using dose escalation (Ken et al.,
2013; Fitzek et al., 1999) or radiosurgery (Einstein et al., 2012).

There are limitations to this current retrospective study, which is on
a small dataset, and does not use the 2016 WHO classification system
with genetic subtypes (Louis et al., 2016). Specific MRI characteristics
can be related to certain genetic subtypes (Macyszyn et al., 2016), and
in future work our tissue type probability distributions need to reflect
any variability between these subtypes. For example, our automated
tissue-type segmentation could be used to provide direct input to other
classification schemes that use volumetric (Naeini et al., 2013) or tex-
tural (Yang et al., 2015a) features for detecting tumour (sub)types with
varied prognosis. Further work also requires validation using separate
datasets for extracting the PDDs and for testing the classification and
prognostic values of the methodology. Nevertheless, there are aspects of
independent validation within our current analysis. GIV tissue char-
acteristics were only extracted from GIV gliomas, whereas we detected
likely high-grade regions within one GII astrocytoma, three GII gemis-
tocytic astrocytomas, and four GIII tumours, with each of these patients
showing poor survival (i.e. < 1.5yrs). In addition, we have 1H MRSI
data that supports a classification of oedema in gliomas (Fig. 8b) for
which the original mMRI tissue characteristics of oedema were ex-
tracted from a separate metastatic tumour data set. Further work is
needed to more fully validate the predictive value of our classification
scheme when it detects high-grade and low-grade regions beyond the
contrast-enhanced region using longitudinal studies. Finally, we used
PDn and T2n images that are only semi-quantitative and so contain
mixed weighting. New MR fingerprinting methods (Pierre et al., 2016)
will aid rapid acquisition for creation of T2 relaxation time and proton
density maps, and this will enable rational development of protocols
that would allow application of the method in multi-site trials and
improve clinical applicability. In addition, information from other
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quantitative imaging methods, such as dynamic susceptibility contrast
(DSC) MRI, which is of known value to aid tumour grading (Akbari
et al., 2014), can be straightforwardly incorporated into Eq. (1) and
may further improve the tissue classification accuracy.

In conclusion, a mathematically intuitive method for using mMRI to
infer the likely tissue-type of glial brain tumours has been described,
which can be readily expanded to include other imaging modalities and
tissue-types. Tumour tissue-type mapping with multimodal MRI may
aid management of patients with glial tumours by delineating viable
tumour from oedema and normal brain to aid targeted biopsy, surgical
planning and radiotherapy dose-planning, as well as prognosis for pa-
tient survival.
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