
Citation: Wang, S.-C.; Yen, C.-Y.;

Shiau, J.-P.; Chang, M.-Y.; Hou, M.-F.;

Tang, J.-Y.; Chang, H.-W. Combined

Treatment of Nitrated [6,6,6]Tricycles

Derivative (SK2)/Ultraviolet C

Highly Inhibits Proliferation in Oral

Cancer Cells in Vitro. Biomedicines

2022, 10, 1196. https://doi.org/

10.3390/biomedicines10051196

Academic Editor: Bu-Miin Huang

Received: 30 April 2022

Accepted: 20 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Combined Treatment of Nitrated [6,6,6]Tricycles Derivative
(SK2)/Ultraviolet C Highly Inhibits Proliferation in Oral Cancer
Cells In Vitro
Sheng-Chieh Wang 1, Ching-Yu Yen 2,3, Jun-Ping Shiau 4,5, Meng-Yang Chang 6 , Ming-Feng Hou 1,4,5 ,
Jen-Yang Tang 7,8,* and Hsueh-Wei Chang 1,9,*

1 Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences,
College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
u107851101@gap.kmu.edu.tw (S.-C.W.); mifeho@kmu.edu.tw (M.-F.H.)

2 Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan;
ycy@tmu.edu.tw

3 School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
4 Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan;

drshiaoclinic@gmail.com
5 Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital,

Kaohsiung Medical University, Kaohsiung 80708, Taiwan
6 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;

mychang@kmu.edu.tw
7 School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
8 Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University,

Kaohsiung 80708, Taiwan
9 Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: reyata@kmu.edu.tw (J.-Y.T.); changhw@kmu.edu.tw (H.-W.C.);

Tel.: +7-886-7-312-1101 (ext. 7158) (J.-Y.T.); +7-886-7-312-1101 (ext. 2691) (H.-W.C.)

Abstract: Combined treatment is an effective strategy to improve anticancer therapy, but severe side
effects frequently limit this application. Drugs inhibiting the proliferation of cancer cells, but not nor-
mal cells, display preferential antiproliferation to cancer cells. It shows the benefits of avoiding side
effects and enhancing antiproliferation for combined treatment. Nitrated [6,6,6]tricycles derivative
(SK2), a novel chemical exhibiting benzo-fused dioxabicyclo[3.3.1]nonane core with an n-butyloxy
substituent, exhibiting preferential antiproliferation, was chosen to evaluate its potential antioral
cancer effect in vitro by combining it with ultraviolet C (UVC) irradiation. Combination treatment
(UVC/SK2) caused lower viability in oral cancer cells (Ca9-22 and OC-2) than single treatment
(20 J/m2 UVC or 10 µg/mL SK2), i.e., 42.3%/41.1% vs. 81.6%/69.2%, and 89.5%/79.6%, respectively.
In contrast, it showed a minor effect on cell viability of normal oral cells (HGF-1), ranging from 82.2
to 90.6%. Moreover, UVC/SK2 caused higher oxidative stress in oral cancer cells than normal cells
through the examination of reactive oxygen species, mitochondrial superoxide, and mitochondrial
membrane potential. UVC/SK2 also caused subG1 increment associated with apoptosis detections by
assessing annexin V; panaspase; and caspases 3, 8, and 9. The antiproliferation and oxidative stress
were reverted by N-acetylcysteine, validating the involvement of oxidative stress in antioral cancer
cells. UVC/SK2 also caused DNA damage by detecting γH2AX and 8-hydroxy-2′-deoxyguanosine in
oral cancer cells. In conclusion, SK2 is an effective enhancer for improving the UVC-caused antipro-
liferation against oral cancer cells in vitro. UVC/SK2 demonstrated a preferential and synergistic
antiproliferation ability towards oral cancer cells with little adverse effects on normal cells.
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1. Introduction

Oral cancer exhibits high morbidity and mortality globally [1–3]. The death rate in
both genders increases year by year [4]. One primary reason for the high death rate in oral
cancer cells is the late diagnosis. Except for surgery, chemotherapy and/or radiotherapy
are alternative oral cancer treatments. However, chemotherapy and radiotherapy are often
associated with adverse effects.

Cancer cells exhibit diverse responses and defenses to anticancer treatment. Multi-
ple targeting strategies can improve the anticancer effects by using combined treatment.
Natural products and clinical drugs were combined with radiation to enhance the antipro-
liferation effects on cancer cells [5–7]. Like chemotherapy and radiotherapy, the potential
problems for combined treatment are the side effects that exhibit cytotoxicity to normal
tissues and cells. To find selective antiproliferation in suitable combined treatment is
necessary to improve the therapeutic effects against cancer.

Radiotherapy mainly focuses on ionizing radiation such as X-rays. However, the
potential anticancer application of non-ionizing radiation such as ultraviolet C (UVC) shows
antiproliferation effects on several cancers such as colon [8], breast [9], and oral [10] cancer
cells. Moreover, mounting evidence has demonstrated that anticancer or chemical agents
enhanced the UVC-induced antiproliferation against cancer cells, such as UVC/cisplatin
to colon cancer cells [8], UVC/sulfonyl chromen-4-ones to oral cancer cells [10], and
UVC/TiO2 microbead to urothelial cancer cells [11].

Dioxabicyclo[3.3.1]nonane core is a typical structure in many natural products [12–16].
The potential anticancer effects of dioxabicyclo[3.3.1]nonane core-containing chemicals
have rarely been investigated. We recently developed a chemical exhibiting benzo-fused
dioxabicyclo[3.3.1]nonane core with n-butyloxy substituent, namely, SK2, and first reported
the antiproliferation effect on oral cancer cells [17]. However, the potential for enhancing
UVC-induced antiproliferation of SK2 was not investigated.

The present study aims to evaluate the effects of UVC/SK2 combined treatment in
the antiproliferation of oral cancer cells. Moreover, the normal cell response to UVC/SK2
was also considered. Mechanistically, oxidative stress, apoptosis, and DNA damage in
modulating the responses of UVC/SK2 acting on oral cancer cells were explored.

2. Materials and Methods
2.1. SK2 Synthesis, Reagents, and UVC Irradiation

SK2 is a nitrated [6.6.6]tricycle with an n-butoxy substituted group. The detailed
synthesis steps were previously mentioned [18]. Its shows >95% purity when examined
by NMR analysis. SK2 was used before dissolving in dimethyl sulfoxide (DMSO), while
N-acetylcysteine (NAC) (Sigma-Aldrich, St. Louis, MO, USA) [19–21] was dissolved in
1 X PBS. The medium was aspirated before UVC irradiation at lamina flow, which was
operated by a germicidal lamp UVC (20 J/m2) for 20 s at a rate of 1 J/m2/s. The control
was conducted the same way, but no UVC irradiation was performed. Subsequently, SK2
was incubated for the indicated time, as shown in the figure legend.

2.2. Cell Culture and Cell Viability

Ca9-22 oral cancer and HGF-1 normal oral cell lines were derived from the HSRRB
(Osaka, Japan) and OC-2 oral cancer cell line was obtained by Dr. Wan-Chi Tsai (Kaohsiung
Medical University, Taiwan) [22]. All cell lines belong to the biosafety level 1. DMEM/F-12
(Dulbecco’s modified Eagle’s medium (DMEM)/F-12) containing penicillin/streptomycin
and 10% fetal bovine serum (Gibco; Grand Island, NY, USA) was used for cell maintenance.
Promega MTS kit was applied to assess the 24 h cell viability (Madison, WI, USA) and
detected at 490 nm by a multiplate reader.
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2.3. Reactive Oxygen Species (ROS), Mitochondrial Superoxide (MitoSOX), and Mitochondrial
Membrane Potential (MMP)

In a 37 ◦C incubator for 30 min, ROS reacted with 100 nM 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCF-DA) (Sigma-Aldrich) and MitoSOX reacted with 50 nM MitoSOX™ Red
(Thermo Fisher Scientific, Carlsbad, CA, USA) [17]. The cellular signals for ROS and
MitoSOX were assessed by Accuri C6 flow cytometry (Becton-Dickinson; Mansfield, MA,
USA). MMP is proportional to the staining intensity of MitoProbeTM DiOC2 (3). Cells were
mixed with 5 nM MitoProbeTM DiOC2 (3) (Thermo Fisher Scientific, Carlsbad, CA, USA) at
37 ◦C for 30 min [17]. The signals for MMP were assessed by flow cytometry.

2.4. Cell Cycle

Cells were mixed with 1 µg/mL DNA dye 7-aminoactinomycin D (7AAD) (Biotium
Inc., Hayward, CA, USA) at 37 ◦C for 30 min. The signals for cellular DNA content were
assessed by flow cytometry [17].

2.5. Apoptosis

According to user manuals, annexin V/7AAD [17], pancaspase [10], and Caspase-Glo®

3/7 kits were applied to detect apoptosis, purchased from Strong Biotech Corp (Taipei,
Taiwan), Abcam (Cambridge, UK), and Promega (Madison, WI, USA). The signals for
pancaspase activity and annexin V/7AAD intensity were assessed by flow cytometry.
Additionally, caspase 3/7 activity was detected by a microplate luminometer (Berthold
Technologies GmbH and Co., Bad Wildbad, Germany) [10].

2.6. DNA Damages

After fixation, a primary antibody for p-Histone H2A.X (Ser 139) (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) (1:500) and Alexa 488-secondary antibody were added to cell
suspensions. Then, cells were mixed with 5 µg/mL 7AAD. Finally, the signals of γH2AX
and 7AAD detections were assessed by flow cytometry. Additionally, oxidative DNA
damage 8-OHdG was reacted with the antibody against 8-hydroxy-2′-deoxyguanosine
(8-OHdG)-FITC (Santa Cruz Biotechnology, Santa Cruz, CA, USA) (1:10,000) [10]. Finally,
the signal of the 8-OHdG-FITC was assessed by flow cytometry.

2.7. Statistics

The significance of multiple comparisons was assessed by ANOVA with Tukey’s
HSD tests. Data were shown as means ± SD (n = 3 repeats). Different assays included
4 or 8 treatments of the same cell lines. Data labeling with non-overlapped letters in-
dicates a significant difference, while data labeling with overlapped letters indicates a
nonsignificant difference.

3. Results
3.1. UVC/SK2 Combination Treatment Versus Single Treatment on Anti-Proliferation

Combination treatment (UVC/SK2) showed lower viability in oral cancer Ca9-22 cells
than single treatment (20 J/m2 UVC or 10 µg/mL SK2), i.e., 42.3% vs. 81.6% and 89.5%,
respectively (Figure 1). Similarly, UVC/SK2 showed lower viability in oral cancer OC-2
cells than single treatment (UVC or SK2), i.e., 43.1% vs. 69.2% and 79.6%. In contrast, it
showed lower cytotoxicity in normal oral HGF-1 cells than in oral cancer cells. UVC/SK2
showed similar viability in oral cancer OC-2 cells compared to single treatment (UVC or
SK2), i.e., 85.2% vs. 82.2% and 90.6%.

To assess the role of oxidative stress, the ROS inhibitor N-acetylcysteine (NAC) was
pretreated before UVC/SK2 experiments. NAC recovered cell viability for these single or
combined treatments to oral cancer and normal oral cells (Figure 1). The recovery effects
of NAC in oral cancer cells (Ca9-22 and OC-2) dramatically changed back its viability to
control. Therefore, UVC/SK2 can preferentially and synergistically inhibit oral cancer cells,
showing minor damage to normal cells, depending on oxidative stress.



Biomedicines 2022, 10, 1196 4 of 14

Biomedicines 2022, 10, x FOR PEER REVIEW 4 of 14 
 

of NAC in oral cancer cells (Ca9-22 and OC-2) dramatically changed back its viability to 

control. Therefore, UVC/SK2 can preferentially and synergistically inhibit oral cancer 

cells, showing minor damage to normal cells, depending on oxidative stress. 

 

Figure 1. Cell viability at 24 h MTS assay. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-

1) cells were treated with control, UVC (20 J/m2), SK2 (10 μg/mL), and UVC/SK2 (20 J/m2 and 10 

μg/mL). Data indicate means ± SD (n = 4). The statistics of multiple comparisons were performed. 

The significance was judged from the connecting letters between different groups, i.e., showing a 

significant difference when the connecting letters were not overlapped (p < 0.05). For the example 

of OC-2 cells, the connecting letters for control, UVC, SK2, and UVC/SK2, showing ab, d, c, and e, 

indicate a significant difference between each other because they are not overlapped. Its untreated 

control and NAC control, showing ab and a, indicated a nonsignificant difference because they over-

lapped connecting letters. 

3.2. UVC/SK2 Combination Treatment Versus Single Treatment on ROS/MitoSOX 

The oxidative stress was examined by ROS and MitoSOX assays (Figures 2 and 3  Figure 2;  

Figure 3, respectively). UVC/SK2 showed higher ROS levels in oral cancer cells (Ca9-22 and 

OC-2) than single treatment (Figure 2). In contrast, it showed lower ROS levels in normal 

oral HGF-1 cells than in oral cancer cells. Similarly, UVC/SK2 showed higher MitoSOX 

levels in oral cancer cells than a single treatment (Figure 3). In contrast, it showed lower 

MitoSOX levels in normal oral HGF-1 cells than in oral cancer cells. 

Furthermore, NAC decreased ROS and MitoSOX levels of UVC/SK2 in oral cancer 

and normal oral cells (Figures 2 and 3 Figure 2;  Figure 3, respectively). Therefore, UVC/SK2 can 

preferentially and synergistically induce ROS and MitoSOX production in oral cancer 

cells, showing minor oxidative stress to normal cells, depending on oxidative stress. 

 

Figure 1. Cell viability at 24 h MTS assay. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-
1) cells were treated with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and
10 µg/mL). Data indicate means± SD (n = 4). The statistics of multiple comparisons were performed.
The significance was judged from the connecting letters between different groups, i.e., showing a
significant difference when the connecting letters were not overlapped (p < 0.05). For the example
of OC-2 cells, the connecting letters for control, UVC, SK2, and UVC/SK2, showing ab, d, c, and e,
indicate a significant difference between each other because they are not overlapped. Its untreated
control and NAC control, showing ab and a, indicated a nonsignificant difference because they
overlapped connecting letters.

3.2. UVC/SK2 Combination Treatment Versus Single Treatment on ROS/MitoSOX

The oxidative stress was examined by ROS and MitoSOX assays (Figures 2 and 3,
respectively). UVC/SK2 showed higher ROS levels in oral cancer cells (Ca9-22 and OC-2)
than single treatment (Figure 2). In contrast, it showed lower ROS levels in normal oral
HGF-1 cells than in oral cancer cells. Similarly, UVC/SK2 showed higher MitoSOX levels
in oral cancer cells than a single treatment (Figure 3). In contrast, it showed lower MitoSOX
levels in normal oral HGF-1 cells than in oral cancer cells.
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Figure 2. ROS analysis. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-1) cells were treated
with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). ROS (+) re-
gions are marked with (+). Data indicate as means± SD (n = 3). The statistics of multiple comparisons
were performed. The significance was judged from the connecting letters between different groups,
i.e., it showed a significant difference when the connecting letters were not overlapped (p < 0.05). For
the example of Ca9-22 cells, the connecting letters for control, UVC, SK2, and UVC/SK2, showing d,
c, b, and a, indicated a significant difference between each other because they were not overlapped.
Its untreated control and NAC control, shown as d, indicated a nonsignificant difference because
their connecting letters were overlapped.
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Figure 3. MitoSOX analysis. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-1) cells were
treated with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL).
MitoSOX (+) regions are marked with (+). Data indicate means ± SD (n = 3). The statistics of
multiple comparisons were performed. The significance was judged from the connecting letters
between different groups, i.e., it showed a significant difference when the connecting letters were
not overlapped (p < 0.05). For the example of Ca9-22 cells, the connecting letters for control, UVC,
SK2, and UVC/SK2, showing d, c, b, and a, indicated a significant difference between each other
because they were not overlapped. Its untreated control and NAC control, showing d, indicated a
nonsignificant difference because their connecting letters were overlapped.

Furthermore, NAC decreased ROS and MitoSOX levels of UVC/SK2 in oral cancer
and normal oral cells (Figures 2 and 3, respectively). Therefore, UVC/SK2 can preferentially
and synergistically induce ROS and MitoSOX production in oral cancer cells, showing
minor oxidative stress to normal cells, depending on oxidative stress.

3.3. UVC/SK2 Combination Treatment versus Single Treatment on MMP Destruction

The oxidative stress was also examined by MMP assay (Figure 4). UVC/SK2 showed
higher MMP (−) levels in oral cancer cells (Ca9-22 and OC-2) than in a single treatment
(Figure 4). In contrast, it showed lower MMP (−) levels in normal oral HGF-1 cells than in
oral cancer cells. Furthermore, NAC decreased MMP (−) levels of UVC/SK2 in oral cancer
and normal oral cells (Figure 4). Therefore, UVC/SK2 can preferentially and synergistically
induce MMP destruction in oral cancer cells, showing minor oxidative stress to normal
cells, depending on oxidative stress.
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Figure 4. MMP analysis. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-1) cells were treated
with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). MMP (−)
regions are marked with (−). Data indicate means± SD (n = 3). The statistics of multiple comparisons
were performed. The significance was judged from the connecting letters between different groups,
i.e., it showed a significant difference when the connecting letters were not overlapped (p < 0.05).
For the example of Ca9-22 cells, the connecting letters for UVC, SK2, and UVC/SK2, showing c,
b, and a, indicated a significant difference between each other because they were not overlapped.
Control and UVC, showing c, indicated a nonsignificant difference because their connecting letters
were overlapped.

3.4. UVC/SK2 Combination Treatment versus Single Treatment on subG1 Increment

The apoptosis was primarily examined by cell cycle analysis (Figure 5). UVC/SK2
showed higher subG1 counts in oral cancer cells (Ca9-22 and OC-2) than in a single
treatment (Figure 5). Therefore, UVC/SK2 can synergistically induce a subG1 Increment in
oral cancer cells.
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Figure 5. Cell cycle distribution. Oral cancer (Ca9-22 and OC-2) cells were treated with control,
UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). Data indicate means ± SD
(n = 3). The statistics of multiple comparisons were performed. The significance was judged from
the connecting letters between different groups, i.e., it showed a significant difference when the
connecting letters were not overlapped (p < 0.05). For the example of Ca9-22 cells, the connecting
letters for control, UVC, and UVC/SK2, showing c, b, and a, indicated a significant difference between
each other because they were not overlapped. UVC and SK2, showing b, indicated nonsignificant
differences because their connecting letters were overlapped.
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3.5. UVC/SK2 Combination Treatment versus Single Treatment on Apoptosis (Annexin V)

Since subG1 counts were increased, the potential apoptosis induction was further
examined by annexin V assay (Figure 6). UVC/SK2 showed higher annexin V (+) counts
(apoptosis) in oral cancer cells (Ca9-22 and OC-2) than in a single treatment (Figure 6). In
contrast, it showed lower annexin V (+) counts in normal oral HGF-1 cells than in oral
cancer cells. Therefore, UVC/SK2 can preferentially and synergistically induce apoptosis
in oral cancer cells.
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Figure 6. Annexin V/7AAD assays. Oral cancer (Ca9-22 and OC-2) and normal oral (HGF-1) cells
were treated with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL).
Annexin V (+)/7AAD (−) and annexin V (+)/7AAD (+) regions were assigned to apoptosis. Data
indicate means ± SD (n = 3). The statistics of multiple comparisons were performed. The significance
was judged from the connecting letters between different groups, i.e., it showed a significant difference
when the connecting letters were not overlapped (p < 0.05). For the example of Ca9-22 cells, the
connecting letters for UVC, SK2, and UVC/SK2, showing c, b, and a, indicated a significant difference
between each other because they were not overlapped. Control and UVC, showing c, indicated a
nonsignificant difference because their connecting letters were overlapped.

3.6. UVC/SK2 Combination Treatment versus Single Treatment on Caspase Activation

Since annexin V counts were increased, the potential apoptosis induction was further
examined by detecting the caspase activation (Figure 7). The generic caspase assay (pan-
caspase) can detect the activation of most caspases. UVC/SK2 showed higher pancaspase
counts in oral cancer cells (Ca9-22 and OC-2) than single treatment (Figure 7A).

The apoptosis executor caspase 3 was further examined by both flow cytometry
(Figure 7B) and luminescence (Figure 7C) assays. UVC/SK2 showed higher caspase
3 counts in oral cancer cells than in single treatment (Figure 7B). Similarly, UVC/SK2
showed more increased caspase 3/7 activity in oral cancer cells than single treatment
(Figure 7C). Moreover, UVC/SK2 showed higher caspase 3/7 activity in oral cancer cells
than in normal oral cells. NAC downregulated these single and combined treatments for
UVC/SK2-induced caspase 3/7 activation. Therefore, UVC/SK2 can preferentially and
synergistically induce caspase activation in oral cancer cells, showing minor induction to
normal cells, depending on oxidative stress.
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Figure 7. Pancaspase, caspase 3, and caspase 3/7 assays. Oral cancer (Ca9-22 and OC-2) and normal
oral (HGF-1) cells were treated with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2

and 10 µg/mL). (A) Pancaspase and (B) caspase 3 (+) regions were marked with (+). (C) Caspase
3/7 activity. Data indicate means± SD (n = 3). The statistics of multiple comparisons were performed.
The significance was judged from the connecting letters between different groups, i.e., it showed a
significant difference when the connecting letters were not overlapped (p < 0.05). For the example of
(A) Ca9-22 cells, the connecting letters for control, UVC, SK2, and UVC/SK2, showing d, c, b, and a,
indicated a significant difference between each other because they were not overlapped.

3.7. UVC/SK2 Combination Treatment versus Single Treatment on Extrinsic and Intrinsic
Signaling Activation

Caspase 8 and caspase 9, the extrinsic and intrinsic apoptotic caspases, were assessed
by flow cytometry (Figure 8). UVC/SK2 showed higher caspase 8 and caspase 9 (+) counts
in oral cancer cells (Ca9-22 and OC-2) than in single treatment (Figure 8A,B). Moreover,
caspase 8 (+) counts were higher than caspase 9 (+).
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Figure 8. Extrinsic and intrinsic apoptosis assays. Oral cancer (Ca9-22 and OC-2) cells were treated
with control, UVC (20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). (A) Caspase
8 (+) and (B) caspase 9 (+) regions were marked with (+). Data indicate means ± SD (n = 3). The
statistics of multiple comparisons were performed. The significance was judged from the connecting
letters between different groups, i.e., it showed a significant difference when the connecting letters
were not overlapped (p < 0.05). For the example of (A) Ca9-22 cells, the connecting letters for control,
UVC, SK2, and UVC/SK2, showing d, c, b, and a, indicated a significant difference between each
other because they were not overlapped.

3.8. UVC/SK2 Combination Treatment versus Single Treatment on DNA Damage

γH2AX and 8-OHdG were monitored by flow cytometry (Figures 9 and 10, respec-
tively). UVC/SK2 showed higher γH2AX and 8-OHdG (+) counts in oral cancer cells
(Ca9-22 and OC-2) than in single treatment (Figures 9 and 10).
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Figure 9. γH2AX assays. Oral cancer (Ca9-22 and OC-2) cells were treated with control, UVC
(20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). Box regions are marked with
(+). Data indicate means ± SD (n = 3). The statistics of multiple comparisons were performed.
The significance was judged from the connecting letters between different groups, i.e., it showed a
significant difference when the connecting letters were not overlapped (p < 0.05). For the example
of Ca9-22 cells, the connecting letters for control, UVC, SK2, and UVC/SK2, showing d, b, c, and a,
indicated a significant difference between each other because they were not overlapped.
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Figure 10. 8-OHdG assays. Oral cancer (Ca9-22 and OC-2) cells were treated with control, UVC
(20 J/m2), SK2 (10 µg/mL), and UVC/SK2 (20 J/m2 and 10 µg/mL). 8-OHdG (+) regions are marked
with (+). Data indicate means ± SD (n = 3). The statistics of multiple comparisons were performed.
The significance was judged from the connecting letters between different groups, i.e., it showed a
significant difference when the connecting letters were not overlapped (p < 0.05). For the example of
Ca9-22 cells, the connecting letters for control, SK2, and UVC/SK2, showing c, b, and a, indicated a
significant difference between each other because they were not overlapped. UVC and SK2, showing
b, indicated nonsignificant differences because their connecting letters were overlapped.

4. Discussion

The potential combined treatment effects of dioxabicyclo[3.3.1]nonane core-containing
chemicals to UVC have rarely been investigated. In the example of SK2, the antiproliferation
performance of UVC/SK2 combined treatment was examined in the present study using
oral cancer and normal oral cells. Several UVC/SK2-associated changes and mechanisms
of oral cancer cells were discussed as follows.

The handicap for combined treatment is that some sensitizers may have toxicity to
normal tissue, i.e., no preferential antiproliferation. Accordingly, it warrants the identifica-
tion of drugs with a preferential antiproliferation to improve the synergistic effect of UVC
treatment for cancer therapy. Several selective antiproliferation agents have been devel-
oped [23,24]. However, some selective antiproliferation agents have not been applied to
the combined treatment. In the present study, we chose SK2 as the test chemical and found
that UVC/SK2 shows a synergistic antiproliferation effect on oral cancer cells (Figure 1).
Moreover, UVC/SK2 causes a selective antiproliferation effect on oral cancer cells but not
on normal oral cells (Figure 1).

ROS is a well-known effector for the initiation of diverse cellular responses such as ox-
idative stress, apoptosis, DNA damage, endoplasmic reticulum stress, and autophagy [25,26],
causing antiproliferation to cancer cells [27,28]. As expected, different treatments with
oxidative-stress-generating functions may produce more oxidative stress in the combined
application. In this view, combined treatment may synergistically inhibit proliferation
through the synergistic generation of oxidative stress. UVC has the potential for oxidative
stress [10,29] and apoptosis [30] in cancer cells. UVC also applies to anticancer using animal
models [31–33]. Moreover, anticancer drugs often exhibit oxidative-stress-regulating func-
tion [27,28,34]. Accordingly, combined treatment with UVC and ROS-generating agents
may cause synergistic antiproliferation to cancer cells.

SK2 is an oxidative-stress-generating agent showing ROS and MitoSOX induction in
oral cancer cells [17]. UVC/SK2 combined treatment exhibited synergistic antiproliferation
to oral cancer cells (Figure 1). Moreover, UVC/SK2 combined treatment induced higher
oxidative stress (ROS, MitoSOX, and MMP) than independent treatment of oral cancer
cells (Figure 2). Moreover, UVC/SK2-treated oral cancer cells exhibited higher ROS and
MitoSOX than normal oral cells (Figures 2–4). Accordingly, UVC/SK2 preferentially
triggerred oxidative stress in oral cancer cells but not in normal oral cells. Additionally, the
impacts of oxidative stress on the synergistic antiproliferation of UVC/SK2 in oral cancer
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cells were examined in the present study. NAC downregulated the UVC/SK2-promoted
antiproliferation and ROS/MitoSOX burst in oral cancer cells (Figures 2 and 3).

Oxidative stress is generally induced in ROS-generating natural products and clin-
ical drugs [35]. This oxidative stress induction is partly attributed to downregulating
antioxidant signaling [36]. For example, the nuclear-erythroid-like factor 2 (NRF2) was
downregulated by fucoidan [37], and it, in turn, alleviated the cellular oxidative stress.
Moreover, the downregulation of cellular antioxidants such glutathione may also contribute
to the ROS generation in the example of fucoidan-treated oral cancer cells [37]. Accord-
ingly, it warrants an in-depth assessment of the antioxidant regulation of UVC/SK2 in
modulating synergistic oxidative stress and antiproliferation of oral cancer cells.

The ROS/MitoSOX-caused preferential burst of oxidative stress also triggered subG1
increment and apoptosis in oral cancer cells. This apoptosis induction was validated by
pancaspase, caspase 3, and caspase 3/7 analysis (Figure 7). UVC/SK2 stimulated more
caspase 8 (+) counts, which were higher than caspase 9 (+) in cancer cells (Ca9-22 and OC-2).
These results suggest that UVC/SK2 preferentially triggers extrinsic apoptosis signaling
compared to intrinsic apoptosis signaling in oral cancer cells. Moreover, UVC/SK2-treated
oral cancer cells exhibited higher caspase 3/7 activity than normal oral cells (Figure 7C).
Accordingly, UVC/SK2 preferentially triggers caspase activation in oral cancer cells but
not in normal oral cells. Additionally, the impacts of oxidative stress on the synergistic
caspase activation of UVC/SK2 in oral cancer cells were assessed in the present study. NAC
downregulated the UVC/SK2-promoted caspase activation in oral cancer cells (Figure 7C).

In addition to ROS-generating drugs [38], oxidative stress also is stimulated in vitro [10,39–41]
and in vivo [29] by radiations such as UVC. UVC also causes DNA damage such as γH2AX
and 8-OHdG [10]. Combined UVC and ROS-generating drugs may increase the ROS
level to improve the DNA damage and antiproliferation of cancer cells. SK2 is a ROS
and 8-OHdG DNA damage-inducible chemical [17]. Similarly, UVC/SK2 causes higher
γH2AX and 8-OHdG in oral cancer cells than individual treatments. Moreover, oxidative
stress also suppresses the function of DNA repair [42,43]. Since the 8-OHdG is repaired
by 8-oxoguanine glycosylase (OGG1) [43,44], it warrants a detailed assessment of DNA
repair systems such as OGG1 of the UVC/SK2-treated oral cancer cells. In addition to
DNA damage, UVC can attack macromolecules, leading to protein and lipid peroxida-
tion [45]. Therefore, the impacts of UVC/SK2-generating oxidative stress on protein and
lipid peroxidation cannot be excluded.

5. Conclusions

Nitrated [6,6,6]tricycles derivative (SK2) is a novel chemical exhibiting benzo-fused
dioxabicyclo[3.3.1]nonane core with n-butyloxy substituent. Previously, we found the
preferential antiproliferation and ROS-generating effects on oral cancer cells but not on
normal oral cells [17]. However, the application for combined treatment of SK2 remains
unclear, especially for connecting to UVC. In the present study, UVC/SK2 demonstrated
the synergistic antiproliferation in oral cancer cells than individual treatments. UVC/SK2
also showed preferential antiproliferation to oral cancer cells but not normal oral cells.
Moreover, UVC/SK2 exhibited synergistic inductions for oxidative stress, apoptosis, and
DNA damage in oral cancer cells. Both UVC/SK2-promoted antiproliferation, oxidative
stress, and apoptosis were rescued by NAC, indicating that the mechanism for synergistic
antiproliferation plays a vital role in oxidative-stress-mediated responses of UVC/SK2
on oral cancer cells. Therefore, SK2 is a potential anticancer agent for improving the
UVC-induced antiproliferation to oral cancer cells exhibiting minor cytotoxicity to normal
oral cells.
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Abbreviations

SK2 IUPAC name 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetrae
UVC Ultraviolet C
ROS Reactive oxygen species
MitoSOX Mitochondrial superoxide
MMP Mitochondrial membrane potential
NAC N-Acetylcysteine
8-OHdG 8-Hydroxy-2′-deoxyguanosine
DMSO Dimethyl sulfoxide
H2DCF-DA 2′,7′-Dichlorodihydrofluorescein diacetate
7AAD 7-Aminoactinomycin D
NRF2 Nuclear erythroid-like factor 2
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