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Abstract: Polymer- and/or protein-based nanofibers that promote stable cell adhesion have drawn
increasing attention as well-defined models of the extracellular matrix. In this study, we fabricated
two classes of stimulus-responsive fibers containing gelatin and supramolecular crosslinks to emulate
the dynamic cellular microenvironment in vivo. Gelatin enabled cells to adhere without additional
surface functionalization, while supramolecular crosslinks allowed for the reversible switching of
the Young’s modulus through changes in the concentration of guest molecules in culture media. The
first class of nanofibers was prepared by coupling the host–guest inclusion complex to gelatin before
electrospinning (pre-conjugation), while the second class of nanofibers was fabricated by coupling
gelatin to polyacrylamide functionalized with host or guest moieties, followed by conjugation in
the electrospinning solution (post-conjugation). In situ AFM nano-indentation demonstrated the
reversible switching of the Young’s modulus between 2–3 kPa and 0.2–0.3 kPa under physiological
conditions by adding/removing soluble guest molecules. As the concentration of additives does not
affect cell viability, the supramolecular fibers established in this study are a promising candidate for
various biomedical applications, such as standardized three-dimensional culture matrices for somatic
cells and the regulation of stem cell differentiation.

Keywords: gelatin nanofiber; electrospinning; supramolecular crosslink; in situ AFM nano-indentation;
elasticity switching

1. Introduction

Tissue homeostasis in multicellular organisms is sustained by the continuous remod-
eling of cells and extracellular matrix (ECM). Proteolytic degradation of ECM, such as
the digestion of fibrous collagen by metalloprotease, enables cancer cells to invasively
migrate into tissues [1,2]. In the case of muscle damage, the accumulation of fibrous type I
collagen near the damage leads to an increase in ECM elasticity, which activates muscle
regeneration through the proliferation of stem cells [3]. To date, matching the mechanical
properties of cells and ECM, known as mechano-compliance, has been modeled using
hydrogels that exhibit the elasticity of ECM [4]. However, an increasing number of studies
have shown that the behavior of cells on two-dimensional (2D) substrates is distinctly
different from that on three-dimensional (3D) ECMs in vivo. Moreover, type I collagen
and fibronectin, two major classes of ECM proteins, are fibrous and form “mesh-like” 3D
microenvironments [5–7].

Polymer- and/or protein-based nanofibers are considered well-defined models of
natural 3D ECMs [8–10]. Gelatin, a hydrolysate of collagen, has been widely applied
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as a biomaterial [11]. Chemically crosslinked gelatin fibers facilitate the proliferation of
osteocarcinoma cells [12] and the maintenance of human-induced pluripotent stem (hiPS)
cells [13]. Yu et al. reported that the adhesion of hiPS cells to nanofiber-coated substrates is
weaker than that to Matrigel [14]. Intriguingly, hiPS cells on nanofibers can be categorized
into two sub-groups, weakly and strongly adhering cells, of which the former show a
higher level of pluripotency than the latter. By adjusting the mechanical properties of
synthetic fibers to match those of endogenous fibrous ECM, it is possible to discriminate
against the differential invasion of cancer cells [15] and to promote certain cellular motions,
such as discontinuous hopping induced by bending fibrous ECM [16]. However, the
micromechanical environments of cells in vivo are never homogeneous or static, especially
during highly dynamic processes, such as development and disease progression. Significant
structural and mechanical remodeling of ECM is associated with various diseases, such
as the proteolytic digestion of elastin caused by chronic obstructive pulmonary disease
(COPD) [17] and the stiffening of bone marrow caused by blood cancer [18]. Palmquist et al.
recently showed that cells actively change the alignment of fibronectin fibers and undergo
collective migration during the formation of follicle structures in chick embryos [19].

These studies indicate that there is a demand for biocompatible fibrous materials
with mechanical properties that respond to external stimuli in order to ensure cell viability.
Previously, we prepared hydrogels of physically crosslinked micelles of triblock copolymers
with pH-responsive blocks, and we showed that the morphology and adhesion strength of
cells to this hydrogel can be reversibly changed by adjusting the mechanical properties of
the hydrogel through changes in the pH [20,21]. Later, to avoid pH-induced changes, we
fabricated hydrogels by modifying the acrylamide monomer with β-cyclodextrin (βCD)
as the host and adamantane (Ad) as the guest to crosslink the polyacrylamide hydrogel
with host–guest interactions. Supramolecular crosslinks enable dynamic adjustment of
the Young’s modulus of fibers because the number of host–guest complexes changes in
response to the concentration of host–guest molecules in the culture medium. Our data
showed that the morphology of cells on the surface can be reversibly switched by stiffening
or softening the hydrogel substrate [22–24]. More recently, we synthesized polyacrylamide-
based supramolecular hydrogels functionalized with gelatin side chains in addition to host
(βCD) and guest (Ad) moieties in order to circumvent tedious surface functionalization [25].

In this study, we fabricate two types of stimulus-responsive, gelatin-containing
supramolecular nanofibers by electrospinning (Scheme 1). The first fabrication strategy
involves the coupling of the βCD/Ad inclusion complex to gelatin side chains, and thus
host and guest moieties are pre-conjugated (Method 1). The second fabrication strategy
aims to functionalize polyacrylamide chains containing either βCD or Ad with gelatin,
and thus βCD-gelatin and Ad-gelatin are conjugated after the synthesis (post-conjugation,
Method 2). Integrating gelatin allows for the direct coupling of cells without additional
surface functionalization. To achieve sufficient stability under physiological conditions and
to enable elasticity switching, we systematically vary the degree of chemical crosslinking
and monitor the Young’s modulus in situ by indenting the fibers with an atomic force
microscopy (AFM) cantilever coupled to a colloidal particle during the exchange of buffer
with and without 5 mM Ad-COONa.
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dride were purchased from Sigma–Aldrich (Tokyo, Japan). Water used to prepare aque-
ous solutions was purified using a Millipore Integral MT system (Tokyo, Japan). Unless 
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inclusion complex amino-βCD/amino-Ad and gelatin. It should be noted that the synthe-
sis of amino-βCD was previously reported [27] but not the inclusion complex (amino-
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First, we prepared inclusion complex amino-βCD/amino-Ad. Amino-βCD (3.4 g, 3 
mmol) and amino-Ad (0.45 g, 3 mmol) were added to water (75 mL) and stirred at 90 °C 
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2. Materials and Methods
2.1. Materials

Phosphate-buffered saline (PBS) (137 mM NaCl, 8.1 mM Na2HPO4, 2.68 mM KCl,
1.47 mM KH2PO4, pH 7.4), toluene, acetone, dimethyl sulfoxide (DMSO), 1-adamantanamine
(Amino-Ad), and D2O were purchased from Wako Pure Chemical Industries (Osaka, Japan).
Ethanol was purchased from Shinwa Alcohol Industry (Tokyo, Japan). Mono-(6-amino-
6-deoxy)-β-cyclodextrin (Amino–βCD) was prepared following a reported procedure [26].
Mono-6-(deoxy-acrylamido)-β-cyclodextrin (βCD–AAm) and adamantane–acrylamide
(Ad–AAm) were obtained from Yushiro Chemical Industry (Tokyo, Japan). Sodium hydrox-
ide, acrylamide (AAm), 3-aminopropyltriethoxysilane (APTES), N-hydroxysuccinimide
(NHS), lithium bromide (LiBr), and 2-(N-morpholino)ethane sulfonic acid (MES) were
purchased from Nacalai Tesque (Kyoto, Japan). Lithium phenyl (2,4,6-trimethylbenzoyl)
phosphinate (LAP), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC),
and 1-adamantanecarboxylic acid were purchased from Tokyo Chemical Industry (Tokyo,
Japan). Gelatin type A from porcine skin (bloom strength of ~300), gelatin type B from
bovine skin (bloom strength of ~225), and methacrylic anhydride were purchased from
Sigma–Aldrich (Tokyo, Japan). Water used to prepare aqueous solutions was purified using
a Millipore Integral MT system (Tokyo, Japan). Unless otherwise stated, these reagents
were used without further purification.

2.2. Synthesis
2.2.1. Pre-Conjugated Gelatin-βCD-Ad (Method 1)

Scheme 2 shows the synthesis of pre-conjugated gelatin-βCD-Ad by the coupling
of inclusion complex amino-βCD/amino-Ad and gelatin. It should be noted that the
synthesis of amino-βCD was previously reported [27] but not the inclusion complex (amino-
βCD/amino-Ad).

First, we prepared inclusion complex amino-βCD/amino-Ad. Amino-βCD (3.4 g,
3 mmol) and amino-Ad (0.45 g, 3 mmol) were added to water (75 mL) and stirred at 90 ◦C
for 3 h. After cooling to room temperature, the mixture was gravity-filtered at first to
remove insoluble monomers and further filtered with a syringe filter (pore size of 0.20 µm).
The filtrate was freeze-dried to obtain inclusion complex amino-βCD/amino-Ad (yield of
3.2 g, 84%). The successful preparation of amino-βCD/amino-Ad was confirmed via 1H-1H
2D rotating-frame nuclear Overhauser effect spectroscopy (ROESY) NMR (Figure S1).



Polymers 2022, 14, 4407 4 of 15
Polymers 2022, 14, x FOR PEER REVIEW 4 of 16 
 

 

 
Scheme 2. Preparation of pre-conjugated gelatin-βCD-Ad (Method 1). 

Next, the inclusion complex was coupled to gelatin. The exact composition of gelatin-
βCD-Ad is summarized in Table S2a. Gelatin type B (2.0 g) was dissolved in MES buffer 
(40 mL, pH 3.7, 0.055 M) at 60 °C to obtain a transparent solution (5 w/v%). Amino-
βCD/Amino-Ad complex (2.8 g, 2.2 mmol) was added to the gelatin solution. EDC (1.5 g, 
8.0 mmol) and NHS (0.92 g, 8.0 mmol) were dissolved in the buffer solution at 30 °C and 
stirred for 18 h. To remove unreacted compounds, the reaction mixture was poured into 
a dialysis tube, which was immersed in water (2 L). The water was exchanged six times 
every other day. After the dialysis, the solution was freeze-dried to obtain gelatin-βCD-
Ad as a powder (yield of 3.1 g, 64%). The successful modification was confirmed by 1H 
NMR (see the Results Section and Figure 1). 

 
Figure 1. 1H NMR spectra of (a) gelatin modified with host-guest pair and (b) unmodified gelatin 
in D2O, acquired on a 500 MHz JEOL ECA-500 NMR spectrometer at 25 °C. Chemical shifts were 
referenced to maleic acid as the standard (δ = 6.2 ppm). Insets show positions of protons in chemical 
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2.2.2. Post-Conjugation of βCD-Gelatin and Ad-Gelatin (Method 2) 
In Method 2, two building blocks, βCD-gelatin and Ad-gelatin, were synthesized 

(Scheme 3) and then conjugated. Although Rekharsky and Inoue reported that the lack of 
spacers connected to βCD and Ad groups could lower the affinity [28], we did not insert 
polymer spacers between the main chain and host–guest moieties in this study because 
our previous studies have shown that the influence is not significant [29,30]. 

Scheme 2. Preparation of pre-conjugated gelatin-βCD-Ad (Method 1).

Next, the inclusion complex was coupled to gelatin. The exact composition of gelatin-
βCD-Ad is summarized in Table S1a. Gelatin type B (2.0 g) was dissolved in MES buffer
(40 mL, pH 3.7, 0.055 M) at 60 ◦C to obtain a transparent solution (5 w/v%). Amino-
βCD/Amino-Ad complex (2.8 g, 2.2 mmol) was added to the gelatin solution. EDC (1.5 g,
8.0 mmol) and NHS (0.92 g, 8.0 mmol) were dissolved in the buffer solution at 30 ◦C and
stirred for 18 h. To remove unreacted compounds, the reaction mixture was poured into
a dialysis tube, which was immersed in water (2 L). The water was exchanged six times
every other day. After the dialysis, the solution was freeze-dried to obtain gelatin-βCD-Ad
as a powder (yield of 3.1 g, 64%). The successful modification was confirmed by 1H NMR
(see the Results Section and Figure 1).
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Figure 1. 1H NMR spectra of (a) gelatin modified with host-guest pair and (b) unmodified gelatin
in D2O, acquired on a 500 MHz JEOL ECA-500 NMR spectrometer at 25 ◦C. Chemical shifts were
referenced to maleic acid as the standard (δ = 6.2 ppm). Insets show positions of protons in chemical
structures corresponding to the peaks in 1H NMR spectra: 1-6 for CD unit, a-c for Ad unit, and * for
maleic acid.

2.2.2. Post-Conjugation of βCD-Gelatin and Ad-Gelatin (Method 2)

In Method 2, two building blocks, βCD-gelatin and Ad-gelatin, were synthesized
(Scheme 3) and then conjugated. Although Rekharsky and Inoue reported that the lack of
spacers connected to βCD and Ad groups could lower the affinity [28], we did not insert
polymer spacers between the main chain and host–guest moieties in this study because our
previous studies have shown that the influence is not significant [29,30].
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βCD-gelatin was synthesized using the exact composition summarized in Table S1b.
Gelatin was modified with methacrylamide, because the reactivity of methacrylamide
is higher than that of acrylamide, and the presence of a methyl group makes it easier to
determine the ratio of the methacrylamide unit on gelatin characterized by 1H NMR (see the
Results Section and Figure 2). Methacrylamide-modified gelatin was dissolved in DMSO
(5 mL) at 60 ◦C to obtain a transparent solution (0.5 w/v%). AAm (99 mol%) and βCD–
AAm (1 mol%) were dissolved in the DMSO solution of methacrylamide-modified gelatin
at 60 ◦C. The total concentration of βCD-AAm and AAm was set to 2 M. After dissolving all
monomers, LAP was added to the DMSO solution of methacrylamide-modified gelatin. The
concentration of LAP in the monomer solution was 0.001 M. Free-radical copolymerization
was initiated by UV irradiation (λ ≈ 365 nm, 1.4 mW/cm2) for 2 h using a high-pressure
Hg lamp (HLR100T-2, Sen Lights, Osaka, Japan) in a conical tube, resulting in βCD-gelatin.
After the polymerization, the solution was diluted with water (4 mL). To remove residual
monomer LAP and DMSO, methanol (40 mL) was poured into the aqueous solution to
precipitate crude βCD-gelatin. To improve the purity of βCD-gelatin, precipitation was
repeated 3 times. Finally, the precipitate of βCD-gelatin was dried in vacuo at 60 ◦C (yield
of 0.72 g, 86%).

The other building block, Ad-gelatin, was synthesized following a similar procedure.
The exact composition is summarized in Table S1c. Methacrylamide-modified gelatin was
dissolved in DMSO (5 mL) at 60 ◦C to obtain a transparent solution (0.5 w/v%). AAm
(99 mol%) and Ad–AAm (1 mol%) were dissolved in the DMSO solution of methacrylamide-
modified gelatin at 60 ◦C. The total concentration of Ad–AAm and AAm was set to 2 M.
After dissolving all monomers, LAP was added to the DMSO solution of methacrylamide-
modified gelatin. The concentration of LAP in the monomer solution was 0.001 M. Free-
radical copolymerization was initiated by UV irradiation for 2 h using a high-pressure Hg
lamp (HLR100T-2, Sen Lights, Osaka, Japan) in a conical tube, resulting in the solution
of Ad-gelatin. After the polymerization, the solution was diluted with water (4 mL). To
remove residual monomer LAP and DMSO, methanol (40 mL) was poured into the aqueous
solution to precipitate crude Ad-gelatin. To improve the purity of Ad-gelatin, precipitation
was repeated 3 times. Finally, the precipitate of Ad-gelatin was dried in vacuo at 60 ◦C
(yield of 0.67 g, 90%).
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Figure 2. 1H NMR spectra of (a) βCD-gelatin and (b) Ad-gelatin in D2O containing trifluoroacetic
acid (12.5 v/v%), acquired on a 500 MHz JEOL ECA-500 NMR spectrometer at 30 ◦C. Chemical
shifts were referenced to -CH- of the main chain as the standard (b position, δ = 2.2 ppm). Peaks a-c
correspond to the main-chain protons, whereas peaks 1–6 correspond to CD and Ad protons.

2.3. Gel Permeation Chromatography (GPC)

Gel permeation chromatography (GPC) was used to determine the number-average
molecular weight (Mn), weight-average molecular weight (Mw), and molecular weight
distribution (Ð, Mw/Mn) [31,32]. Chromatograms were measured at 25 ◦C using an
EcoSEC® system (HLC-8320, TOSOH, Tokyo, Japan) equipped with a TSKgel guard column
(SuperAW-L, TOSOH) and a refractive index (RI) detector. The eluent was DMSO and
LiBr (1.05 g/L), and the flow rate was 0.40 mL/min. The polymer sample was dissolved
in the eluent prior to loading. The molecular weight of the sample was calculated with a
calibration curve prepared using polyethylene glycol standards.

2.4. Electrospinning of Gelatin-Containing Fibers
2.4.1. Electrospinning of Gelatin-βCD-Ad Fibers (Method 1)

A round glass substrate (Ø = 25 mm) was treated with plasma (air, 30 s). The treated
substrate was immersed in a 0.5 vol% solution of APTES in toluene [33]. The glass substrate
in a container was shaken at 500 rpm for 1 h at 50 ◦C. After sequential rinsing in toluene,
ethanol, and deionized water, the amino-silanized glass substrate was dried at 70 ◦C for
18 h in air. Gelatin-βCD-Ad (22 w/v%) was dissolved in a mixed solution of acetic acid,
ethyl acetate, and water (acetic acid: ethyl acetate:water ratio of 21:14:10 (v/v/v)) for 18 h.
The gelatin-βCD-Ad solution was added to a syringe attached to a pump. Nanofibers of
gelatin-βCD-Ad were generated by electrospinning (voltage of 15 kV, flow rate of 0.2 mL/h)
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with a spinneret (NANON-03, MECC, Fukuoka, Japan). An amino-silanized glass substrate
on aluminum foil was placed 10.5 cm below the tip of the needle to collect the nanofibers.
All experiments were carried out at room temperature under low humidity (<30%). After
electrospinning, the nanofibers were crosslinked by immersion in an ethanol solution of
EDC and NHS (12.5, 25.0, and 37.5 mM) [13,34] for 4 h. After the reaction, the nanofibers
were rinsed with 70% ethanol three times and then dried.

2.4.2. Electrospinning of βCD-Gelatin/Ad-Gelatin Fibers (Method 2)

βCD-gelatin and Ad-gelatin were dissolved in a mixed solution of acetic acid, ethyl
acetate, and water (acetic acid: ethyl acetate:water ratio of 21:14:10 (v/v/v)) with a kneader
(ARE-310, Thinky, Tokyo, Japan) at 2000 rpm for 40 min. The solutions of βCD-gelatin
and Ad-gelatin were mixed with a kneader (2000 rpm, 3 min) at a weight ratio of 1:1
(βCD-gelatin: Ad-gelatin). An 8 wt% solution of βCD-gelatin/Ad-gelatin was prepared
from the 10 wt% solution using an acid solution. The βCD-gelatin/Ad-gelatin solution was
added to a syringe attached to a pump. βCD-gelatin/Ad-gelatin nanofibers were generated
by electrospinning onto APTES-coated glass substrates under the same conditions as those
used for gelatin-βCD-Ad fibers. After electrospinning, the nanofibers were crosslinked
by immersion in an ethanol solution of EDC and NHS (0.1 and 0.2 M) for 4 h. After the
reaction, the nanofibers were rinsed with 70% ethanol three times and then dried.

2.5. Microscopic Imaging of Electrospun Nanofibers

The electrospun fibers were imaged using an EVOS FL microscope (Life Technologies,
Carlsbad, CA, USA) equipped with a 40× objective (N.A. = 0.6) and a CKX41 inverted
microscope (Olympus, Tokyo, Japan) with CAch N 10× (N.A. = 0.25) and LCAch N 20×
(N.A. = 0.4) objectives.

2.6. AFM Nano-Indentation

AFM measurements were performed using a NanoWizard 3 AFM (JPK, Berlin, Ger-
many). Silicon nitride quadratic pyramidal tips (TAP-150Al, BudgetSensors, Sofia, Bulgaria)
and borosilicate spherical tips (CP-qp-CONT104 BSG A, NanoAndMore, Wetzlar, Germany)
had nominal vertical spring constants of 5 N/m and 0.1 N/m, respectively. The tips were
used in contact mode in air and PBS at 25 ◦C. We used the thermal noise method to deter-
mine the spring constant of the cantilevers. Time-course measurements were performed
with a peristaltic pump (205CA, Watson-Marlow, Buckinghamshire, UK) at a flow rate of
0.5 mL/min. The measured force–distance curves were analyzed using the Hertz model
for spherical indenters [35]. The effective elastic moduli presented were obtained from
N > 3 experiments.

3. Results and Discussion
3.1. Characterization of Chemical Components of Gelatin-βCD-Ad

The βCD content of gelatin-βCD-Ad was calculated by integrating 1H NMR peaks
(Figure 1) [25]. Maleic acid was set as the internal standard (*), and the integral value of the
peak at 6.2 ppm corresponding to maleic acid was used to normalize other integral values.
Maleic acid (0.22 mg, 0.0019 mmol) and gelatin-βCD-Ad (13 mg) were dissolved in D2O
(0.85 mL). By comparing the gelatin-βCD-Ad spectrum with the gelatin type B spectrum, the
peaks of βCD introduced into gelatin-βCD-Ad were confirmed, as shown in Figure 1a. The
theoretical integral value of 2H of the vinyl group of maleic acid was set to 1. The integral
value of C1H (theoretical value: 7H) of βCD in gelatin-βCD-Ad (C1H, 4.95 ppm) was 5.2.
The integral value of one C1H of βCD was approximately 1.48 times larger than that of 1H
of the vinyl group of maleic acid. These results suggest that βCD units (0.0028 mmol) were
introduced into gelatin-βCD-Ad (13 mg) at a ratio of 0.22 mmol/g (βCD/gelatin-βCD-Ad).
The successful coupling of the inclusion complex amino-βCD/amino-Ad and gelatin was
also verified by systematically comparing the attenuated total reflectance–Fourier transform
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infrared (ATR–FTIR) spectra of gelatin-βCD-Ad, gelatin type B, amino-βCD, and amino-Ad
(Figure S2) [36].

3.2. Characterization of Chemical Components of βCD-Gelatin and Ad-Gelatin

The ratio of the functional groups introduced into βCD-gelatin and Ad-gelatin was deter-
mined from 1H NMR spectra (Figure 2). According to the 1H NMR spectra, methacrylamide-
modified gelatin (0.032 mol%) was introduced into βCD-gelatin and Ad-gelatin. Addition-
ally, βCD and Ad units (1 mol%) were introduced into βCD-gelatin and Ad-gelatin in a stoi-
chiometric ratio. The coupling of the inclusion complex amino-βCD/amino-Ad and gelatin
was verified by systematically comparing the ATR-FTIR spectra of βCD-gelatin, Ad-gelatin,
methacrylamide modified gelatin, acrylamide, βCD-AAm, and Ad-AAm (Figure S3).

3.3. Optical Microscopy Images of Gelatin-βCD-Ad Fibers (Method 1)

Figure 3a shows a bright field microscopy image of the gelatin-βCD-Ad fibers in air after
electrospinning. Continuous and uniform fibers were fabricated by adjusting the viscosity of
the solution to approximately 0.8–1.0 Pas [9,37]. As shown in Figure 3b, the fibers remained
uniform after chemical crosslinking in the ethanol solution of [EDC] = [NHS] = 12.5 mM
for 4 h. To ensure the stability of the fibers, the samples were rinsed with ethanol, dried in
air, and soaked in PBS at 37 ◦C for 48 h before the imaging. To determine the optimal degree
of chemical crosslinking, we prepared fibers in [EDC] = [NHS] = 25.0 mM (Figure 3c) and
37.5 mM (Figure 3d) and confirmed that continuous fibers were formed at all crosslinker
concentrations.
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air) and (b) after crosslinking with [EDC] = [NHS] =12.5 mM, (c) 25.0 mM, and (d) 37.5 mM in PBS.

3.4. Topography and Mechanical Properties of Pre-Conjugated Gelatin-βCD (Method 1)

The mechanical properties of the gelatin-βCD-Ad fibers in PBS were characterized
by indenting individual fibers with an AFM cantilever equipped with a SiO2 particle tip
(radius 5 µm). As schematically presented in Figure 4a, we first performed a topological
scan to find the center of the fibers. This process is necessary for indenting the fiber while
avoiding the underlying substrate because the diameter of the fibers is smaller than the
particle radius. Prior to the experiments in PBS, the quality of the fiber samples was
checked with an AFM scan in air. The thickness of the nanofibers was within 0.1–0.2 µm
in all cases (data not shown), confirming that we produced gelatin-βCD-Ad fibers in a
reproducible manner. Figure 4b shows the topographic profiles of the gelatin-βCD-Ad
fibers crosslinked in [EDC] = [NHS] = 12.5 mM, 25.0 mM, and 37.5 mM, measured in
PBS, confirming the formation of continuous fibers with a uniform thickness under each
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preparative condition. The line profiles extracted from the lines in Figure 4b are shown
in Figure 4c. The thickness of the gelatin-βCD-Ad fibers was in the range of 0.8–1.2 µm
irrespective of the concentrations of EDC and NHS, suggesting that the degree of swelling
was not significantly different among these three conditions. It should be noted that the
width of the fibers suggested by the line profiles, 8–10 µm, was approximately an order of
magnitude larger than the thickness. This apparent discrepancy can be explained by the
overestimation of the lateral object size by scanning with a probe radius larger than the
fiber diameter (Figure 4a). The relationship among the real length scale (fiber width) W,
probe radius (5 µm) R, and full width at half maximum (FWHM) obtained from the scan
(Figure 4c) can be expressed as follows:

FWHM = 2
√

WR + W2/4 (1)
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Figure 4. Topographic profiles of a single gelatin-βCD-Ad fiber using particle-assisted AFM prior to
nano-indentation. (a) Schematic illustration of particle-assisted AFM. A topographic scan is essential
to find the center of each fiber. (b) Height and (c) line profiles of a single gelatin-βCD-Ad fiber
prepared in [EDC] = [NHS] = 12.5 mM, 25.0 mM, and 37.5 mM.

The thickness and the corrected values for the width of the fibers are summarized in
Table 1. Although the width was slightly larger than the thickness due to dissipation caused
by electrospinning, chemical crosslinking, and drying, the obtained data demonstrated that
cylindrical nanofibers were formed.
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Table 1. Thickness D, width W, and Young’s modulus E of gelatin-βCD-Ad fibers crosslinked at
different concentrations of EDC and NHS (N = 4).

EDC [mM] NHS [mM] D [µm] W [µm] E [kPa]

Gelatin-βCD-Ad12.5 12.5 12.5 1.3 ± 0.1 1.6 ± 0.3 16.3 ± 0.2

Gelatin-βCD-Ad25.0 25.0 25.0 1.1 ± 0.1 1.2 ± 0.1 31.6 ± 3.0

Gelatin-βCD-Ad37.5 37.5 37.5 1.1 ± 0.0 1.6 ± 0.1 42.0 ± 1.2

Figure 5a–c show the typical force–distance curves of the gelatin-βCD-Ad fibers
crosslinked in [EDC] = [NHS] = 12.5 mM, 25.0 mM, and 37.5 mM, measured in PBS at 25 ◦C.
The solid lines represent the best fit results obtained using the Hertz model for a spherical
indenter (Johnson 1985):

F =
4E
√

R
3(1− ν2)

δ
3
2 (2)
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Figure 5. Characteristic force–distance curves of a single gelatin-βCD-Ad fiber crosslinked at different
concentrations of EDC and NHS: (a) [EDC] = [NHS] =12.5 mM, (b) 25.0 mM, and (c) 37.5 mM. The
best fit results obtained using the Hertz model for a spherical indenter is shown as solid lines, yielding
the following Young’s moduli: E12.5 = 16 kPa, E25.0 = 32 kPa, and E37.5 = 42 kPa. (d) Young’s modulus
of gelatin-βCD-Ad fibers in the absence and presence of 10 mM Ad-COONa (N = 4).

The Young’s moduli E obtained with four independent measurements are summa-
rized in Table 1. The Young’s modulus exhibited a monotonic increase with an increase
in EDC/NHS, suggesting that a higher degree of chemical crosslinking was achieved at a
higher concentrations of EDC and NHS. These values are in reasonable agreement with the
Young’s moduli of chemically crosslinked gelatin nanofibers previously reported [10,15]. In
the next step, we examined if the addition of competitive host–guest molecules modulates
the Young’s modulus by freeing supramolecular crosslinks. As the additive, we chose 5 mM
Ad-COONa, which was used in our previous study to modulate the Young’s modulus
of βCD-Ad-gelatin hydrogels without interfering with cell viability [25]. For the gelatin-
βCD-Ad fibers prepared at different concentrations of EDC and NHS, the Young’s moduli
measured in the absence and presence of 10 mM Ad-COONa (Figure 5d) were not signifi-
cantly different. These data suggest that the change caused by competitive Ad-COONa is
counteracted by stable crosslinks, such as chemical crosslinking by EDC and NHS or the
physical entanglement of gelatin. We examined the former scenario by decreasing the con-
centrations ofEDC and NHS. However, the fibers crosslinked in [EDC] = [NHS] = 6.25 mM
were not stable in PBS. Therefore, we used the second strategy (Method 2 in Scheme 1):



Polymers 2022, 14, 4407 11 of 15

the post-conjugation of gelatin-functionalized polyacrylamide chains with βCD and Ad
side chains.

3.5. Topography and Mechanical Properties of Post-Conjugated βCD-Gelatin and Ad-Gelatin
(Method 2)

Figure 6a shows the topographic profile of the post-conjugated βCD-gelatin/Ad-
gelatin fibers measured in air, revealing that continuous fibers of uniform thickness were
produced when the viscosity of the polymer solution was adjusted to approximately
0.8–8.1 Pas. The thickness and width of the fibers were within the range of 0.3–0.5 µm
and 2.4–3.6 µm, respectively. The electrospun fibers were crosslinked in solution EDC
and NHS for 4 h, rinsed with ethanol, dried in air, and soaked in PBS at 25 ◦C for 2 h.
In contrast to the gelatin-βCD-Ad fibers, the βCD-gelatin/Ad-gelatin fibers required
highly concentrated solutions of EDC and NHS for chemical crosslinking. As shown in
Figure 6b, fibers treated with [EDC] = [NHS] = 100 mM exhibited pearl-like features, indi-
cating that the fibers were not stable enough to sustain their original cylindrical structures.
In fact, we did not find any fibers on the substrate when the fibers were treated with
[EDC] = [NHS] < 100 mM [37]. Stable fibers were only found at [EDC] = [NHS] ≥ 200 mM,
as shown in Figure 6c–e. The thickness D and width W of βCD-gelatin/Ad-gelatin fibers
calculated using Equation (1) are summarized in Table 2. Although the values were slightly
larger than the corresponding values of the pre-conjugated gelatin-βCD-Ad fibers (Table 1),
we verified that the post-conjugated βCD-gelatin/Ad-gelatin fibers crosslinked in highly
concentrated [EDC] = [NHS] ≥ 200 mM were stable over 48 h in buffer. The corresponding
optical microscopy images are shown in Figure S4.
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Figure 6. AFM topographic profiles of βCD-gelatin/Ad-gelatin fibers (a) before chemical crosslink-
ing (in air) and after crosslinking with (b) [EDC] = [NHS] = 100 mM, (c) 200 mM, (d) 400 mM,
and (e) 2 M (in PBS). (f) Force–distance curves of a βCD-gelatin/Ad-gelatin fiber crosslinked in
[EDC] = [NHS] = 2 M.
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Table 2. Thickness D, width W, and Young’s modulus E of post-conjugated βCD-gelatin/Ad-gelatin
fibers crosslinked at different concentrations of EDC and NHS (N = 10).

EDC [mM] NHS [mM] D [µm] W [µm] E [kPa]

βCD-gelatin/Ad-gelatin200 200 200 1.9 ± 0.4 3.0 ± 0.6 1.0 ± 0.4

βCD-gelatin/Ad-gelatin400 400 400 1.1 ± 0.3 3.3 ± 0.7 2.3 ± 0.8

βCD-gelatin/Ad-gelatin2000 2000 2000 1.3 ± 0.4 2.8 ± 1.3 1.6 ± 0.4

The Young’s modulus of the crosslinked fibers was measured using AFM nano-indentation
following the same protocols used for the gelatin-βCD-Ad fibers. A characteristic force–distance
curve of a βCD-gelatin/Ad-gelatin fiber crosslinked in [EDC] = [NHS] = 2 M is shown in
Figure 6f. The Young’s moduli calculated using Equation (2) are summarized in Table 2. It
is notable that the obtained Young’s moduli of the βCD-gelatin/Ad-gelatin fibers were one
order of magnitude lower than those of the gelatin-βCD-Ad fibers (Table 1) despite the fact
that the concentrations of EDC and NHS used for chemical crosslinking was much higher
for the former than for the latter. The Young’s modulus was 1.6 ± 0.4 kPa, even when the
concentration of EDC and NHS was close to saturation (2 M). This finding can be attributed
to several reasons. The poly(acrylamide) main chain can suppress the non-specific interac-
tions between gelatin units, such as physical entanglement, and hence reduces the Young’s
modulus. Furthermore, the number of free carboxyl groups available for crosslinking is
insufficient because of the low amount of gelatin in βCD-gelatin (Table S1b) and Ad-gelatin
(Table S1b) [38]. It is plausible that the Young’s modulus does not increase with an increase
in crosslinker concentration if free carboxyl groups are consumed.

3.6. Reversible Switching of Young’s Modulus of βCD-Gelatin/Ad-Gelatin Fibers (Method 2)

The low Young’s moduli obtained for the βCD-gelatin/Ad-gelatin fibers suggest that
this parameter is susceptible to change in response to chemical stimuli, such as the addition
of 5 mM Ad-COONa (Figure 5). In fact, the βCD-gelatin/Ad-gelatin fibers crosslinked in
[EDC] = [NHS] = 100 mM (Figure 6b) disappeared when the buffer was exchanged with PBS
containing 5 mM Ad-COONa (data not shown). Here, we connected the AFM sample holder
to a peristaltic pump and monitored the change in the Young’s modulus and fiber thickness
while exchanging the buffer. Figure 7a,b show the change in the Young’s modulus and the
thickness of the βCD-gelatin/Ad-gelatin fibers crosslinked in [EDC] = [NHS] = 400 mM
over time. The gray-shaded zones (Ad) correspond to the period in which the fibers are in
contact with the PBS containing 5 mM Ad-COONa, while the white zone corresponds to
the period in which the fibers are in contact with the PBS with no Ad-COONa. Exchanging
Ad-free buffer (white) with Ad-loaded buffer (gray) led to a rapid decrease in the Young’s
modulus from EAd-free ≈ 2.4 kPa to EAd-loaded ≈ 0.2 kPa and an increase in the fiber
thickness from DAd-free ≈ 1.7 µm to DAd-loaded ≈ 2.0 µm. This finding can be explained by
the decrease in the density of βCD/Ad complexes owing to the presence of competitive
Ad-COONa in the solution. In contrast, exchanging Ad-loaded buffer (gray) with Ad-free
buffer (white) resulted in a change in the Young’s modulus and in the thickness in the
opposite direction. The Young’s modulus increased to EAd-free ≈ 2.5 kPa, and the thickness
decreased to DAd-free ≈ 1.5 µm. Stiffening/thinning was slower than softening/thickening,
which is consistent with the results of previous studies on hydrogels crosslinked with
reversible supramolecular βCD/Ad interactions [23,25].

To determine if the crosslinking at high concentrations of EDC and NHS affects the
response of the fibers to external stimuli, we performed in situ AFM nano-indentation
experiments with the βCD-gelatin/Ad-gelatin fibers crosslinked in [EDC] = [NHS] = 2 M.
Changes in the Young’s modulus and thickness over time are presented in Figure 7c,d.
Although the absolute values of the Young’s modulus and thickness at t = 0 min were
slightly different between the fibers crosslinked in [EDC] = [NHS] = 400 mM and the fibers
crosslinked in [EDC] = [NHS] = 2 M (E2M,Ad-free ≈ 1.6 kPa and D2M,Ad-free ≈ 1.4 µm), the
βCD-gelatin/Ad-gelatin fibers exhibited the same reversible response to the exchange of buffers.
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The difference in the Young’s modulus for the fibers crosslinked in [EDC] = [NHS] = 2 M
(∆E2M ≈ 1.3 kPa) was slightly smaller than that for the fibers crosslinked in [EDC] = [NHS]
= 400 mM (∆E400mM ≈ 2.4 kPa). However, it is currently not possible to attribute this
difference to either the different initial elasticity levels or the different densities of the
chemical crosslinks.
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crosslinked in (a,b) 400 mM and (c,d) [EDC] = [NHS] = 2 M for 4 h.

Remarkably, both the βCD-gelatin/Ad-gelatin fibers exhibited reversible switching of
the Young’s modulus and thickness in the physiological buffer in response to the addition
and removal of 5 mM Ad-COONa.

4. Conclusions

In this study, we fabricated two types of stimulus-responsive, gelatin-containing
supramolecular nanofibers that can be utilized as well-defined, switchable 3D microen-
vironments for cells. The first nanofibers were synthesized by coupling the βCD/Ad
inclusion complex to gelatin (called pre-conjugation), whereas the second nanofibers were
fabricated by mixing gelatin-functionalized polyacrylamide chains coupled to either βCD
or Ad (called post-conjugation). The balance between supramolecular crosslinks and chem-
ical/covalent crosslinks was optimized by varying the concentration of EDC and NHS,
yielding fibers that are stable under physiological conditions. The pre-conjugated fibers
exhibited a monotonic increase in the Young’s modulus from 16 kPa to 42 kPa with an
increase in [EDC] = [NHS] = 12.5 mM to 37.5 mM. However, the addition of Ad-COONa
solution did not cause any change in the Young’s modulus, suggesting that the change
caused by competitive Ad-COONa is screened by other strong interactions, such as the
physical entanglement of gelatin or a large amount of chemical crosslinks. However, the
post-conjugated fibers exhibited about one order of magnitude lower E = 1–3 kPa, even at
[EDC] = [NHS] = 2 M, which can be attributed to either the saturation of available carboxyl
groups or the cancellation of gelatin entanglement by polyacrylamide chains. In situ AFM
nano-indentation demonstrated the reversible switching of the Young’s modulus between
E = 1–3 kPa and 0.2–0.3 kPa by adding/removing 5 mM Ad-COONa, which does not
interfere with the viability of cells [25]. Although the fiber elasticity is about one order of
magnitude lower than that of naturally occurring fibrous ECM (E~10 kPa) [15], further
optimization of the polymer composition, such as increasing the number of carboxyl groups
by copolymerization with other monomers or suppressing gelatin–gelatin interactions and
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integrating fibrous materials into 3D micro-scaffolds [16,24,39], may lead to well-defined
3D cellular microenvironments with switchable mechanical properties.
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spectrum of amino-βCD/amino-Ad complex in D2O. Figure S2: ATR-FTIR of materials related to
gelatin-βCD-Ad (Method 1). Figure S3: ATR-FTIR of materials related to gelatin-βCD-gelatin and
Ad-gelatin (Method 2). Figure S4: Optical microscopy images of βCD-gelatin/Ad-gelatin nanofibers
(Method 2).
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