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The unsolved mystery of hippocampal 
cholinergic neurostimulating peptide: 
A potent cholinergic regulator
Justin Y. Cho, Noriyuki Matsukawa1

Abstract:
Cholinergic efferent networks located from the medial septal nucleus to the hippocampus play a pivotal 
role in learning and memory outcomes by generating regular theta rhythms that enhance information 
retention. Hippocampal cholinergic neurostimulating peptide (HCNP), derived from the N‑terminus 
of HCNP precursor protein (HCNP‑pp), promotes the synthesis of acetylcholine in the medial septal 
nuclei. HCNP‑pp deletion significantly reduced theta power in CA1 possibly due to lower levels of 
choline acetyltransferase‑positive axons in CA1 stratum oriens, suggesting cholinergic disruptions 
in the septo‑hippocampal system. This review also explores HCNP as a potent cholinergic regulator 
in the septo‑hippocampal network while also examining the limitations of our understanding of the 
neurostimulating peptide.
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Introduction

Theta rhythm, a significant rhythmic 
type within the hippocampal local 

field potential, possesses a vital role in 
memory processing.[1] This theta oscillation 
is generated by cholinergic projections, 
which stems from the medial septal 
nucleus to the CA1‑CA stratum oriens of 
hippocampal functional areas and is crucial 
for maintaining normal theta rhythmic 
patterns.[2‑5] With the internal pacemaker, 
information is better retained and encoded 
in episodic memory.[6,7]

Molecular changes within the medial septal 
nuclei may affect cholinergic projections, 
affecting normal theta rhythms and 
functional memory processes. One notable 
molecule is the hippocampal cholinergic 
neurostimulating peptide (HCNP), which 

is cleaved from a 186 amino acid, 21 
kD, long precursor protein (HCNP‑pp) 
along the N‑terminus.[8] HCNP was seen 
to promote acetylcholine production by 
increasing choline acetyltransferase (ChAT) 
expression level within the medial septal 
nuclei,[9] which may affect the cholinergic 
septo‑hippocampal system, correlating to 
healthy episodic memory retention.

Hippocampal Cholinergic 
Neurostimulating Peptide‑pp 

Genetic Models

H C N P ‑ p p ,  a l s o  r e f e r r e d  t o  a s 
R a f  k i n a s e  i n h i b i t o r y  p r o t e i n  o r 
phosphatidylethanolamine‑binding 
p r o t e i n  1 ,  i s  a n  A T P ‑ b i n d i n g , 
multifunctional protein with inhibitory 
abilities on Erk signaling pathways.[10,11] 
HCNP may be synthesized from HCNP‑pp 
cleavage by the thiol protease group.[8] 
Studies have demonstrated that HCNP‑pp 
transgenic mice exhibit  behavioral 
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depressive‑like phenotype[12] and electrophysiological 
higher amplitude of hippocampal field excitatory 
postsynaptic potentials that is regulated through 
M1 receptor activation.[3] In addition, these mice 
may inhibit the regulation of Aß oligomer‑induced 
glutamatergic neuronal activity in the hippocampus 
through the muscarinic M1 receptor.[4] On the other 
hand, conditional HCNP‑pp knockout mice using 
Cre‑ERT/loxP system by CaMKII‑Cre transgenic mice 
revealed reduced power of theta rhythms in CA1 
regions, whereas those mice showed no significant 
behavioral abnormality in locomotor, anxiety, or 
cognitive function.[13] In this model, downregulation 
of HCNP‑pp expressions was possibly limited in 
cells controlled by CaMKII promoter, a hippocampal 
excitatory neuronal expression regulator, while 
HCNP‑pp expressions are known to exist in inhibitory 
neurons, oligodendroglia, and hippocampal pyramidal 
neurons.[14,15] Further investigations are needed to 
provide a plausible explanation for HCNP function, 
including HCNP‑pp downregulation in other kinds 
of cells by using Cre‑transgenic mice driven other 
promotors.

Hippocampal Cholinergic Neurostimulating 
Peptide

HCNP in 14‑day‑old postnatal hippocampi[9] was 
initially isolated and later exhibited nerve‑ and 
fibroblast‑l ike abil i t ies,  which enhanced cell 
growth.[16,17] Cholinergic axon terminals also decreased 
in stratum oriens of mice with inadequate HCNP‑pp 
levels,[13] suggesting ChAT regulatory abilities 
of HCNP in septal cholinergic neuronal cells. 
Furthermore, HCNP in the hippocampus was 
found to be correlated to theta activity. Specifically, 
theta rhythms were observed at reduced power in 
CA1 regions of mice with inadequate HCNP‑pp 
expressions. These same mice also exhibited lowered 
hippocampal cholinergic projection,[1,18] proposing 
a correlation between HCNP‑pp/HCNP with 
cholinergic projection and theta rhythm. On the other 
hand, overexpressing HCNP was seen to increase 
ChAT and promote cholinergic effects, enhancing 
hippocampal activity under unsaturated conditions 
of the glutamatergic pathway.[4] However, the same 
effect was not present in saturated conditions.

Due to its likely involvement in synaptic density 
maintenance,[3,8,19‑21] HCNP is a potent cholinergic 
modulator in the septo‑hippocampal system that may 
improve learning and memory outcomes. HCNP may 
also support neuronal growth and survival, acting as 
a neurotrophic‑like factor.[8] However, we have not yet 
caught any evidence that HCNP functions in behavioral 
cognitive phenotype.

Cholinergic Activity

Hippocampal cholinergic systems play a crucial role 
in the formation of memory. Recent studies have 
proposed an additional link between cholinergic effects 
and anxiety and depression.[12,22,23] Upregulation and 
overexpression of HCNP‑pp caused by CMKII promoter 
resulted in depressive symptoms,[12] demonstrating 
potential adverse effects of HCNP‑pp alterations. 
However, inhibiting or removing HCNP‑pp alone 
does not express significant cognitive dysfunctions 
or depression. In addition, knockout model mice 
of acetylcholine receptors, such as M1 receptor or 
alpha 7 nicotinic receptor, do not hinder memory or 
learning functions,[24,25] suggesting a combination of 
cholinergic dysfunctions may arise to produce cognitive 
and behavioral deficits. In other words, reducing 
acetylcholine alone would not induce dysfunctions in the 
hippocampus, and removal of HCNP should be followed 
up with additional cholinergic‑correlated dysfunctions 
to exhibit hippocampal deficits.

Studies have also suggested that sufficient ChAT activity 
may result in normal behaviors due to other present 
cholinergic regulators,[26‑31] masking HCNP cognitive 
behavioral deficits in behavioral tests. However, 
discrepancies arose when observing tropomyosin 
receptor kinase A (TrkA), a major cholinergic regulator 
receptor, in relation to cognitive deficits. Specifically, 
some studies demonstrated no significant changes in 
behavior when removing TrkA in specific areas with 
low levels of cholinergic terminals while similar studies 
exhibited significant cognitive abnormalities;[32,33] this 
discrepancy was likely due to the difference in gene 
deletion and animal usage within the studies.[32‑34]

A recent study on HCNP‑pp KO mice failed to evaluate 
behaviors dependent on septo‑hippocampal systems in 
behavioral tests on locomotion, anxiety, memory, and 
depression.[13] However, electrophysiological evaluation 
demonstrated lower hippocampal cholinergic activity 
in HCNP‑pp KO mice, indicative of hippocampal 
dysfunction through HCNP reduction. There is a potential 
that suitable tests were needed to specifically assess 
septo‑hippocampal cholinergic functions even though 
cholinergic dysfunctions were revealed. As another 
potential, incomplete suppression of glutamatergic 
activity in the hippocampus may be necessary to 
investigate HCNP or HCNP‑pp on hippocampal 
cognitive behavior.[4] Because other hippocampal 
molecules, such as vinpocetine, recover behavioral 
and memory outcomes through enhanced cholinergic 
neurotransmission, HCNP may also improve cognitive 
functions by targeting cholinergic activity,[35] which are 
also exhibited by stem cell administrations.[36] Further 
investigations are necessary to examine the functions of 
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HCNP due to acetylcholine releases. Alzheimer’s disease 
could be used to examine behavioral phenotypes under 
glutamatergic neuronal conditions.[4]

Conclusion

HCNP and cholinergic projections are potent targets 
for recovering learning and memory deficits. There 
is a likely relationship between cholinergic activity 
and HCNP‑pp; removing HCNP‑pp in mice models 
resulted in decreased choline acetyltransferase‑positive 
axons in the CA1 stratum oriens, which lowered theta 
oscillations. Lowered hippocampal cholinergic activity 
in HCNP‑pp KO mice models provide evidence of 
cholinergic functional enhancement abilities of HCNP 
and demonstrate HCNP‑dependent alterations to 
hippocampal networks, suggesting HCNP to be a 
cholinergic regulator in the septo‑hippocampal system. 
Although the effects of HCNP on theta rhythms and 
behavioral outcomes are evident, the function of HCNP 
is yet to be determined; it is unclear whether the HCNP 
is dependent on acetylcholine release acceleration 
or direct trophic effects. Furthermore, observable 
behavioral changes through hippocampal dysfunction 
were undetected in cognitive and depressive tests. Future 
investigations should experiment direct reduction of 
acetylcholine activity in the hippocampus or number of 
cholinergic neuronal cells in the medial septal nucleus in 
addition to testing phenotypic hippocampal dysfunction 
through suitable behavioral tests possibly under 
glutamatergic neuronal conditions, such as Alzheimer’s 
disease.
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