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A new imaging modality framework, called elasto-mammography, is proposed to generate the elastograms of breast tissues
based on conventional X-ray mammography. The displacement information is extracted from mammography projections be-
fore and after breast compression. Incorporating the displacement measurement, an elastography reconstruction algorithm is
specifically developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies with numerical breast phan-
toms are conducted to demonstrate the capability of the proposed elasto-mammography. Effects of noise with measurement,
geometric mismatch, and elastic contrast ratio are evaluated in the numerical simulations. It is shown that the proposed method-
ology is stable and robust for characterization of the elastic moduli of breast tissues from the projective displacement measure-
ment.
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1. INTRODUCTION

Breast cancer is one of the major threats to public health in
the world. Approximately 10% of women will develop breast
cancer during the course of their lives in USA and Europe.
The specific causes of breast cancer are yet unknown. There-
fore early detection of breast tumor is the key to successful
treatment.

X-ray mammography is the primary method for early de-
tection of breast cancers [1]. According to the reports of US
Food and Drug Administration, mammography can find 85
to 90 percent of breast cancers in women over 50, and can de-
tect a lump up to two years before it can be sensed by manual
palpation. While effective for detecting breast abnormality,
mammography is not quite specific for differentiating benign
and malignant masses, especially when the breast tissue is ra-
diodense. A significant number of suspicious masses identi-
fied by mammography for surgical breast biopsy are in fact
not malignant [2]. False-positive mammograms induce anx-
iety, distress, and intrusive thoughts.

It has been well recognized that the tissue stiffness plays
an important role in diagnosis of breast cancers, as tumors
are stiffer than the surrounding breast tissues [3, 4], and
malignant tumors are much stiffer than benign ones [5].

In other words, in vivo identification of the elastic mod-
uli of normal and abnormal breast tissues, which describe
the stiffness, should improve the accuracy of breast can-
cer diagnosis. There have been elastography studies based
on either ultrasound or MRI breast imaging [6–12]. Ophir
et al. [6, 7] and Souchon et al. [8] proposed an ultrasound
elastography modality for quantitative imaging of the elas-
tic modulus distributions in biological tissues. Muthupil-
lai et al. [9] and Manduca et al. [10] developed an algo-
rithm to reconstruct the shear modulus distribution using
acoustic strain wave propagation measured with MRI tech-
nique. Plewes et al. [11] and Samani et al. [12] provided a
finite-element iteration method to reconstruct the distribu-
tion of elastic moduli in a breast containing suspicious tu-
mors, based on the MRI deformation measurement under
compression loading.

The objective of this study is to develop a new imag-
ing modality, called elasto-mammography, for quantification
of the elastic moduli of normal and cancerous breast tis-
sues. In contrast to the previous breast elastography devel-
opments, elasto-mammography does not require additional
biomedical imaging measurements and extra expense; that is,
it combines the conventional low-dose X-ray mammography
directly with our previously proposed tomography-based
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Figure 1: Overall flowchart for elasto-mammography reconstruction of Lamé parameters λ and μ of breast tissues.

elastography framework [13]. Specifically, by adopting cer-
tain anatomically well-motivated assumptions, the geome-
try of tumors is estimated from the mammography projec-
tions, as well as from the displacements at key points. The
elastography reconstruction is further conducted with our
highly efficient algorithm for the elastic parameters of tis-
sues.

This work is organized as follows. In Section 2, we recall
our optimization-based algorithm for elastography recon-
structions. We further present elasto-mammography simu-
lations using numerical breast phantoms containing tumors
in Section 3. Section 4 investigates the influences of various
errors with the measurements, including noise with displace-
ments, geometric mismatch, and elastic contrast ratios. Con-
clusions are drawn in the last section.

2. METHODOLOGY OF ELASTOGRAPHY
RECONSTRUCTION

In this study, the mechanical properties of normal breast
tissue and tumors are assumed to be linearly elastic and
isotropic; that is, they are described with elastic Lamé param-
eters λ and μ. Typical clinical mammography applies two or
M (M ≥ 2) individual compressions on the breast so that
the maximum amount of tissues can be imaged and exam-
ined from different view angles. Information about the dis-
placements is collected from projective images, and is used in
the proposed elasto-mammography for identifying the Lamé
parameters of the tissues, as will be described in the next sec-
tion.

The three-dimensional (3D) reconstruction algorithm
for Lamé parameters is optimization based and follows our
previously developed general framework [13]. The displace-
ment and force quantities with the Ith experiment are de-
noted with superscript (I). Denoting for the Ith loading
the measured displacement field in the biomedical medium
of interest (Ω) as U(I)(x), and the calculated displacement
field associated with the trial distribution of Lamé param-
eters (λ(x),μ(x)) as u(I)(x), the elasto-mammography seeks

Lamé parameters such that the following objective functional
Φ(λ(x),μ(x)) is optimally minimized:

Φ
(
λ(x),μ(x)

) =
M∑

I=1

∫

Ω

(
u(I)(x)−U(I)(x)

)

· χ(I)(x) · (u(I)(x)−U(I)(x)
)
dV ,

(1)

where the second-order tensor χ(I) simply takes diagonal ma-

trix form, that is, (χ(I)(x))i j = δi jω
(I)
i (x) (I = 1, 2, . . . ,M;

i, j = 1, 2, 3). The weight function ω(I)
i (x) equals zero if the

ith displacement component is not measured at point x. To
include the surface displacement as measurement, ω(I)

i (x)
is considered as a generalized function on the boundary
of Ω.

The elasto-mammography reconstruction follows an it-
erative optimization procedure, as schematically shown in
Figure 1. We employ a large-scale limited-memory BFGS
(L-BFGS) optimization method [14], which requires user-
supplied gradients of the objective functional, that is, ∂Φ/∂λ
and ∂Φ/∂μ. Continuum formulas for the gradients have been
derived by Oberai et al. [15] for isotropic elastography and
by Liu et al. [13] for general anisotropic cases. Here, we give
the finite-element presentations for the objective functional
Φ and its gradients.

Following standard finite-element procedures (e.g.,
[16]), the displacement field u(I)(x) is discretized as vector
u(I), which satisfies the equilibrium equation

Ku(I) = F(I) (I = 1, 2, . . . ,M), (2)

where vector F(I) represents the nodal force. Once finite-
element mesh is generated and discretization method is se-
lected, the stiffness matrix K depends only on the Lamé pa-
rameters (λ(x),μ(x)). Consistently, the measured displace-
ment field U(I)(x) is discretized as vector U (I). Therefore, the
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Figure 2: 3D phantoms mimicking the normal breast tissue and embedded tumor(s). Finite-element mesh is shown on the external surface.
(a) Phantom I, with one tumor; (b) Phantom II, with two tumors.

objective functional (1) reads

Φ
(
λ(x),μ(x)

) =
M∑

I=1

(
u(I) −U (I))TX (I)(u(I) −U (I)), (3)

in which the matrix X (I) corresponds to the weight function
χ(I)(x) and has the same dimension as the stiffness matrix
K . It has been shown [13, 15] that the gradients of Φ can be
calculated conveniently via

δΦ =
M∑

I=1

(
u(I))TδKw(I), (4)

where the adjoint displacement w(I) is the solution of

Kw(I) = −2X (I)(u(I) −U (I)) (I = 1, 2, . . . ,M). (5)

It is noted that u(I) and w(I) share the same Cholesky factor-
ization (e.g., [16]) for the stiffness matrix K , thus the com-
putational expense for solving w(I) (5) is minimal once u(I) is
solved (2).

In the proposed elasto-mammography technique, ana-
tomic structures of the normal breast tissue and tumor are
prescanned. Therefore the breast can be modeled as a piece-
wise homogenous medium, with uniform Lamé parameters
(λtissue,μtissue) for the normal breast tissue region and uni-
form parameters (λtumor,μtumor) for the tumor region. Con-
sequently, there are four gradients to be calculated:

∂Φ

∂λ
=

M∑

I=1

∑

N

(
u(I)
e

)T
N

∂
(
Ke
)
N

∂λ

(
w(I)
e

)
N ,

∂Φ

∂μ
=

M∑

I=1

∑

N

(
u(I)
e

)T
N

∂
(
Ke
)
N

∂μ

(
w(I)
e

)
N ,

(6)

in which the inner summations are taken over all the ele-
ments in the tissue region for the gradients ∂Φ/∂λtissue and
∂Φ/∂μtissue, and over all the elements in the tumor region
for the gradients ∂Φ/∂λtumor and ∂Φ/∂μtumor. In (6), (Ke)N is

the element stiffness matrix of the Nth element, and (u(I)
e )N

and (w(I)
e )N are the element nodal displacements with the Ith

loading. It is also noted that ∂(Ke)N/∂λ and ∂(Ke)N/∂μ are
constant matrices for the Nth element.

3. NUMERICAL SIMULATIONS

In this section, simulations are performed with numerical
breast phantoms to identify the elastic parameters for nor-
mal tissue and tumor(s). The 3D breast phantoms contain
one and two tumors, respectively. To simulate mammogra-
phy compression, two types of loadings are applied, respec-
tively, on the phantoms from different loading angles. Sur-
face forces and part of the boundary displacements are ex-
tracted from the forward computation results, in compliance
with the capability of projective imaging, and are used as in-
put for the reconstruction. In the following text, the units are
“cm” for length and displacements, “kPa” for elastic moduli,
and “kN” for nodal forces.

3.1. Forward computations

Let us first consider a 3D phantom consisting of a half-
spherical matrix with an embedded spherical inclusion
(Figure 2(a)). The soft matrix, 10 cm in diameter and center
at (x, y, z) = (0, 0, 0), imitates normal breast tissue. The hard
inclusion, 1.5 cm in diameter and center at (2, 1.75, 2.25),
simulates a tumor. The second phantom (Figure 2(b)) is sim-
ilar, but has one more tumor of the same size and center
at (−1.8, 0, 2). We denote these phantoms as “Phantom I”
and “Phantom II,” respectively. The phantoms are discretized
with standard 3D tetrahedral elements. Phantom I consists of
1114 nodes and 6070 elements, while Phantom II consists of
1657 nodes and 9340 elements.
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Figure 3: Loading 1: compression nodal force applied on the surface of Phantom II. (a) 3D view; (b) x-y plane view to show direction 1.
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Figure 4: Loading 2: compression nodal force applied on the surface of Phantom II. (a) 3D view; (b) x-y plane view to show direction 2.

The materials are assumed isotropic. The Lamé param-
eters (λ,μ) are (25, 7.5) for the soft breast tissue and are
(125, 25) for the tumor. Young’s modulus E and Poisson’s ra-
tio ν are related to Lamé parameters via

E = μ
(
3λ + 2μ

)

λ + μ
, ν = λ

2
(
λ + μ

) ,

λ = Eν
(
1 + ν

)
(1− 2ν)

, μ = E

2(1 + ν)
.

(7)

Hence, (E, ν) are (20.769, 0.384 62) for soft tissue and
(70.833, 0.416 67) for tumor. Note that the tumor is assumed
approximately 3.5 times as stiff as the surrounding tissue. In
general, a tumor is much stiffer than the surrounding normal

tissues. However, the ratio between the stiffness of cancerous
and normal breast tissues found in the literature shows vari-
ations from a few times to a few ten times [4]. Skovoroda
et al. [5] recognized that this is partially due to the nonlin-
earity effect in which the apparent stiffness increases with
the strain applied. Effects of the contrast ratio on elasto-
mammography will be discussed later.

In the simulations, the displacements are zero on the base
surface where z = 0. Two compression loadings are applied
on the upper surface of breast phantoms, respectively. For
Loading 1, nodal force of 0.005 kN is applied on some of the
surface nodes, as plotted in Figure 3 for Phantom II. Loading
2 applies nodal force |Fx| = |Fy| = 0.004 kN on the other set
of surface nodes, as shown in Figure 4. Note that the loading
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Figure 5: Mammography projections for Phantom II under Loading 1. Projections are made in direction 1. (a) Undeformed projection; (b)
deformed projection overlaps on undeformed projection. In the projections, vertexes A ∼ I in undeformed projection move to A′ ∼ I ′ in
deformed projection, respectively.

directions are different by π/4. For convenience, we denote
the direction with Loading 1 as “direction 1,” and that with
Loading 2 as “direction 2.”

3.2. Data acquisition

Given the Lamé parameters for normal breast tissue and tu-
mor(s), the deformations in response to the external loadings
1 and 2 are obtained by solving finite element (2), respec-
tively. First of all, the external surface of a breast at unde-
formed state can be reconstructed from images taken with a
3D camera (e.g., [17]). Then, for each external loading, two
mammography projections are made in the compression di-
rection; that is, one projection with undeformed state and
one with deformed configuration. The shape and location of
the tumor(s) can further be estimated from the undeformed
projections along different orientations. It is recognized that
real tumors may be irregular in shape and difficult to recon-
struct accurately with limited number of projections. As a
first-order approximation, we assume that tumors are spher-
ical initially, and deform into ellipsoids. The initial size and
center of tumors are readily estimated with two undeformed
projections made in different directions. For instance, direc-
tions 1 and 2 in the present simulations, as plotted in Figures
5(a) and 6(a) for Phantom II. Note that Phantom I is con-
sidered as Phantom II with absence of the tumor initially at
(−1.8, 0, 2).

We extract displacement information from projection of
deformed configurations. Based on the micromechanics the-
ory for deformation of an inclusion in a large medium (e.g.,
[18]), it is reasonable to estimate that an initially spherical tu-
mor deforms into an ellipsoid. Because of the relatively sim-
ple uniaxial compression loadings applied in mammography,
it is further approximated that vertexes of an object in an un-
deformed projection remain vertexes in the corresponding
projection after compression deformation. For example, in
Figure 5(b) for Loading 1, point A is the top vertex of tissue
in undeformed projection. It moves to vertex A′ after defor-
mation. Points B ∼ I are vertexes of the tumors in unde-
formed projection in direction 1. They displace to vertexes

B′ ∼ I′, respectively. Thus, by measuring the vertex loca-
tions in projections before and after deformation, their dis-
placement information can be obtained. For example, dis-
placement components ux and uz in Loading 1 for vertexes
A ∼ I are extracted from the projections as in Figure 5. Ac-
quisition of displacement information with Loading 2 makes
use of projections, see Figures 6(a) and 6(b), and follows
the same procedure. It is noted that the two tumors partly
overlap in the projections in direction 2, and vertexes C and
G are in shadow. For such a case, the vertex displacements
are still attainable according to the grey density information
in the projections with loss of some accuracy. The collected
displacement data are denoted as U (1) and U (2) for elasto-
mammography reconstruction.

Accurate displacement measurement with high spatial
resolution will benefit elastography reconstruction in gen-
eral. However, pinpoint tracking of large number of mate-
rial points in an object is still a challenge in medical imag-
ing [19], in particular for simple mammography projections
that lack natural landmarks. Therefore, we propose elasto-
mammography that only makes use of displacements of a
few special points extracted directly from projections. As de-
scribed above, the points include top vertex on the upper
breast surface (A in Figure 5(b)) and vertexes of the tumors
in projections (B ∼ I). Displacements measured at other
points, for instance, on the external surface with a 3D cam-
era, should enhance the efficiency and accuracy of elasto-
mammography.

3.3. Ideal elasto-mammography

With the described data acquisition method, displacements
at some key points are extracted from deformed and un-
deformed projections with the two compression loadings,
and are used as measurements U (1) and U (2) for elasto-
mammography reconstruction. Compression nodal forces
applied on the surface are also known with the loadings.
Given initial estimate, the Lamé parameters for tissue and tu-
mor are reconstructed following our optimization procedure
(Figure 1).
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Figure 6: Mammography projections for Phantom II under Loading 2. Projections are made along direction 2. (a) Undeformed projection;
(b) deformed projection overlaps on undeformed projection. In the projections, vertexes A ∼ I in undeformed projection move to A′ ∼ I ′

in deformed projection, respectively.

Table 1: Initial estimate and reconstructed results for elasto-mammography.

Tissue Tumor

λ μ E ν λ μ E ν

Real 25 7.5 20.769 0.384 62 125 25 70.833 0.416 67

Estimate 11 194.5 399.441 0.026 76 333 33.5 97.705 0.454 30

Reconstruction results

Ideal I 24.999 7.5 20.769 0.384 62 124.817 24.999 70.815 0.416 58

Ideal II 25.012 7.5 20.764 0.384 69 125.219 25.038 70.947 0.416 79

Noise I 25.155 7.495 20.764 0.385 22 106.750 25.055 70.404 0.404 95

Noise II 26.048 7.503 20.82 0.388 19 146.801 22.379 64.176 0.433 86

Mismatch I 24.972 7.502 20.777 0.384 49 129.398 24.901 70.929 0.419 06

Mismatch II 25.042 7.493 20.703 0.385 08 155.273 26.943 78.826 0.462 83

The ideal case is considered first; that is, the displace-
ments, geometry, and compression nodal forces are exactly
measured, and are used as input for reconstruction. Rows
“Ideal I” and “Ideal II” of Table 1 give the reconstruction
results for Phantom I and Phantom II, respectively. Con-
vergent loci of the Lamé parameters (λ,μ) are plotted in
Figure 7. The loci for Phantom I (Figure 7(a)) and Phantom
II (Figure 7(b)) are very similar. It is observed that (λ,μ) of
the tissue approach the real value rapidly. After about 20 it-
eration steps, their relative errors are well within the range
of 5%. Then they experience some minor adjustment. In
contrast, Lamé parameters of the tumor converge slower, in
particular for λ, which starts to fall to the real value after
about 40 steps. After about 50 steps, all parameters are ac-
curately identified, with the largest error of about ±0.18%
(for λ of tumor). Reconstructions using different initial es-
timates have been conducted. Very similar convergent pro-
files are found for the parameters, and highly accurate re-
sults are obtained. This indicates efficiency and uniqueness
of the proposed elasto-mammography using projective mea-
surements.

The slower convergent speed of Lamé parameters of the
tumor, in particular for λ, is explained by the roles they
play in the deformation due to the applied loadings, as dis-
cussed by Liu et al. [13]. In general, parameters with the

most significant influence on the deformation are also those
that are most accurately and easily identified. The influence
of a parameter depends on size and location of the material
region it belongs to, as well as characteristics of the defor-
mation. For the present simulations, λ and μ of the tissue
are dominant, while those of tumor are much less influen-
tial, due to the small size and deep location of the tumor(s).
Slower convergence of λ for tumor indicates that the present
loadings do not introduce enough volumetric strain in the
tumor.

4. DISCUSSION

4.1. Effect of noise

The above elasto-mammography reconstructions are con-
ducted using ideal inputs. In practice, several factors will
affect the performance of elasto-mammography, the most
common one among which is the noise with displacement
measurement. To investigate the capability of the proposed
elasto-mammography modality and algorithm to handle im-
perfect real data due to inevitable measurement errors, we
conduct reconstruction using noisy input; that is, each com-
ponent of U (1) and U (2) is added with a randomly selected
relative error between −5% and 5%.
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Figure 7: Convergent loci of elasto-mammography reconstruction for Lamé parameters (λ,μ) of normal breast tissue and tumor, normalized
with the exact values correspondingly. No measurement error is considered. (a) Phantom I (one tumor); (b) Phantom II (two tumors).

The results are shown as “Noise I” (for Phantom I)
and “Noise II” (for Phantom II) in Table 1, and the con-
vergent loci are plotted in Figure 8. The overall convergent
loci are very similar to the “ideal” cases. Lamé parameters
(λ,μ) of the tissue need about 20 steps to approach closely
to the real values, while those of the tumor need about
50 steps for convergence. The tissue parameters are very
accurately identified, with the largest relative error of 4%
for λ of Phantom II, and errors well within ±1% for the
others. The Lamé parameters (λ,μ) of tumor, however, are
not as robust, with relative errors of (−14.6%, 0.22%) and
(17.4%,−15.5%) for Phantom I and Phantom II, respec-
tively. In spite of these reconstruction errors, it is still positive
that the elasto-mammography results are accurate enough
for diagnosis of tumors, noting the significant differences of
stiffness between normal tissue, and benign and malignant
tumors (e.g., [3–5]). The better robustness of the tissue pa-
rameters is also explained by the strong roles they play in
the deformation, as we have discussed above. Furthermore,
as suggested by Liu et al. [13], multiple sets of well-designed
loadings should help to bring out the influences of all the
material parameters, and thus suppress the effects of noise.

4.2. Effect of geometry mismatch

Another concern for elasto-mammography is the geometric
depiction of the tumor. As described in the section of data
acquisition, we use a simple sphere to approximate a real tu-
mor, and estimate its size and location from two undeformed

mammography projections. This inevitably introduces geo-
metric mismatch for practical elasto-mammography. To in-
vestigate the effect of geometry mismatch, the two phantoms
are redesigned by replacing the spherical tumors with cubic
tumors. Note that the edge length of the cube is 3/

√
5 cm.

Forward simulations are conducted under the same Load-
ing 1 and Loading 2 with the new phantoms. Then, mam-
mography projections are made of the new undeformed and
deformed configurations. To extract geometric and displace-
ment data from the projections, we still use spherical ap-
proach. As schematically shown in Figure 9, a cubic tumor
is approximated with a spherical one, whose size and loca-
tion are determined by the two undeformed projections in
direction 1 and direction 2. Then, the estimated spherical
tumors are used for elasto-mammography reconstruction of
the material parameters. The results are shown as “Noise I”
(for Phantom I) and “Noise II” (for Phantom II) in Table 1.
Convergent loci are found to be similar to the previous cases,
and are not shown.

The tissue parameters again show excellent robustness.
The geometric mismatch introduces relative errors less than
0.17%. Due to the relatively small size of the tumor(s), their
Lamé parameters (λ,μ) are more sensitive to geometric mis-
match, with relative errors (3.52%, 0.40%) for Phantom I
and (24.2%, 7.78%) for Phantom II. In comparison to the
displacement noise, the geometry mismatch seems to have
slightly less overall influence on the reconstruction results.
However, this point is based on the current phantoms, and
needs further investigation.
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Figure 8: Convergent loci of elasto-mammography reconstruction for Lamé parameters (λ,μ) of normal breast tissue and tumor, normalized
with the real values correspondingly. Noise is considered. (a) Phantom I (one tumor); (b) Phantom II (two tumors).
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Figure 9: Geometry mismatch. A sphere is used to approximate a real cubic tumor. Size and location of the sphere are determined from
projections of the cubic tumor in direction 1 (a) and direction 2 (b). r/a = √5/2.

In this study, a perfect sphere is assumed to simulate
the real tumor. From this simplified model, the informa-
tion of deformation can be easily obtained from the pro-
jections. However, investigation of geometry mismatch is
needed since most of real tumors have irregular shapes. A
cube (a rectangle or square in projections) is used to rep-
resent a real tumor, and a sphere (a circle in projections)
approximates it. From Figure 9(a), it can be seen that most
of the areas between circle and square overlap. The results
demonstrate that geometry mismatch does not have a great

influence on this reconstruction. It is therefore suggested
that, for an irregular shape of a real tumor in projections, we
could choose a circle to approximate it and do reconstruction
based on this simplified model.

4.3. Effect of contrast ratio

The material stiffness is a key feature that distinguishes be-
nign from malignant tumors [4–6]. Contrast ratio, defined
as the ratio between Young’s modulus of tumor and normal
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Table 2: Elasto-mammography simulation using phantoms with different stiffness contrast ratios.

Tissue Tumor

λ μ E ν λ μ E ν

Contrast ratio = 1.5

Real 25 7.5 20.769 0.384 62 54.979 10.995 31.154 0.416 67

Phantom I 25 7.5 20.769 0.384 61 54.979 10.995 31.154 0.416 67

Phantom II 24.928 7.5 20.766 0.384 36 55.709 11.025 31.154 0.417 20

Contrast ratio = 8.0

Real 25 7.5 20.769 0.384 62 293.22 58.642 166.15 0.416 67

Phantom I 24.989 7.5 20.767 0.384 58 332.56 58.676 167.23 0.425 01

Phantom II 24.994 7.497 20.761 0.384 63 331.42 59.124 168.42 0.424 31

breast tissue, covers a wide range. For benign tumors, con-
trast ratio typically varies from 2.0 to about 5.0. For malig-
nant tumors, it is considerably higher. Our numerical experi-
ments [13] indicate that accuracy of elastography reconstruc-
tion depends not only on type of loading and measurement
accuracy, but also on the contrast ratio. In case that the tu-
mor is very hard, the material parameters may be identified
qualitatively, but not quantitatively.

To investigate the effect of contrast ratio, we conducted
elasto-mammography reconstructions with soft and hard
phantoms, whose Lamé parameters (λ,μ) are set to create
contrast ratios (CR) of 1.5 and 8.0, respectively. Table 2 gives
the real Lamé parameters and reconstruction results. Com-
pared to the previous case with CR about 3.5 (Table 1, “Ideal
I” and “Ideal II”), results for the soft phantoms (CR = 1.5)
are even more accurate, in particular for λ of the tumor.
For the hard phantoms (CR = 8.0), the tissue parameters
are also exact; however, λ of tumor carries relative recon-
struction errors of about 13% for both phantoms, which is
considerably larger than the soft cases with CR = 3.5 and
1.5. The reason is that deformation of a relatively softer tu-
mor is larger than a hard one, and thus is more sensitive to
small variation of its material parameters. Also as discussed
above, λ of the tumor seems to have the least influence on
the specific deformations considered in the simulations. On
the other hand, it is convincing that the proposed elasto-
mammography is efficient in revealing the contrast ratio and
telling whether a tumor is malignant or benign. In general,
a tumor is suspected of malignancy when the contrast ratio
is higher than 6. In the present simulations, when the “real”
contrast ratio is 8.0, the elasto-mammography reconstruc-
tion yields 8.11, which is fully acceptable for the diagnostic
purpose.

The elastography simulations of Liu et al. [13] assumed
tumor and normal breast tissue as general anisotropic ma-
terials, and applied four sets of loading on a breast phan-
tom to bring out all the elastic parameters. Their isotropic
simulation suggested that displacements measured from a
single loading are adequate for unique identification of
the Lamé parameters (λ,μ) of tissue and tumor. However,
their measurement includes displacement on the entire ex-
ternal surface and the tissue-tumor interface of a breast,

requiring more complex imaging equipment. In our elasto-
mammography proposal, displacement measurement has
been reduced to a few vertexes, and can be readily obtained
from simple mammography projections. A tradeoff is that
two or more sets of compression loadings may be needed to
obtain adequate identification.

Mathematical proof for uniqueness results of elasto-
mammography using projection measurements is yet un-
der further investigation. Our simulations always yield the
same material parameters (within the numerical processing
errors), regardless of the initial estimate. With ideal measure-
ments, the resulting parameters exactly match the real val-
ues specified for the models. When displacement noise and
geometry mismatch are taken into consideration, the result-
ing parameters have reconstruction errors, however, are close
enough to their real values for application purpose. In sum-
mary, the proposed elasto-mammography method is numer-
ically stable and robust, is relatively simple to perform, and
thus has great potential for clinical applications.

5. CONCLUSIONS

A new method that combines elastography and mammogra-
phy to reconstruct the elastic field of the breast is reported.
Displacement and geometry measured from deformed and
undeformed mammography projections are applied as in-
put data to reconstruct the isotropic material parameters
for normal breast tissue and tumor. Our numerical simula-
tions demonstrate that unique and accurate results can be
obtained using information extracted from only two sets of
projections. Displacement noise, geometry mismatch, and
material contrast ratio do not adversely affect the results,
demonstrating that our method is stable and robust. These
findings are sufficiently encouraging to warrant both further
development and clinical evaluation of our reconstruction
method.
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