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Abstract

In the present study, we describe two novel cases of SCA5 with early onset. The

first one, carrying a novel heterozygous de novo missense mutation in SPTBN2

gene, showed a striking very severe cerebellar atrophy and reduction of volume

of the pons at a very young age (16 months). The latter, carrying the first de

novo intragenic deletion so far reported in SPTBN2 gene, showed a mild cere-

bellar atrophy involving the hemispheres and a later onset. In both cases, for

the first time, a hyperintense signal of the dentate nuclei was observed.

Introduction

Inherited ataxias are a clinically rare and genetically

heterogeneous group of disorders characterized by pro-

gressive cerebellar ataxia, incoordination, dysarthria, and

difficulty in swallowing, due to pathogenic variants in

more than 100 genes identified so far.1–3 Two major

groups of ataxia are described: autosomal dominant cere-

bellar ataxias (also known as spinocerebellar ataxia, SCA)

leading to an adult-onset ataxia and autosomal recessive

cerebellar ataxias (also known as SCARs). In recent years,

it has become clear that the monoallelic or biallelic state

of the pathogenic variant is responsible for adult- or

infantile-onset cerebellar ataxia.3 Among these, SCA type

5 (SCA5) is a dominant ataxia associated with spectrin

beta non-erythrocytic 2 (SPTBN2) gene mutations,

characterized by a slowly progressive ataxia with typical

adult-onset and global cerebellar atrophy at brain

magnetic resonance image (MRI).2,4–7 The SPTBN2 gene

(11q13.2) encodes the b-III spectrin protein, which is pri-

marily expressed in the Purkinje cells of the cerebellum,

and it is involved in trafficking and anchoring of crucial
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neurotransmitter transporters and ion channels to

neuronal cell membranes.5,8–12 Recently, 11 cases of infan-

tile-onset SCA5 have been reported, all showing global

developmental delay, eye movement anomalies, and cere-

bellar ataxia, carrying either missense or truncating

heterozygous mutations in SPTBN2 gene.2,3,7,13–17 In the

present study, we describe two new cases of SCA5 with

early onset. The first one, carrying a novel heterozygous

de novo missense mutation in SPTBN2 gene, shows a

very severe cerebellar atrophy at onset. The latter carries

the first de novo intragenic deletion so far reported in

SPTBN2 gene.

Methods

The patients’ parents provided written informed consent

to the research and to the publication of the results.

Study approval by the Ethics committee was provided by

the E. Medea Scientific Institute Ethic Committee.

The probands’ DNA were screened using a targeted

next-generation sequencing (NGS) approach with a panel

of 231 genes. The deletion was identified using Exome-

Depth, a powerful bioinformatic tool realized to identify

CNVs in exome samples and in NGS data from gene pan-

els. Further details are provided in File S1.

Patients underwent cerebral MRI at 1.5 and 3T. In

both cases, multiplanar T1- and T2-weighted images were

acquired with age-appropriate TR and TE values. Seda-

tion was required to perform the MRI.

Results

The clinical, genetic, and neuroradiological features of the

two patients herein described and the 11 patients

described up to date with early onset SCA5 are summa-

rized in Table 1. For a detailed description of the two

novel patients, see File S1.

Patient ID 91618

The patient was the only child (male) of non-consan-

guineous healthy parents. Perinatal history was normal.

Since the first year of life, main developmental milestones

appeared delayed and an impairment in social and com-

munication skills was evident. At the age of 16 months,

neurological examination showed poor social and com-

municative interaction, absence of expressive language,

axial hypotonia, ataxia, increased deep tendon reflexes,

clumsiness, and crawling. Brain MRI at 16 months of age

documented a severe cerebellar atrophy involving both

the hemispheres and vermis, with abnormal hyperintense

signal of the dentate nuclei (Fig. 1A). The pons showed

reduced volume. NGS of a panel of 231 genes (see FileT
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S1) showed a novel heterozygous variant c.185C > A (p.

Thr62Asn) in SPTBN2 gene. The variant was not present

in any of the parents suggesting a de novo origin. The

variant was not present in any public database. Predic-

tions of possible pathogenicity were obtained with differ-

ent software as detailed in File S1. The Thr62 residue is

already known to be involved in a mutation, p. Thr62Ile

(c.185C > T)12. The amino acid change falls within the

calponin homology domain of b-III spectrin protein

(Fig. 2A and B).

Patient ID 14020

The patient was the only child (female) of distant consan-

guineous healthy parents (third-degree cousins). Main

developmental milestones appeared delayed. At the age of

20 and 29 months, simple febrile seizures occurred (2–
3 min). Repeated EEGs showed during sleep poor organi-

zation of background activity without epileptic abnormal-

ities. Brain MRI at 3 years of age showed only mild

cerebellar atrophy involving the hemispheres associated

with hyperintense signal of the dentate nuclei (Fig. 1B).

The brainstem and supratentorial brain were normal. At

the age of 37 months, neurological examination showed

microcephaly (head circumference 40.9 cm, <3rd centile),

poor verbal language (few words), diffuse hypotonia,

increased deep tendon reflexes, presence of bilateral

Babinski sign, mild dysmetria and tremor, and gait ataxia.

A mild developmental delay was documented. Targeted

NGS did not lead to any pathogenic variant, but the anal-

ysis with ExomeDepth detected a putative heterozygous

deletion in SPTBN2 spanning from exon 13 to 20, con-

firmed by quantitative PCR (qPCR) (data not shown).

We subcloned and sequenced the junction fragment from

patient genomic DNA (Fig. 2A and B) and we identified

two AluSx elements flanking the two breakpoints in

intron 12 and 20, which represent the microhomology

domains mediating a deletion of 10895bp

(g.66463395_66474289del10895) as shown in Figure 3A

and B. The deletion was not present in any of the parents

suggesting a de novo origin in the patient. Several

attempts were made to confirm the deletion at cDNA

level starting from RNA extracted from patient’s blood.

Due to the lack of SPTBN2 gene expression in blood, no

amplification products were obtained. Patient’s parents

refused skin biopsy, therefore we can only suppose that

the genomic deletion generates an in-frame cDNA dele-

tion from exons 13 to 20, producing a putative protein

Figure 1. MRI findings. Patient 1 (row A) at 16 months of age shows a severe vermian and cerebellar atrophy with associated relative pontine

atrophy. Patient 2 (row B) at 3 years of age has a milder degree of cerebellar atrophy with a normal pons. In both subjects, dentate nuclei have a

hyperintense abnormal signal on T2-weighted sequences (arrowheads).
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lacking 875 amino acid residues (p.(551Lys_Gln1426del))

within the spectrin repeats of the SPTBN2 protein

(Fig. 3C).

Discussion

In recent years, an increasing number of infantile-onset

autosomal recessive cerebellar ataxias associated with

heterozygous SPTBN2 gene mutations (SCA5) were

described. The SPTBN2 protein, expressed in soma and

dendrites of cerebellar Purkinje cells, is required for the

maintenance of dendritic architecture and for the traffick-

ing and stabilization of several membrane proteins. Muta-

tions in SPTBN2 gene alter dendritic morphology and

density and cause changes in Purkinje cells’ intrinsic

excitability. This reduces sodium currents and causes defi-

cits in glutamatergic neurotransmission.12 To date, 11

infantile-onset cases of dominant SPTBN2 gene mutations

have been reported, four with the same p. Arg480Trp

mutation, all showing the common phenotype of develop-

mental delay in early infancy, evolving into intellectual

disability and ataxia. Hyperreflexia, dystonia, and eye

movement anomalies can be variously present. Herein we

describe two novel SCA5 cases with early onset. Clinical

findings of both our cases are completely in line with lit-

erature. Nevertheless, at brain MRI, the first one showed

a striking, very severe cerebellar atrophy at a very young

age (16 months) with a global volume reduction of hemi-

spheres and vermis associated with a marked deepening

and enlargement of folia sulci and cortical subarachnoid

Figure 2. Patient’s pedigrees and mutations. Panel (A) represents the patients 91,618 and 14,020 pedigrees. Electropherograms of the mutant

and wild-type sequence in patient and in the parents, respectively, are shown. On the right, gel electrophoresis of genomic amplification product

in patient 14,020 and control using primer encompassing the putative deleted region. A fragment of approximately 2000 bp is amplified in

patient’s DNA only containing the deletion breakpoint. Panel (B) shows a schematic representation of the SPTBN2 protein with the known

functional domains, the known mutations (italics character), and the mutations identified in the patients herein described (boxed). The dashed line

indicates the deleted region. Acc. N. of the SPTBN2 genomic and protein sequences are NM_006946.2 and NP_008877.1, respectively.
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spaces, pons hypoplasia, and a normal-appearing supra-

tentorial brain. The second one showed only a mild cere-

bellar atrophy. These findings are quite in line with

literature reports in which a cerebellar vermis and hemi-

spheric hypoplasia or atrophy of varying degrees with no

evidence of cortical involvement are described.2,3,7,13–17

Further, this is the report of the second case of brainstem

involvement (pons hypoplasia) so far documented.2 In

addition, in both our cases, a hyperintense signal of the

dentate nuclei was observed, a finding not described in

literature up to now associated with SCA5, but found in

association with cerebrotendinous xanthomatosis and

methotrexate toxicity, both conditions clinically excluded

in our patients. From a genetic point of view, the first

patient herein reported carried a novel heterozygous de

novo missense mutation in SPTBN2 gene, while the sec-

ond one harbored the first intragenic deletion of

10895 bp that spans from intron 12 to 20 of the SPTBN2

gene and leads to a putative protein lacking 875 amino

acid within the spectrin repeat region. AluSx sequences

were found to flank the breakpoint and likely mediate the

deletion event. It is well known that homologous recom-

bination between dispersed Alu sequences can lead to

genetic changes, such as duplications, deletions, and

translocations, in different disease genes.18 These

sequences of about 300 base pairs share a great level of

identity and allow more efficient homologous recombina-

tion than sequences with an imperfect identity which

would represent an inefficient target.18,19 The suggested

minimum requirement for favorable homologous recom-

bination is 75% of identity between Alu elements.20,21 In

our study, we hypothesize that the de novo deletion of

10895 bp in SPTBN2 gene was generated by an unequal

homologous recombination event, due to a misalignment

between Alu Sx in intron 12 (5ʹ deletion boundary) of

SPTBN2 gene and Alu Sx in intron 20 (3ʹ deletion

boundary). Both Alu Sx show 86% sequence identity

(91% without gaps) and a microhomology domain of

50 bp. This homology is comparable to that previously

reported by Rossetti et al in the factor VIII coagulation

gene and that reported by Zhang et al in the mitochon-

drial acetoacetyl-CoA thiolase (T2) gene.22,23 These

Figure 3. Characterization of the deletion breakpoint in Pt 14020. Panel (A) indicates the patient’s genomic DNA sequence encompassing the

breakpoint. Panel (B) shows the patient’s genomic DNA sequence alignment between the two intronic regions flanking the breakpoint and

containing the AluSx repeats. Panel (C) is a schematic representation of the genomic SPTBN2 deletion of 10895 bp, which generates a putative

in-frame cDNA deletion encompassing exons 13 to 20 of SPTBN2 gene thereby leading to a putative protein missing 875 aa residues.
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studies let us speculate that, also in our case, unequal

homologous recombination between Alus was the likely

mechanism for this deletion, adding the dominant SCA

due to SPTBN2 mutations to the group of the genetic dis-

orders having Alu/Alu recombination as underlying

genetic mechanism. Of note, the second patient, carrying

the intragenic deletion of SPTBN2 gene, showed a milder

clinical (later onset) and neuroradiological phenotype

than the patient with the missense mutation.

In conclusion, the authors present two novel cases of

infantile-onset SCA associated with a novel SPTBN2

mutation—the first with an early severe cerebellar

involvement and the latter with the first intragenic dele-

tion so far reported.
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in the Supporting Information section at the end of the
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File S1. Material and Methods and the two Patients

herein described.
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