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Introduction
Tuberculosis is caused by Mycobacterium tuberculosis, which 
infects about 10 million people per year.1 The pathogenicity of 
M. tuberculosis depends on its ability to adapt to the changing 
host environment and transmit a signal to subvert the host 
immune response to maintain latent infection. As a defense 
mechanism, the host immune system hinders the growth of 
bacteria by imposing a variety of stresses such as oxidative 
stress, acidic pH, and nitrogen stress.2 M. tuberculosis responds 
to these stress conditions by modulating gene regulation and 
revised expression of certain genes across the genome.

Regulatory proteins, small non-coding RNAs (sRNAs), and 
their target genes constitute gene regulatory networks, ena-
bling bacteria to adapt to their metabolic needs and express 
virulence factors at different stages of infection in a coordi-
nated manner.3 Bacterial sRNAs can influence the expression 
of genes across various stages of genetic information flow, 
encompassing transcription and translation processes. A vari-
ety of mechanisms are used by sRNAs to regulate translation 
and mRNA stability, including changes in RNA conformation, 
base pairing with target mRNA, and interaction with pro-
teins.4-6 Based on base pairing with their target mRNAs, 
sRNAs are broadly classified into the following categories (i) 
Antisense or cis-encoded sRNAs, which are present on the com-
plementary strand to Open Reading Frames (ORFs), 5’ or 3’ 
untranslated region (UTR) of an mRNA and share an extended 
region of complete complementarity with their target and (ii) 
Trans-encoded sRNAs which act in trans on distant targets. 

These sRNAs share limited complementarity with their target 
and are largely found in the IGRs.4-6

Most of the previously described sRNAs are exclusively 
encoded within IGRs. However, recent studies indicate their 
presence in gene UTRs, which can be derived via endoribonu-
clease-mediated mRNA degradation-based pathways.7-10 For 
example, the cpxP membrane stress response chaperone is tran-
scribed into an mRNA containing a conserved 60-nucleotide 
3’-UTR, which can independently act as an Hfq-dependent 
sRNA. This sRNA, CpxQ, is excised from the mRNA by 
RNase E, enabling its activity as a regulator of multiple genes.7 
Another study in E. coli reported a similar mechanism wherein 
sRNAs are carved out of protein-coding regions, rather than 
from 3’-UTR or 5’-UTRs, during mRNA decay.11 In some 
cases, premature transcription termination can also give rise to 
sRNAs located in 5’-UTR, while in others, 5’-UTR riboswitch 
acts as a non-coding sRNA and regulates the expression of dis-
tantly located target mRNA.7,12 Also, the “junk RNA” derived 
from riboswitches and mRNAs has been proven to be func-
tionally important as small non-coding RNAs.13

Currently, available tools utilize comparative genomics, 
expression data analysis, secondary structure comparison, and 
transcription signal-based methods to identify sRNAs in bac-
terial genomes.14,15 Tools such as QRNA16 and Intergenic 
Sequence Inspector17 focus on sRNAs conserved within the 
IGR among related genomes. Secondary structure-based pre-
diction consists of two approaches, namely, thermodynamic 
stability-based tools such as RNALfoldz18 and structure 
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consensus-based tools such as RNAz, which are dependent on 
the minimum free energy (MFE) of sRNA’s secondary struc-
tures.19 Transcriptional signal prediction tools include sRNAp-
redict,20 sRNAscanner,21 and sRNAfinder,22 which use either 
expression-based signals or pre-computed coordinates such as 
orphan transcriptional signals in the IGRs or other predictive 
features such as promoter signals, transcription factor binding 
sites, or terminator signals as input for the prediction. Whereas 
the expression-based approach identifies sRNAs in the IGRs 
based on their expression compared to upstream and down-
stream protein-coding genes.14

Recent advances in next-generation sequencing have offered 
a more versatile and reliable way of profiling sRNAs, hence 
providing a better understanding of bacterial transcriptomes 
including sRNAs. These studies have revealed the expression 
of small transcripts from 5’ or 3’-UTRs of mRNAs or internal 
fragments of mRNAs, rRNAs, or tRNAs.9,23 As sRNAs can be 
produced from 3’-UTRs, 5’-UTRs, internal RNA fragments 
of mRNAs, or as independent transcripts with the help of 
alternate promoters, demarcation of these regions from RNA 
sequencing data can be challenging. Tools such as Analysis of 
Paired-End RNA-Seq Output (APERO) and sRNA-Detect 
use RNA-seq data and predict sRNA based on the enrichment 
of read starts and genomic stretch with constant read coverage, 
respectively.24,25 While RNA-seq provides a comprehensive 
view of the entire transcriptome, sRNA-seq focuses on sRNAs, 
typically those in the range of 20 to 200 nucleotides. Therefore, 
sRNA-seq allows for a targeted analysis of the sRNA popula-
tion, which might be overlooked or underrepresented in total 
RNA-seq data.

sRNA-seq technology involves direct cloning and massively 
parallel sequencing by synthesis that allows the discovery of 
sRNAs and small regulatory proteins across the entire bacterial 
genome.26 Some of the sRNA sequence analysis tools such as 
seqpac and sRNAPipe are designed primarily for eukaryotes, 
and either employ sequence-based counting methods or map-
ping-based methods to discern small transcripts.27,28 While 
such methods for analyzing sRNA-seq data exist, an effective 
method for de novo sRNA identification from sRNA-seq data 
is not yet available for bacteria.

We conducted a global screen of sRNAs in M. tuberculosis 
H37Rv using the Isolation Forest algorithm implemented on 
publicly available sRNA-seq data.29 Isolation Forest has been 
used to identify invasive alien species (outliers) in biological 
geo-profiling30 and genomic islands based on genomic pat-
terns.31 This algorithm isolates anomalous data points, that is, 
outliers from a given data by leveraging a random partitioning 
strategy. The data is iteratively split into two subsets using ran-
domly chosen values as the threshold within the current range, 
eventually forming a large binary tree. In this process, anoma-
lous data points are more likely to be separated earlier and take 
less splitting operation compared to a normal data point. 

Assuming the path length of each data point stands for the 
number of splits required to separate the data point from the 
rest of the subset, we calculated the anomaly score for each of 
the data points as the average path length calculated from mul-
tiple binary trees constructed from the same data. Therefore, 
more anomalous points will have less anomaly scores and vice 
versa. In our study, we implemented this technique on per-base 
read count data, where the abnormally higher read counts 
(anomalous points) signify data points corresponding to sRNA 
expression. Additional steps such as grouping consecutive 
anomalous points and length filtration were considered for 
precision in identifying sRNA coordinates.32 Through this 
approach, we report 1120 sRNAs and 46 small proteins across 
6 diverse growth conditions. Many of these sRNAs in both 
protein-coding and non-protein-coding regions appear impor-
tant for M. tuberculosis adaptation to host stress environments. 
This machine learning-based method operates on per-base 
coverage obtained from sRNA-seq data to extract potential 
sRNA coordinates with significant expression, thereby ena-
bling a targeted and genome-wide identification of sRNAs. 
Based on this method, we developed Prediction Of sRNAs 
using Isolation Forest (POSIF), a tool for de novo bacterial 
sRNA identification. Unlike previously available tools, POSIF 
has a user-friendly interface and doesn’t have external 
dependencies.

Methods
Data retrieval and processing

sRNA-seq data for six different growth conditions with acces-
sion number SRP142345 were retrieved from NCBI-Sequence 
Read Archive (NCBI-SRA) (https://www.ncbi.nlm.nih.gov/
sra) (Table S1).29 These SRA files were converted to fastq files 
using sra-toolkit fastq-dump (version 2.10.0). The adapter 
sequences and reads less than 20 nucleotides in length were 
trimmed using Trim-Galore for each of the six growth condi-
tions (version 0.6.2).33 Trimmed reads were aligned to the M. 
tuberculosis H37Rv (NC_000962.3) reference genome using 
Bowtie2 (version 2.3.5.1).34 Reads mapped to the reference 
genome were separated into forward and reverse-strand Binary 
Alignment and Map (BAM) files, which were further sorted 
and indexed using Samtools (version 0.1.9).35 Per-base cover-
age was computed for each strand using Bedtools (version 
2.26.0).36

Prediction of putative sRNA regions using  
Isolation Forest

The Isolation Forest algorithm is designed to detect and isolate 
anomalous data points by assigning them an anomaly score. 
This score represents the average depth at which each data 
point is isolated within a collection of decision trees. We imple-
mented the Isolation Forest algorithm32 from the Python 
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package scikit-learn (0.22.1) and used it to predict putative 
sRNA regions from the processed sRNA-seq data. The data 
included rich medium, acidic pH, iron limitation, membrane 
stress, nutrient starvation, and oxidative stress growth condi-
tions (SRP142345).29 Per-base coverage files in .bed format 
were given as input to the program, along with the contamina-
tion factor parameter set as 0.005 (i.e., 0.5% outlier). 
Consecutive points were considered as peaks and two peaks 
separated by ⩽5 nucleotides were merged to derive a single 
sRNA expression region. Regions with < 20 nucleotides were 
not considered for further analysis.

To represent the context-dependent expression of the pre-
dicted sRNAs, the offset score, which depicts the contamina-
tion factor percentile of the inverse anomaly score, was used as 
a benchmark expression level in each condition.

Annotation and classif ication of predicted regions

The final set of non-redundant sRNAs across growth condi-
tions was derived by merging regions if they overlap by > 75% 
of the length. From these, regions mapping to known repeat 
regions, tRNAs, and rRNAs were removed. The final list com-
prised 1166 putative sRNAs, of which 46 were marked as small 
proteins of > 10 amino acid length with a start codon and in-
frame stop codon. The genomic location of these predicted 
sRNAs and small protein regions was identified by mapping 
the midpoint of these regions to annotated genes, UTRs, and 
IGRs in M. tuberculosis.

Genomic coordinates of protein-coding genes, tRNA, and 
rRNA were derived from the NCBI RefSeq gene annotation 
file (https://www.ncbi.nlm.nih.gov/refseq/).37 Transcription 
termination (3’-UTR) coordinates were obtained from the 
WebGeSTer database.38 Coordinates of transcription start sites 
(5’-UTR) were downloaded from Cortes et al.39

Conservation of sRNAs and small proteins

To test the conservation of identified sRNAs across mycobac-
terial species and other bacteria, a blastn-short search specific 
for short nucleotide segments was performed using BLASTN 
version 2.6.0 with the E-value cutoff of 1E−04 and all other 
default parameters.40 The target database was a custom-made 
offline database that included the following genomes: Gram-
negative bacteria (Escherichia coli K-12, Haemophilus influenzae 
Rd KW20, Klebsiella pneumoniae HS11286, Pseudomonas aer-
uginosa PAO1, Vibrio cholera N16961, and Yersinia pestis 
CO92), Gram-positive bacteria (Bacillus subtilis 168, Listeria 
monocytogenes EGD-e, Staphylococcus aureus NCTC 8325, 
Staphylococcus epidermidis ATCC 12228, Streptococcus mutans 
UA159, and Streptococcus pneumoniae R6), and mycobacteria 
(Mycobacterium africanum GM041182, Mycobacterium canettii 
CIPT 140010059, Mycobacterium smegmatis FDAARGOS_679, 

Mycobacterium leprae TN, Mycobacterium bovis AF2122/97, 
Mycobacterium avium 104, Mycobacteroides abscesses ATCC 
19977, Mycobacterium haemophilum DSM 44634, and 
Mycobacterium marinum E11).

Small protein conservation was tested using BLAST-p 
against the NCBI-nr database. From the Conserved Domain 
Database (CDD) of NCBI, CD-Search was used to identify 
the conserved domains in the small proteins.41 The MFE for 
the 1120 predicted sRNAs, 65 experimentally validated sRNAs 
in M. tuberculosis, and 1120 randomly chosen IGRs were calcu-
lated using RNA-fold software.42 P-values were calculated 
using the Wilcoxon rank sum test implemented in R (https://
www.rdocumentation.org/packages/stats/versions/3.6.2/top-
ics/wilcox.test).

Alternative transcription starts site (TSS) and 
RNase E-mediated synthesis of sRNAs

To verify sRNA expression, the start sites of the predicted 
regions were compared with genome-wide TSS identified in 
M. tuberculosis in rich medium and nutrient starvation growth 
conditions.39,43 The TSS of a predicted sRNA was validated if: 
(a) the TSS site is located within 10 bp upstream or down-
stream of the sRNA start site, (b) the sRNA is located between 
a given gene and its annotated TSS, and (c) the sRNA is close 
to a reported alternate TSS.

To check whether sRNAs were synthesized via RNase 
E-mediated mRNA decay, RNA-seq data for RNase E mutant 
(SRR8550314, SRR8550315, and SRR8550316) and wild 
type (SRR8550302, SRR8550303, and SRR8550304) samples 
from the rich medium of M. tuberculosis were analyzed.44 The 
SRA files were downloaded from NCBI-Sequence Read 
Archive (NCBI-SRA) (https://www.ncbi.nlm.nih.gov/sra) 
and converted to .fastq files using sra-toolkit fastq-dump (ver-
sion 2.10.0).45 The adapter sequences and reads less than 20 
nucleotides in length were trimmed using Trim-Galore (ver-
sion 0.6.2) (https://www.bioinformatics.babraham.ac.uk/pro-
jects/trim_galore/)33 for each replicate of the two growth 
conditions. Trimmed reads were aligned to the M. tuberculosis 
H37Rv (NC_000962.3) reference genome using Bowtie2 (ver-
sion 2.3.5.1).34 The BAM files generated for three replicates 
per growth condition were merged using Samtools (version 
0.1.9)35 to obtain a single BAM file each for RNase E mutant 
and wild type. Per-base coverage files for each of the growth 
conditions were generated from the respective BAM file using 
Bedtools (version 2.26.0).36 The per-base files were used as 
input to an in-house Python script to identify sRNA regions 
that show decreased expression in RNase E mutant growth 
conditions compared to the wild type. The significant differ-
ence (adjusted P-value < 0.05) in the expression of sRNAs was 
computed using the Wilcoxon rank sum test and Student’s 
T-test,46 based on the difference in the read count distribution 
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of the respective region between the RNase E mutant and the 
wild-type samples.

Gene targets of the identif ied sRNAs

Potential gene targets of the identified sRNAs were predicted 
using TargetRNA2.47 The reference genome of M. tuberculosis 
H37Rv (NC_000962.3) was used as the input file. For each 
sRNA, gene targets were generated based on the binding 
energy and P-value. RNA-Seq data from M. tuberculosis for 
multiple growth conditions such as acidic pH 4.5 
(SRR10115602), oxidative stress (SRR13019063), nutrient 
starvation (ERR262987), membrane stress (SRR17730393), 
iron limitation conditions (SRR1917709), and rich medium 
(ERR262983) were retrieved to quantify the expression of the 
genes with FDR ⩽ 0.05.48

The SRA and GSM files were downloaded from NCBI-
SRA (https://www.ncbi.nlm.nih.gov/sra), and the paired-end 
sequence was then split into forward and reverse sequences 
using sra-toolkit fastq-dump (version 2.10.0). For each growth 
condition, one of the replicates was chosen based on FastQC 
reports for further analysis. In the instances where multiple 
replicates exhibited similar FastQC profiles, a replicate was 
selected based on greater mean depth and mean coverage pro-
vided in the Samtools coverage report. The adapter sequences 
and reads less than 20 nucleotides in length were trimmed 
using Trimmomatic (version 0.39) for all growth conditions.49 
Trimmed reads were aligned to the M. tuberculosis H37Rv 
(NC_000962.3) reference genome using Bowtie2 (version 
2.4.5).34 Per-base coverage was generated for the respective 
BAM files using Bedtools (version 2.30.0)36 and Fragments 
Per Kilobase of transcript per Million (FPKM) normalization 
was performed to quantify the expression of genes. For each 
growth condition, genes with expression over the median value 
were marked as highly expressed while the ones below the 
median were marked as less expressed.

Prediction Of sRNAs using Isolation Forest

Prediction Of sRNAs using Isolation Forest predicts bacterial 
sRNA regions using sRNA-seq data. The tool accepts per base 
.bed file (strand-separated or non-strand-separated), contami-
nation factor (percentage of anomalous data), and the organ-
ism’s name. Prediction Of sRNAs using Isolation Forest utilizes 
Isolation Forest, which is an unsupervised machine learning 
algorithm from the Python package scikit-learn (0.23.1) that 
detects outliers (or anomalies) from large data based on the 
anomaly score assigned to each point in the data.50 The algo-
rithm builds an ensemble of decision trees (iTrees) that contain 
anomalies isolated closer to the root of the tree and normal 
instances at the deeper end of the trees.32 Currently, POSIF 
can be run for 10 bacteria, namely, Escherichia coli K-12, 
Salmonella enterica serovar Typhimurium LT2, Pseudomonas aer-
uginosa PAO1, Staphylococcus aureus NCTC 8325, Bacillus 

subtilis 168, Vibrio cholerae, Listeria monocytogenes EGD-e, 
Clostridium diff icile, Mycobacterium tuberculosis H37Rv, and 
Streptococcus pneumoniae Hu17. The back-end of POSIF is 
coded in Python and utilizes libraries Celery, Flask, Scikit-
Learn, Pandas, and Redis. The output generated by the tool is 
a downloadable ZIP file that includes predicted sRNAs and 
their respective genomic locations in a .csv format. Performance 
of POSIF was compared with APERO, which predicted a total 
of 148399 regions with lengths ranging from 15 to 12768 
nucleotides. We further filtered these results based on (a) the 
threshold value, that is, (20×total number of reads)/genome 
size in column “freq” (reads at the start position) (Leonard et 
al),24 (b) Fstart, E-value (coverage ratio of the last position of 
the transcript), using a threshold value of 0.0538, (c) merged 
sRNAs with at least 75% overlap from both side or 100% from 
one side, and (d) length range of 20–250 nucleotides, resulting 
in 1373 sRNAs.24

All statistical tests were performed using Python and R sta-
tistical packages.50-55 All data were analyzed using in-house 
Python and R scripts. Classification and line plots were gener-
ated using the Python library Matplotlib 3.2.1.

Results
M. tuberculosis sRNA-repertoire identif ied using 
Isolation Forest includes many novel and conserved 
sRNAs

Multiple systemic networks in bacteria are regulated by sRNAs 
in response to environmental conditions. Here, we used sRNA-
seq data from a previously published study by Gerrick et al29 
for the genome-wide detection of such regulatory sRNAs 
using the Isolation Forest machine learning algorithm.32 For 
the sRNA-seq data, outliers detected by the Isolation Forest 
algorithm are the highly expressed (high coverage) base posi-
tions and have lower anomaly scores. When outliers are 
detected in consecutive order, they are treated as sRNA expres-
sion signals (peaks) (Figure S1). We utilized M. tuberculosis 
sRNA-seq data encompassing five stress conditions (acidic pH, 
iron limitation, membrane stress, nutrient starvation, and oxi-
dative stress) and a rich medium growth condition for the 
sRNA prediction (Table S1). We identified a total of 1166 
potential sRNA-encoding regions with a median length of 87 
nucleotides expressed in one or more of these growth condi-
tions (Table S2) (Figure S2). We successfully captured 21 out 
of the 65 experimentally verified sRNAs in M. tuberculosis 
(Table S3). For instance, MTS2823 captured as ncRv3661i in 
our data was expressed in all the studied growth conditions 
(Figure S3a).56 Also, MrsI, which is a known sRNA involved in 
the regulation of gene expression during iron limitation in M. 
tuberculosis, was captured as ncRv1847u.29 Our method cap-
tures MrsI as expressed in iron limitation condition, membrane 
stress, and oxidative stress conditions (Figure S3b). sRNA B55 
was identified in our data as ncRv0609u, which showed expres-
sion in all the growth conditions (Figure S3c).57 Further, we 
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compared our predictions with previously published works to 
underscore the importance of our findings. We captured 39 
sRNAs that had previously been identified in the IGRs using a 
moving-window approach in M. tuberculosis.13 Also, 89 of the 
sRNAs identified in our study were previously described by 
Wang et al.58 A comparison of the predicted sRNAs with 189 
sRNAs identified earlier using the BS_Finder tool in M. tuber-
culosis showed 117 as common (Table S4).29 Accurate captur-
ing of some of the known sRNAs, therefore, underscores the 
utility of our method in predicting sRNAs using high-resolu-
tion sRNA-seq data.

Further, we studied the conservation of predicted sRNAs 
across mycobacteria and other Gram-positive and Gram-
negative bacteria (Table S5). We observed that 1111 of the 
sRNAs were conserved across all the mycobacterial species 
analyzed, while 1115 sRNAs were selectively conserved in 
Mycobacterium bovis and Mycobacterium leprae. Interestingly, 
about 355 sRNAs were present in the rapidly growing myco-
bacteria (Mycobacterium abscessus and Mycobacterium smegmatis) 
compared to slowly growing mycobacteria. We observed that 
27 sRNAs were conserved in mycobacteria as well as Gram-
negative bacteria. These findings suggest the evolutionary sig-
nificance and potential functional importance of sRNAs in 
diverse bacterial species.

Understanding the sRNA folding kinetics and MFE is an 
important aspect of assessing the accuracy and reliability of the 
predicted sRNAs. We compared the structural stability (MFE 
of their secondary structures) of the sRNAs against 65 experi-
mentally validated sRNAs in M. tuberculosis. Along with these, 
1120 randomly selected IGRs were included as the negative 
control. We observed that the MFE of the sRNAs is signifi-
cantly lower than the random IGRs, suggesting their stability 
(P-value = 2.33e−26; Figure 1). Beyond this, we studied if any 
of the identified sRNAs are bound by start and stop codons 
in-frame. We identified 46 putative small proteins, 10 of which 
had the TSS identified in their upstream regions (see “Methods” 
section, Table S6).39,43 For instance, MTB_sORF_38 identi-
fied as a putative upstream ORF of operon Rv3001c-Rv3003c 
has a nearby TSS (Figure 2). Also, our search in the non- 
redundant Refseq protein database uncovered conserved 
domains in putative small proteins (Table S6). For example, 
MTB_sORF_11 with a PPE domain (with Pro-Pro-Glu 
motif ) is expressed during membrane stress and nutrient star-
vation (Figure S4). In addition, among 324 annotated pro-
teins < 100 amino acids in the NCBI database, 31 sRNAs 
exhibited length overlap of more than 90% (Table S7).

Context-dependent expression of the  
sRNAs suggests their importance in mediating  
M. tuberculosis stress response

sRNAs are the crucial part of the regulatory network, which are 
strongly induced during stress conditions and regulate a set of 
targets to adapt to various stress conditions imposed by the 

host tissue.2,3 We observed that while 5.89% (66/1120) sRNAs 
showed expression irrespective of the growth condition, certain 
sRNAs were expressed in a particular stress condition, a com-
bination of stress conditions, or only in the rich medium (Table 
S8). For instance, sRNA ncRv3825 F which is encoded sense to 
Rv3825c showed significant expression in all the growth con-
ditions (Figure 3) (Table S9). This sRNA is conserved across 
mycobacteria, including M. africanum, M. canettii, M. bovis, 
and M. avium. One of the potential targets predicted for this 
sRNA is Rv3009c, which codes for glutamyl-tRNA(gln) ami-
dotransferase subunit B (gatB) (see “Methods” section). gatB is 
essential for the growth of bacteria59 and shows high expres-
sion in all the growth conditions, which could be a result of 
positive regulation by ncRv3825 F (Figure S5). About 10.44% 
(117/1120) of the total sRNAs are expressed only in the rich 
medium. For instance, sRNA ncRv3547i expressed under a 
rich medium is predicted to target a gene encoding a conserved 
protein Rv2410c (Figure S6a). Interestingly, Rv2410c is down-
regulated exclusively under growth in rich medium (Table 
S10). The binding of ncRv3547i to the target gene covers its 
start codon, potentially impeding proper binding or movement 
of the ribosomes (Figure S6b). Therefore, we speculate that 
sRNA ncRv3547i negatively regulates Rv2410c in rich 
medium.

We observed that many sRNAs showed stress-dependent 
expression. sRNAs ncRv0983B, ncRv2711B, ncRv2839B, and 
ncRv3616 are expressed across all the stress conditions, which 

Figure 1.  Structural stability of the sRNAs. Box plot comparing the 

structural stability of 1120 predicted sRNAs, 65 curated sRNAs, and 1120 

randomly selected genomic sequences from IGRs with comparable 

lengths. Wilcoxon ranked sum test has been performed between Random 

and Predicted sRNAs (P-value = 2.33e−26), and Predicted and Curated 

sRNAs (P-value = 0.0325)
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marks their importance in general stress response in M. tuber-
culosis (Table S2). Notably, sRNAs ncRv2711B and ncRv2839B 
are predicted to target Rv0827c (kmtR), which is involved in 
oxidative stress response by detoxification of host-generated 
free radicals.60 In addition, one of the targets predicted for 
ncRv0983B is Rv2911 (dacB2), which contributes to cell wall 
permeability and integrity under stress.61 Rv0017c encodes cell 
division protein RodA, which is a potential target for 
ncRv0983B. Rv0017c is downregulated in iron limitation, 
Nutrient starvation, and acidic pH. Also, about 12.32% 
(138/1120) of the sRNAs were expressed only in acidic pH, 
10% (112/1120) were expressed only in iron limitation, 5.35% 
(60/1120) were expressed only in membrane stress,  
8.48% (95/1120) were expressed in nutrient starvation and 
10.44% (117/1120) were expressed in oxidative stress (Figure 
S7). Below, we provide examples illustrating the stress-specific 
expression of sRNAs and their putative targets:

a. sRNA ncRv0140 expressed only in acidic pH is predicted 
to target Rv2626c (hrp1), which is a hypoxic response pro-
tein (Figure 4). hrp1 is downregulated in the acidic pH con-
dition (Table S10). The binding of ncRv0140 is predicted 
at the start site or ribosome binding site of Rv2626c, which 
could result in the negative regulation of the putative target 
gene (Figure S8).

b. ncRv0188B is exclusively expressed during nutrient 
starvation (Figure S9a). Its potential targets, Rv3920c and 
Rv3628, are downregulated under nutrient starvation. 

Rv3920c codes for Jag protein crucial for cell division, and 
Rv3628 (ppa) encodes inorganic pyrophosphatase essential 
for intermediary metabolism and respiration. ncRv0188B 
is predicted to bind to the start site of these target genes  
(Figure S9b), which suggests the downregulation of Rv3920c 
and Rv3628 during nutrient starvation.

c. sRNA ncRv0188A expressed under nutrient starvation 
and predicted to target Rv2394 (ggtB) which exerts a key 
role in the gamma-glutamyl cycle (Figure S10a). Further-
more, it counteracts the surplus glutathione within the cells. 
By cleaving glutathione (GSH), GgtB produces a bac-
tericidal dipeptide, underscoring the significance of ggtB 
downregulation for bacterial survival.62,63 Notably, ggtB is 
downregulated during nutrient starvation. We propose that 
binding of ncRv0188A to the start site of ggtB could inter-
fere with the ribosome movement, thus negatively regulat-
ing ggtB under nutrient starvation (Figure S10b).

Therefore, further experimental analyses could reveal how 
the bacteria utilize these sRNAs to regulate gene expression in 
different growth conditions to withstand the hostile environ-
ment imposed by the host.

Many M. tuberculosis sRNAs are potentially 
generated via alternate TSS or RNase E-mediated 
degradation

The bacterial genome harbors a large set of sRNAs, which 
could be synthesized via multiple mechanisms based on its 

Figure 2.  Expression of MTB_sORF_38. The putative small protein MTB_sORF_38 encoded on the negative strand of the genome shows expression 

across all the studied growth conditions. Anomaly scores are plotted on the negative Y-axis, read counts are on the positive Y-axis, and the genomic 

position is represented on the X-axis. The prominent red bold line corresponds to MTB_sORF_38, and the adjacent blue dotted line is the nearby TSS.
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position on the genome.11,39 Therefore, we annotated and 
classified the predicted sRNAs based on their genomic posi-
tion with respect to the annotated genes, UTRs, and IGRs. 
Our analysis discovered 874 mRNA subsegments, 805 cis-
encoded, 69 trans-encoded (including UTRs), and 84 abso-
lute IGR (excluding known UTRs) encoded sRNAs. Over 
71.88% of the predicted sRNAs significantly overlapped with 
the known protein-coding sequences. In about 62.85% of 
these cases, predicted sRNA was entirely carried in the pro-
tein-coding sequence, while in 9.01% of cases, predicted 
sRNA overlapped with the protein-coding sequence and 
extended till the UTR of the respective gene. The remaining 
28.125% of predicted sRNAs overlapped with 5’-UTR or 
3’-UTR of a known protein-coding sequence or the sequence 
antisense to a known protein-coding sequence, UTRs, and 
absolute IGRs (Figure S11).

Similar to protein-coding regions, sRNA transcription 
also requires a TSS upstream or at the start of the sRNA cod-
ing region. Therefore, to authenticate the expression of the 
predicted sRNAs in our data, we mapped the start sites of the 
sRNAs to the known genome-wide TSS in M. tuberculosis 
derived from exponential and nutrient starvation growth 
conditions.39,43 Of the predicted sRNAs expressed in rich 
medium, 32.63% (141/432) show TSS near the sRNA start 
site (detailed in “Methods” section). There are 245 sRNAs in 
a rich medium, which appear to be generated from the known 
protein-coding regions. Among these, 15.91% (39/245) 
sRNAs have a neighboring TSS, which includes 20 internal 
TSS (iTSS), 2 alternative TSS (2/39), and 17 Primary TSS 
(Table S11). For example, the start site of the sRNA ncRv3045 

matched with an internal TSS of Rv3045 (Figure 5). 
ncRv3045 is conserved in the genomes of M. africanum, M. 
canettii, M. bovis, M. avium, M. haemophilum, M. leprae, and 
M. marinum. This sRNA showed high expression in all the 
studied growth conditions except in nutrient starvation. One 
of the putative targets of this sRNA is Rv1103c (mazE3), a 
component of the Rv1102c–Rv1103c toxin-antitoxin system 
in M. tuberculosis. These genes orchestrate reversible bacterio-
stasis, facilitating adaptation to adverse stress conditions.64 
Therefore, TSS study in other growth conditions will help 
explain the expression of the numerous other sRNAs across 
the M. tuberculosis genome. In another example, our analysis 
suggests that ncRv3581 is generated from the CDS (Coding 
Sequence) of essential gene Rv3581c, which is expressed 
under all growth conditions (Figure S12a). It appears that this 
sRNA is generated from an internal TSS situated inside the 
coding sequence of Rv3581c (Figure S12b).

Further, we hypothesized that some of the sRNAs in our 
data could be synthesized via RNase E-mediated mRNA 
decay.11 For this, we utilized RNA-seq data of M. tuberculosis 
RNase E wild type and RNase E mutant samples.44 Of the 
predicted sRNAs from the rich medium growth phase, 
56.713% (245/432) overlapped with the known protein-cod-
ing regions, and the start site of 15.92% (39/245) of these 
regions mapped to the known TSS. We analyzed significant 
differences (adjusted P-value ⩽ 0.05) between the expression of 
the remaining regions 84.08% (206/245) in RNase E mutant 
and RNase E wild type. From these regions, 52.91% (109/206) 
showed significantly high expression in the RNase E wild type 
compared to the RNase E mutant (Table S12) (P < 8.908e−06). 

Figure 3.  Expression of ncRv3825F under all the growth conditions. sRNA ncRv3825F is highly expressed across all the investigated growth conditions. 

The expression levels are represented on the positive Y-axis (red line), while the negative Y-axis displays the anomaly score. The yellow dotted line on the 

negative Y-axis denotes the offset score associated with each growth condition (see “Methods” section).
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For example, ncRv0510 and ncRv3211A appear to be excised 
from the coding sequences of Rv0510 and Rv3211A, respec-
tively, under the influence of RNase E-mediated mRNA decay 
(Figures 6A and B). The sRNA ncRv0510 showed expression 
in acidic pH and rich medium growth conditions and high 
conservation across M. bovis, M. canetti, and M. africanum, 
which are part of M. tuberculosis complex (MTBC) and also in 
M. abscessus, M. avium, M. haemophilum, M. leprae, and M. 
marinum (Figure S13a). fadD26 is identified as a probable tar-
get of ncRv0510 where the sRNA binding is predicted in the 5’ 
UTR region of fadD26. FadD26 is essential for the synthesis of 
the virulence factor phthiocerol dimycocerosates (DIM), which 
is crucial during the early stages of infection (Figure S13b).65,66 
Also, the sRNA ncRv3211A showed expression in acidic pH, 
membrane stress, and rich medium growth phase (Figure 
S13c). This sRNA showed high conservation across members 
of MTBC and in M. abscessus, M. avium, M. haemophilum, M. 
leprae, and M. marinum.

In such findings, we observed that the expression through-
out the gene was similar between RNase E wild type and 
mutant, except for the region predicted as putative sRNAs in 
our data. Collectively, these results suggest that the RNase 
E-mediated mRNA decay could be one of the crucial mecha-
nisms for synthesizing many sRNAs in M. tuberculosis. We note 
that some of these mRNA subsegments could also be produced 
as intermediates during mRNA degradation without any func-
tional relevance.11 Further studies are needed to examine this 
aspect of sRNA synthesis and function.

Outlook of the tool Prediction Of sRNAs  
using Isolation Forest

We developed our Isolation Forest-based method to detect 
sRNA regions from bacterial sRNA-seq data into a Graphical 
User Interface (GUI) tool POSIF (http://posif.ibab.ac.in/) 
using a Flask web application. The tool provides the option to 
predict sRNAs from the strand-specific or non-strand-specific 
bacterial sRNA-seq data. Outliers (read count as a feature) are 
detected at each base position from the per-base coverage file 
by the tool. The consecutive outliers are collectively considered 
as the sRNA expression signal/peak (detailed in Methods).

The output link generated by the tool is a downloadable 
.zip file that contains the predicted sRNA coordinates and 
their genomic location, which can be further analyzed to 
understand the functional relevance of these regions. We 
tested the performance of POSIF with other sRNA analysis 
tools. Currently available sRNA-seq analysis tools sRNAPipe 
and seqpac do not perform de novo sRNA detection.27,28 While 
the tools APERO and sRNA-Detect traditionally consider 
RNA-seq data as input, we ran them with sRNA-seq data 
(SRR7058126) and analyzed their results (Table S13). When 
tested with RNA-seq data (ERR262983), sRNA-Detect gen-
erated 18,487 sRNAs.48 Running the tool on paired-end 
sRNA-seq data exceeded a run-time of 72 hours without pro-
ducing any output files. Using APERO, we obtained 1373 
sRNAs with lengths ranging from 20 to 250 nucleotides 
which included 10 experimentally verified sRNAs (see 

Figure 4.  Context-dependent expression of ncRv0140. sRNA ncRv0140 is highly expressed only under acidic pH growth conditions. This sRNA overlaps 

with the gene Rv0140, coding for a conserved protein. Red lines on the positive Y-axis and negative Y-axis display expression levels as read counts and 

anomaly scores, respectively. The offset score for each growth condition is represented as a yellow dotted line on the negative Y-axis.

http://posif.ibab.ac.in/
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“Methods” section). Whereas in the rich medium, POSIF pre-
dicted a total of 432 sRNAs, of which it identified 13 that 
were experimentally validated. While the tool successfully 
processes both RNA-seq and sRNA-seq data, the run-time 
for the latter exceeds 12 hours, compared to 1 hour for RNA-
seq data. Moreover, APERO is dependent on multiple exter-
nal libraries, each requiring specific versions for the proper 
functionality, making it difficult to use. In contrast, POSIF 
runs on both single-end and paired-end sRNA-seq data, has a 
shorter run-time, is accessible online without any dependency, 

and generates quality output, including many experimentally 
validated sRNAs. Therefore, we believe that POSIF will be 
invaluable in sRNA-seq data analysis and in identifying novel 
sRNAs in bacteria.

In conclusion, our method for identifying sRNAs has 
yielded a set of promising candidates for further studies. Some 
of the potential sRNAs we described show distinct expression 
patterns, suggesting their context-dependent functions. Further 
experimental studies will provide insights into their functions 
and their role in M. tuberculosis pathogenicity. In addition, the 

Figure 5.  TSS-driven synthesis of ncRv3045. sRNA ncRv3045 is located within the CDS of Rv3045 and is detected in all the studied growth conditions 

except in nutrient starvation. A previously annotated internal TSS (iTSS) located immediately upstream of the ncRv3045 (indicated by the blue vertical 

line) appears to be driving the transcription of the sRNA. Expression—red line on the positive Y-axis, anomalous score—red line on the negative Y-axis, 

offset score—yellow dotted line on the negative Y-axis.

Figure 6.  sRNA Expression in RNaseE wild type and depleted conditions. sRNA expression under RNase E wild type (red line) and RNase E depleted 

(blue line) conditions. Expression is quantified using RNA-seq data (see “Methods” section) (A) sRNA ncRv0510 and (B) sRNA ncRv3211. Significantly 

higher expression in the RNase E wild-type condition compared to RNase E depleted conditions suggests a possible RNase E-mediated mRNA decay 

mechanism behind the generation of these sRNAs.
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current study provides a valuable tool for identifying and prior-
itizing bacterial sRNAs for future research.

Discussion
In bacteria, sRNAs (~20 to 500 nucleotides) are a part of the 
regulatory network involved in diverse processes such as quorum 
sensing, carbon metabolism, stress response, and virulence.67 
Largely, sRNAs have been detected in the IGRs of the genome. 
However, recent studies reveal the synthesis of sRNAs from 
UTRs of genes and internal fragments of mRNAs, which is 
aided by alternate methods such as premature termination of 
mRNAs, Rnase E dependent mRNA decay, and internal tran-
scription start site (iTSS). As a result of such diversity in the 
synthesis of these transcripts, the aforementioned methods can 
be inefficient in probing sRNAs across the genome. The estab-
lishment of sRNA-seq technology in the field of sRNA biology 
has assisted in understanding the contribution of sRNAs in the 
regulation of expression at multiple stages of growth. However, 
currently, available methods for the analysis of sRNA-seq data 
are not designed efficiently for the de novo identification of 
sRNAs in bacteria. Using POSIF, we identified 1120 sRNAs 
and 46 small proteins across multiple growth conditions in M. 
tuberculosis (see “Methods” section).

Conservation of the sRNA across closely related species sig-
nifies a potential role of these regions in the survival and 
growth of bacteria. Although much has been studied about the 
transcription factor/protein-mediated stress response in M. 
tuberculosis, sRNA-mediated stress response and its context-
dependent expression are poorly understood. We studied the 
context-dependent expression of the identified sRNAs which 
revealed many sRNAs, including ncRv0188u and ncRv0038, 
which are expressed in a stress-dependent manner. On the 
other hand, sRNAs ncRv0146, ncRv0240uB, and ncRv2674i 
were expressed only in the rich medium growth. sRNAs dis-
tinctively expressed in all stress conditions, suggesting their 
importance in general stress response. The involvement of the 
putative targets of these sRNAs in the cellular and metabolic 
processes highlights the role of sRNAs in regulating these tar-
gets to optimize the growth of bacteria upon stress induction. 
We observed that some of these predicted sRNAs could be 
synthesized via alternate TSS and RNase E-mediated mRNA 
decay. Further studies on these putative sRNAs and small pro-
teins will provide a detailed understanding of the relevance in 
M. tuberculosis stress adaptation.

In this study, we developed POSIF, a sRNA detection tool 
in bacteria. In contrast to other existing tools, POSIF is effi-
cient in de novo identification of bacterial sRNAs using sRNA-
seq data. POSIF operates without the need for dependencies 
and is not restricted to a specific operating system. Since 
POSIF is executed on the server and accessed via an API, it 
does not possess any significant client-side dependencies or 
computational resources. The User-Interface is friendly and 
explains all the details and has been provided with an example 
run case for bacterial sRNA prediction. Since POSIF is an 

expression data-based tool, data quality is important in deter-
mining its results. We elaborated on its utility and value in the 
case of the sRNA-seq data in M. tuberculosis. We hope that this 
robust feature of POSIF can efficiently enhance the strength of 
sRNA identification in bacterial genomics.
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