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Simple Summary: Genomic prognostic biomarkers play an important role in the application of
precision medicine in patients with uveal melanoma (UM). In this study, we performed a pilot
study to assess the impact of global and local genetic ancestry on the presence of these prognostic
biomarkers. We found a trend for correlations between high risk biomarkers and European ancestry.
These results highlight the need for a rigorous genetic ancestry methodology to study the role of
ancestry in determining prognosis in patients with UM.

Abstract: Uveal melanoma (UM) is the most common cancer of the eye and leads to metastatic death in
up to half of patients. Genomic prognostic biomarkers play an important role in clinical management
in UM. However, research has been conducted almost exclusively in patients of European descent,
such that the association between genetic admixture and prognostic biomarkers is unknown. In this
study, we compiled 1381 control genomes from West African, European, East Asian, and Native
American individuals, assembled a bioinformatic pipeline for assessing global and local ancestry, and
performed an initial pilot study of 141 UM patients from our international referral center that manages
many admixed individuals. Global and local estimates were associated with genomic prognostic
determinants. Expression quantitative trait loci (eQTL) analysis was performed on variants found
in segments. Globally, after correction for multiple testing, no prognostic variable was significantly
enriched in a given ancestral group. However, there was a trend suggesting an increased proportion
of European ancestry associated with expression of the PRAME oncogene (q = 0.06). Locally enriched
European haplotypes were associated with the poor prognosis class 2 gene expression profile and
with genes involved in immune regulation (q = 4.7 × 10−11). These findings reveal potential influences
of genetic ancestry on prognostic variables, implicate immune genes in prognostic differences based
on ancestry, and provide a basis for future studies of admixed patients with UM using rigorous
genetic ancestry methodology.
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1. Introduction

Precision medicine is transforming oncology through the use of genomic biomarkers to guide
diagnosis, risk stratification, and therapeutic choices [1,2]. However, most genomic research has
included mostly individuals of European ancestry, leading to unequal representation of genetic
variation and consequent disparities in the application of precision medicine for patients from other
genetic ancestry groups [3,4]. It has been shown that cancers differ according to prognostically relevant
genomic aberrations based on genetic ancestry [5] which could affect the accuracy of genomic testing
and effectiveness of targeted therapy. This finding is especially critical in countries like the United
States, where a rapidly increasing population of admixed individuals with complex ethnic background
that may impact the precision of genomic tests and targeted therapies [6]. In order to understand
the impact of genetic ancestry on precision medicine, it is important to undertake studies in specific
cancer types.

Uveal melanoma (UM) is an aggressive cancer of the eye in which precision genomic biomarkers
have become the standard of care for risk stratification and patient management [7]. The UM genomic
landscape can be divided into two major prognostic groups based on gene expression profile (GEP)
class assignment associated with specific driver mutations. Class 1 tumors tend to harbor mutations in
SF3B1 or EIF1AX and have low metastatic risk, whereas class 2 tumors harbor inactivating mutations
in BAP1 and have a high metastatic risk [8–11]. Additionally, about a third of UM aberrantly express
the PRAME oncogene, which is an independent risk factor for metastasis and poor outcome [12,13].
Virtually all research leading to the discovery of these biomarkers has been performed in individuals
of European ancestry, as evidenced by the Cancer Genome Atlas (TCGA) analysis of UM, wherein
100% of study subjects had >95% European ancestry [5].

This study aims to explore a potential correlation between genetic ancestry and prognostic
determinants in UM. In order to accomplish that, we performed a pilot study at our Miami-based
international ocular oncology referral center that manages an ancestrally diverse population from
Latin America and beyond.

2. Results

2.1. Baseline Patient Characteristics

This study included 141 patients with UM (Table 1 and Figure 1A) and 1381 control individuals
with West African, European, East Asian, or Native American ancestry (Table 2). We found no
significant differences between self-reported race/ethnicity with respect to clinical variables associated
with UM.

Table 1. Summary of clinical features and prognostic biomarkers in 141 patients with uveal melanoma.

Variable Status White Non-Latino Other ALL q Value a

Patient age
(years)

Mean 63.04 60.24 61.71
0.163Median 65 62 65

Minimum-Maximum 22–87 18–87 18–87

Sex
Male 33 39 72

0.116
Female 41 28 69

Largest tumor
diameter (mm)

Mean 14.75 14.32 14.55
0.291Median 14.65 14 14.5

Minimum-Maximum 7.5–24 6.9–23 6.9–24

Tumor
thickness (mm)

Mean 5.97 6.81 6.36
0.115Median 4.6 5.95 5

Minimum-Maximum 1.5–14.9 1.7–15.3 1.5–15.3
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Table 1. Cont.

Variable Status White Non-Latino Other ALL q Value a

Ciliary Body
Involvement

Yes 21 16 37
0.291

No 51 49 100

Melanocytosis Yes 1 6 7
0.117

No 43 48 91

GEP class
Class 1 43 37 80

0.293
Class 2 31 30 61

PRAME status
Positive 31 20 51

0.116
Negative 37 46 83

Primary
treatment

Enucleation 26 21 47
0.290

Brachytherapy 48 46 94

Metastasis
Yes 16 7 23

0.110
No 58 60 118

a Significance value corrected for multiple testing using Fisher’s exact test (categorical variables) or Wilcoxon rank
sum test (continuous variables) comparing white non-Latinos to all other patients.

Figure 1. Population structure of studied patients with uveal melanoma (UM). (A) The global catchment
area of our patient cohort. The smaller pie chart indicates patients born outside of the United States.
(B) Principal component analysis (PCA) based on approximately 100 K variant loci in common across
141 UM patients (colored circles) and the global ancestry reference panel populations (grey circles).
(C) Unsupervised clustering of ADMIXTURE algorithm analysis of our cohort assuming K = 4 ancestral
clusters. Each stacked column represents an individual patient, and the height of each stacked column
represents the contribution of each indicated ancestry to the overall genetic makeup of each patient.
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Table 2. Summary of control genomes used in genetic ancestry analysis.

Ancestral
Group Subpopulation Number of

Reference Samples
Number of Reference

Samples Postprocessing

European British, Iberian, Toscani, Finnish,
Utah residents 659 358

West African Gambian Mandinka, Mende, Esan,
Yoruba, Luhya 604 398

East Asian Dai Chinese, Han Chinese, Japanese,
Southern Han Chinese, Kinh Vietnamese 601 384

Native
American

Aleutian, Algonquin, Arara, Arhuaco,
Aymara, Bribri, Cabecar, Chane, Chilote,

Chipewyan, Chono, Chorotega, Cree,
Diaguita, EGInuit, Eguahibo, Guarani,

Guaymi, Huetar, Hulliche, Inga, Jamamadi,
Kaingang, Kaqchikel, Karitiana, Kogi,
Maleku, Maya, Mixe, Mixtec, Ojibwa,

Palikur, Parakana, Piapoco, Pima,
Purepecha, Quechua, Surui, Tepehuano,
Teribe, Ticuna, Toba, Waunana, Wayuu,

WGInuit, Wichi, Yaghan, Yaqui, Zapotec

493 241

2.2. Global Genetic Ancestry and Association with Prognosis

To estimate the global ancestral structure of this cohort, patients were genotyped and compared
to West African, East Asian, European, and Native American reference populations. White non-Latino
patients clustered closely with the European reference samples, whereas Latino patients demonstrated
contributions from European, West African, and Native American reference samples (Figure 1B).
The UM cohort exhibited considerable genomic diversity (Figure 1C). Mean percentage of European
ancestry (by self-reported ethnicity or race) was 96.8% (white non-Latino), 80.0% (Latino), 30.5%
(black), and 10.9% (Asian). Latino and black patients showed a range of genetic admixture, including
variable European ancestry (Figure 2A). Notably, 22.2% of white non-Latino patients had >5% genetic
contribution from non-European ancestry. Latino patients demonstrated the greatest genetic complexity,
with 65.5% of patients having >10% non-European ancestry, mostly West African and Native American
(Supplementary Table S1).

Global ancestry demonstrated a potential trend toward association with several clinical
characteristics, including increased tumor thickness with Native American ancestry (q = 0.07), male
sex with increased Native American ancestry (q = 0.09), older patient age with European ancestry
(q = 0.09), and younger patient age with Native American ancestry (q = 0.07) ( Supplementary Table S2).
European ancestry also showed a trend toward association with increased PRAME(+) status (q = 0.06)
(Figure 2B). There was no association between global ancestry and GEP status.
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Figure 2. Global ancestral enrichment with prognostic biomarkers in UM. (A) Box plots of ancestral
percentages of individuals grouped by their self-reported ethnicity/race. (B) Violin plots of ancestral
percentages of patients stratified by their respective PRAME status. The q values were calculated using
Wilcoxon rank sum test and adjusted for multiple testing.

2.3. Local Genetic Ancestry and Association with Prognosis

Local ancestry was estimated for each patient with respect to contribution from each of the four
ancestry reference groups >500 K genotyped bi-allelic autosomal variants that were conserved between
our cohort and the reference samples. As expected, Latino patients demonstrated a striking diversity
of ancestral contributions across the autosome (Figure 3A; Supplementary Figure S1). To investigate
the contribution of specific chromosomal segments to prognostic biomarkers, we performed admixture
mapping on the local ancestry of each UM patient. Using a generalized linear model, six regions were
enriched for local ancestry in class 2 versus class 1 tumors (Figure 3B), and 19 regions were enriched
for local ancestry in PRAME(−) versus PRAME(+) tumors (Figure 3C; Supplementary Table S3).
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Figure 3. Local ancestry and admixture mapping. (A) Local ancestry karyograms for representative
Latino patients with UM demonstrating the complexity of genetic ancestry in this population. EU,
European; AFR, West African; EA, East Asian; NAT, Native American; UNK, unknown. (B) Manhattan
plot of ADMIXTURE algorithm by Gene Expression Profile (GEP) class assignment (class 1 versus 2
status). (C) Manhattan plot of ADMIXTURE algorithm by PRAME status (negative versus positive).
X-axis, chromosome position; Y-axis, −log10 (p value) for the association between biomarker (GEP
Class or PRAME status) and local ancestry at each variant, correcting for sex, age, and global European
and Native American ancestry. Each dot represents a single nucleotide polymorphism tested in the
association test. Horizontal dashed lines represent enrichment significance threshold, p < 0.005.

To further investigate these enriched regions, we used tumor RNA-seq data and blood genotype
array data from the 80 TCGA UM patients to perform expression quantitative trait loci (eQTL)
analysis. The variants found within the top five significant segments after admixture mapping of
class 1 versus class 2 tumors affected expression of 15 target genes in cis and 110 target genes in trans
(Figure 4A; Supplementary Table S4). GSEA revealed enrichment of these genes for immune cell
function, particularly CD4+ and regulatory T cells (q = 4.7 × 10−11) and interferon gamma response
(q = 4.7 × 10−11) ( Supplementary Table S5). To investigate the cause of the transcriptional differences
in relation to variant dosage, the most significant lead variant associated with each of the 125 target
genes was chosen for further analysis. Using HaploReg v4.1 [14], these variants were enriched at



Cancers 2020, 12, 3208 7 of 13

enhancers associated with neural cells (q = 0.03), suggesting a potential link to the stem-like neural
crest reprogramming in class 2 UM [15,16]. These variants were predicted to affect transcription factor
binding sites at greater than expected frequency for GABPA, EGR2, ELK4, and NRF1, suggesting that
local ancestry may impact gene regulation.

Figure 4. Expression quantitative trait loci (eQTL) analysis. Circos plots showing links between eQTL
variants and the cis and trans genes they are affecting. Chromosomes are arranged in a circle as
indicated. Lines of the same color are associated with the same set of variants (represented by the root of
each group of lines). (A) genes affected by the five variant loci associated with GEP assignment (class 1
versus class 2). (B) genes affected by the two variant loci associated with PRAME status (negative
versus positive).

We then investigated the top five significant segments from admixture mapping with respect
to PRAME status. eQTL analysis was performed on variants found in the enriched segments (chr4:
77719779-77763831 and chr13:112787625-114498034), resulting in 15 genes in cis and 232 target genes in
trans (Figure 4B; Supplementary Table S4). GSEA again identified numerous enriched gene lists, the
top being related to immune function (q = 1.1 × 10−9) and ancestrally associated cancer aggressiveness
(q = 1.3 × 10−8) ( Supplementary Table S5).

3. Discussion

This study takes a novel perspective on the quantitative genetic ancestry of patients with UM and
their admixed ethnic background, providing an analytical pipeline and framework for future studies
in the field. Even in our small sample population, we identified previously unrecognized ancestral
complexity in UM, pointing out a need to take this variability into account in future research. This
study indicates that stratifying patients by self-reported ethnicity and race, or using general ancestral
groupings is insufficient to capture the complex role of such inheritance.

It is particularly interesting how certain genes involved in immune regulation are affected by
different ancestral enrichment and influence GEP class and PRAME status. There is mounting evidence
that faulty immune response may explain, at least in part, the markedly increased metastatic potential
of class 2 compared to class 1 UM. Each genomic subtype is associated with a distinctive immune
microenvironment, with the aggressive class 2 tumor containing regulatory and exhausted T cells,
alternatively activated macrophages, and up-regulation of HLA class I [17,18], which likely contribute to
the unresponsiveness of these tumors to checkpoint immunotherapy [19]. In fact, PD-L1 expression [20]
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and drug susceptibility [21] in cancer is different based on genetic ancestry. Recent single-cell sequencing
studies revealed that UM samples are infiltrated by a previously unrecognized diversity of immune
cells, but many of the T cells and macrophages were dysfunctional [17]. Further, class 2 UMs appear to
acquire an immune suppressive phenotype as a result of their genetic make-up [22]. Thus, it appears
critical to determine if genetic ancestry plays a role in the susceptibility to metastasis by shaping the
immune microenvironment in UM. Our findings indicate the need for larger international studies with
long-term follow-up to accurately assess the impact of genetic ancestry on prognosis in patients with
UM. It will be important for future larger studies to be adequately powered to search for associations
between genetic ancestry and class 1 subgroups (e.g., class 1A and 1B) as well as prognostic mutations
(e.g., BAP1, SF3B1 and EIF1AX), which were not investigated here due to the small sample size. As such,
our group is planning an international multi-center study using the analytical pipeline presented here.

In conclusion, genetic ancestry has been shown to influence the acquisition of driver mutations in
cancer [5], and an in-depth analysis was long overdue to investigate these relationships in UM. Indeed,
mutational inactivation of BAP1, the most relevant genomic aberration in UM [8], may be influenced
by an unusually complex local chromatin structure [23], which our findings suggest to be influenced
by ancestry. Limitations of our study include a relatively small number of patients and a lack of
long-term survival analysis. However, the main purpose of this study was to create a genetic ancestry
analytical platform for UM and to demonstrate its utility in a pilot study. This approach may leverage
the genetic information provided by ancestrally heterogenous individuals in a larger cohort to identify
ancestrally driven protective or susceptibility loci that would otherwise be missed when investigating
ancestrally homogenous individuals. Our findings indicate the need for quantitative genetic ancestry
methods and investigation of admixed individuals in UM research, and also raises important questions
regarding the application of precision medicine in ethnically diverse patients with UM.

4. Materials and Methods

4.1. Patient Samples and Genotyping

This study was approved by the University of Miami Institutional Review Board (study 20120773)
and performed in adherence to the tenets of the Declaration of Helsinki. Written informed consent
was obtained from each patient. Demographic and clinical annotations were collected from the
HIPPA-compliant study database and de-identified for further analysis. Self-reported race and
ethnicity was recorded from each patient. GEP (class 1 or class 2) and PRAME status (positive or
negative) were obtained using the DecisionDx-UM and DecisionDx-PRAME tests, respectively [24].
Peripheral blood DNA was extracted using the QIAamp DNA Mini Kit and genotyped on either the
Infinium Omni Express or the Omni 2.5 arrays. Autoconvert 2.0 was used to convert raw .idat files to
.gtc files and were then converted to .vcf files. All array data generated have been deposited in dbGaP.

4.2. Reference Populations and Ancestry Estimation

Global ancestry estimation was performed using European, West African, and East Asian reference
populations from the 1000 genomes project phase 3 reference panel [25]. Preprocessed files from
this panel were obtained from the Beagle reference [26] and filtered for European, West African, and
East Asian individuals. Global ancestry estimation for Native American ancestry was performed
using 493 samples, representing 52 indigenous groups from Reich et al. [27] and the Human Diversity
Genome Project (HGDP) [28,29]. The four continental groups were subject to unsupervised clustering
with K = 4 ancestral populations, using the ADMIXTURE algorithm software [30]. Reference subjects
whose genomes demonstrated >95% estimated ancestry from their respective continental group were
retained for downstream analysis, including 358 Europeans, 384 East Asians, 398 West Africans, and
241 Native Americans. The global ancestry reference samples and the UM cohort samples were
processed using vcftools [31]. filtering out variants that were non-biallelic or that were missing in at
least one individual. Global ancestry was inferred using the resulting common set of ~100 K variants
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by PCA analysis of genetic diversity using TRACE [32,33]. and estimating population structure using
ADMIXTURE, K = 4.

Local ancestry estimation was performed using the same European, West African, and East Asian
reference populations. However, the arrays used for the Native American populations in Reich et al.
and HGDP had insufficient overlap with the array used for our cohort. As such, 65 individuals from the
Population Architecture using Genomics and Epidemiology (PAGE) study [34] were used to generate
the reference Native American population. Whole genome sequencing (WGS) bam files of the PAGE
individuals were obtained from dbGAP (accession code: phs001033.v1.p1), and post-processing was
performed using SAMtools [35]. Picard [36] was used to mark duplicates. Files were then recalibrated
using the genome analysis toolkit (GATK) BaseRecalibrator and print reads. The GATK gvcf pipeline
was used to call variants. To determine which of the PAGE individuals were >95% Native American, we
estimated global ancestry by combining them with the European, African, Asian, and Native American
individuals, and their population structure was assessed using the ADMIXTURE algorithm and PCA
analyses. Of the 65 individuals, 55 demonstrated >95% Native American ancestry and were used
for downstream local ancestry analysis. To diminish bias and maintain balance in the local ancestry
estimation, we wished to include 55 individuals in each group. Thus, for the European, African, and
East Asian reference populations, individuals were ranked by percent of their respective continental
group, and the top 55 individuals from each group were chosen for downstream local ancestry analysis.
The local ancestry reference samples and the UM cohort samples were combined and processed
together using vcftools, filtering out variants that were non-biallelic or that were missing in at least one
individual. A total of >500 K variants were used for local ancestry estimation. Common variants were
phased using Beagle 5.0 [37,38]. Since no patients were known to be related, we did not use pedigree
information for phasing. Local ancestry was inferred across the autosome by discriminative modeling
with random forests using RFMix [39]. PopPhased option was used with a minimum node size of 5
and the default settings. Karyograms were generated using a published pipeline [40].

4.3. Quantitative Trait Loci

Genotype array and RNAseq data were obtained from The Cancer Genome Atlas (TCGA) 80 UM
patients [41]. Birdseed files were converted to vcf files. Variants with a call rate <95% were removed.
Imputation was performed using Beagle 5.0 with the 1000 genomes phase 3 populations. Variants
were lifted to the human genome build hg38/GRCH38 and were removed if they were non-biallelic,
were poorly imputed (info < 0.3), or imputed variants with a minor allele frequency (MAF) < 5%. Raw
RNAseq fastq files were checked using FastQC, trimmed using trim galore, aligned to the human
genome build hg38/GRCH38 using STAR [42] and counts were generated using RSEM [43]. Transcripts
per million (TPM) were assessed for each gene for each sample and genes with >1 TPM in at least
25% of samples were retained for downstream analysis. Cis and trans eQTL analysis was conducted
using QTLtools [44] version 1.0 and recommended parameters [45] with a model to adjust for age, sex,
population stratification (20 principal components), and batch effect (20 principal components of the
transcriptome data). Cis-eQTLs were those that passed a nominal p-value filter of 0.01 and trans-eQTLs
passed a nominal p-value of 10−5. Gene Set Enrichment Analysis (GSEA) [46] was performed on protein
coding genes of interest, in order to discover significantly associated pathways, using a significance
threshold corrected for multiple testing, q ≤ 0.05. Plots were generated using Circos [47]. HaploReg
v4.1 [14], was used to identify if enhancers were impacted by these variants. SNP2TFBS [48] was used
to assess the effect of variants on transcription factor binding.

4.4. Global Associations and Admixture Mapping

Ancestry proportions were analyzed for association with clinical features and prognostic biomarker
status using Wilcoxon rank sum test for categorical variables and Spearman’s rank correlation coefficient
for continuous variables. Adjusted p-values (q) were calculated to correct for multiple testing. Plots
were generated using ggplot2. After running RFMix, a score of 0, 1, or 2 was assigned to each position
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for each ancestry representing the number of alleles derived from each ancestral group. Admixture
mapping was performed using a generalized linear model with binomial logistic regression to test
the association between biomarkers and local ancestry at each variant, correcting for sex, age, and
global European and Native American ancestry. A significance threshold of q ≤ 0.05, was calculated for
multiple testing based on the mean number of ancestral haplotype switches. All tests were performed
using R version 3.3.1. Manhattan plots were created using CMplot [49].

5. Conclusions

Our analytical pipeline revealed potential trends between genetic ancestry and prognostic
biomarkers. Of particular interest, admixture mapping identified regions of ancestral enrichment that
may predispose individuals to high-risk genomic biomarkers. These findings highlight the need for
larger international studies using these methods to address potential disparities in the application of
precision medicine in UM.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3208/s1,
Figure S1: Karyograms of all patients, Table S1: Global ancestry estimation based on self-reported race/ethnicity in
141 patients with uveal melanoma, Table S2: Associations between clinical features and global ancestry, Table S3:
Chromosomal regions of enrichment after admixture mapping with respect to prognostic biomarker status,
Table S4: eQTL analysis on SNPs found in segments of local ancestry enrichment with respect to prognostic
biomarker status, Table S5: Gene set enrichment analysis (GSEA) analysis of eGenes found after eQTL analysis of
enriched segments after admixture mapping with respect to prognostic biomarker status.
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