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1  | INTRODUC TION

Aeromonas hydrophila is ubiquitously distributed in freshwater hab-
itats, and a well- known opportunistic pathogen of fish, amphibians, 
reptiles, and mammals (Altwegg & Geiss, 2008; Pang et al., 2015; 

Parker & Shaw, 2011). A. hydrophila frequently causes hemorrhagic 
septicemia disease in cultured and feral fishes, such as carp, catfish, 
perch, and tilapia (Handfield, Simard, Couillard, & Letarte, 1996; 
Hossain et al., 2014). Although A. hydrophila receives much notoriety 
as a common bacterial pathogen of cultured fish, it is also indigenous 
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Abstract
Stress is an important contributing factor in the outbreak of infectious fish diseases. 
To comprehensively understand the impact of catecholamine stress hormone norepi-
nephrine (NE) on the pathogenicity of Aeromonas hydrophila, we assessed variations 
in bacterial growth, virulence- related genes expression and virulence factors activity 
after NE addition in serum- SAPI medium. Further, we assessed the effects of NE on 
A. hydrophila virulence in vivo by challenging fish with pathogenic strain AH196 and 
following with or without NE injection. The NE- associated stimulation of A. hydroph-
ila strain growth was not linear- dose- dependent, and only 100 μM, or higher concen-
trations, could stimulate growth. Real- time PCR analyses revealed that NE notably 
changed 13 out of the 16 virulence- associated genes (e.g. ompW, ahp, aha, ela, ahyR, 
ompA, and fur) expression, which were all significantly upregulated in A. hydrophila 
AH196 (p < 0.01). NE could enhance the protease activity, but not affect the lipase 
activity, hemolysis, and motility. Further, the mortality of crucian carp challenged 
with A. hydrophila AH196 was significantly higher in the group treated with NE 
(p < 0.01). Collectively, our results showed that NE enhanced the growth and viru-
lence of pathogenic bacterium A. hydrophila.
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to natural ecosystem, and present in the intestine of healthy fish 
(Zhang, Guan, Huang, & Xiong, 2013). Stress is widely considered 
to be an important contributing factor in the outbreak of infectious 
fish diseases. Host stress hormones like cortisol and norepinephrine 
(NE) induce comprehensive physiological activities in fish and affect 
the defense capabilities of fish immune systems (Fabbri, Capuzzo, & 
Moon, 1998; Verburg- Van Kemenade, Ribeiro, & Chadzinska, 2011; 
Weyts, Cohen, Flik, & Verburg- Van Kemenade, 1999). Recent re-
searches have also suggested that stress hormones can significantly 
influence the infectivity of pathogenic bacteria (Belay, Aviles, Vance, 
Fountain, & Sonnenfeld, 2003; Li et al., 2015; Lyte & Ernst, 1992; 
Neal et al., 2001).

The catecholamine stress hormone NE is mainly released from 
sympathetic nerve terminals, and maintains a highly conserved 
molecular structure in vertebrates including fish, amphibians, and 
mammals (Freestone, Haigh, & Lyte, 2007; Nakano, Takahashi, 
Sakai, Kawano, et al., 2007). Pioneering research by Lyte and Ernst 
(1992) showed that catecholamine could induce the growth of 
Gram- negative bacteria like Escherichia coli, Yersinia enterocolitica, 
and Pseudomonas aeruginosa in low- nutrient, serum- based SAPI me-
dium. The effects of NE on growth have since been verified in many 
bacterial pathogens including Listeria monocytogenes (Coulanges, 
Andre, Ziegler, Buchheit, & Vidon, 1997), A. hydrophila (Kinney, 
Austin, Morton, & Sonnenfeld, 1999), Campylobacter jejuni (Cogan 
et al., 2007), and multiple Vibrio species (Nakano, Takahashi, Sakai, 
Kawano, et al., 2007). Nevertheless, not all bacteria strains exhibited 
positive growth in response to NE. Porphyromonas gingivalis growth 
was not affected by NE (Belay et al., 2003), and the addition of NE 
limited the growth of Prevotella intermedia and Eikenella corrodens 
(Jentsch, Marz, & Kruger, 2013). Other than facilitating growth, 
NE was also found to affect the production of virulence factors 
in pathogens, including the motility of Salmonella enterica serovar 
Typhimurium (Bearson & Bearson, 2008), Escherichia coli O157:H7 
(Bansal et al., 2007) and Vibrio harveyi (Yang, Anh, Bossier, & 
Defoirdt, 2014), and biofilm formation of Staphylococcus epidermidis 
(Lyte et al., 2003), Vibrio harveyi (Yang et al., 2014), and Streptococcus 
pneumonia (Sandrini, Alghofaili, Freestone, & Yesilkaya, 2014). Thus, 
host stress and stress hormones play important roles in the infectiv-
ity of opportunistic pathogenic bacteria.

In this study, we examined the effects of stress hormone NE 
on the growth, gene expression of selected virulence factors, lytic 
enzyme activity, hemolysis, and swimming motility of A. hydroph-
ila. Moreover, we evaluated the impact of NE on the virulence of 
A. hydrophila in crucian carp Carassius auratus gibelio via in vivo 
challenge.

2  | MATERIAL S AND METHODS

2.1 | Bacterial strains, culture conditions, and 
reagents

Aeromonas hydrophila strains AH33, AH189, AH196, and AH301 
(Table 1) were isolated from diseased carps and identified based 

on gyrB sequences. Strain NJ- 35 was donated by Prof. Yongjie Liu 
(College of Veterinary Medicine, Nanjing Agricultural University, 
China)	(Pang	et	al.,	2015).	Stock	cultures	were	maintained	at	−80°C	
in Luria- Bertani broth (Oxoid, Basingstoke, UK) containing 30% 
(v/v) glycerol (Sangon Biotech, Shanghai, China). When required, 
the	stocks	were	streaked	on	nutrient	agar,	incubated	at	30°C	over-
night, and single colonies were collected and used in subsequent 
experiments.

The catecholamine hormone NE (noradrenaline bitartrate) was 
purchased from Target Molecule (Boston). Before each experiment, 
NE solutions were freshly prepared with sterilized physiological sa-
line solution and filter- sterilized using 0.22 μm MCE syringe filters 
(Sangon Biotech, Shanghai, China).

Serum- SAPI medium was prepared as described by Lyte and 
Ernst (1992) and Dong et al. (2016) with slight modification. Briefly, 
the medium contained 0.4990 g glucose, 0.5003 g NH4NO3, 
0.2504 g KH2PO4, 0.2497 g KCl, and 0.1216 g MgSO4 in one liter of 
10 mM HEPES buffer, which was supplemented with 10% (v/v) fetal 
bovine serum (FBS, Zhejiang Tianhang Biotechnology, Hangzhou, 
China).

2.2 | Growth assays

2.2.1 | Trial one

A. hydrophila AH196 was grown in nutrient broth (Oxoid, 
Hampshire,	 England)	 at	 30°C	 for	 16−18	hr.	 Broth	 cultures	 were	
pelleted by centrifugation (8,000 g, 5 min), washed, and resus-
pended in stroke- physiological saline solution in order to achieve 
a diluted concentration of 102 colony- forming units (CFU)/ml. 
Therefore, an initial inoculum density of AH196 (~102 CFU/ml), 
which is designed to present overall bacterial proliferation pro-
cess (O’Donnell, Aviles, Lyte, & Sonnenfeld, 2006), was applied to 
subsequent experiments.

Serum- SAPI medium containing 10% (v/v) FBS (pH 7.2 ± 0.2) was 
used to assay growth capacity. One- hundred microliters of A. hy-
drophila AH196 was inoculated in the medium containing NE (final 
concentration of 0, 12.5, 25, 50, 100, and 200 μM) and then incu-
bated	at	30°C	with	shaking	at	180	rpm.	Cell	concentrations	(OD600) 
were detected with a Multiskan GO spectrophotometer (Thermo 
Scientific, Waltham) at 0, 18, 24, 36, 48, 60, and 72 hr, respec-
tively. Tests were repeated twice and with four replicates of each 
concentration.

TABLE  1 Aeromonas hydrophila strains used in this study

Strain Source or reference

AH33 Intestine of diseased Megalobrama amblycephala

AH189 Blood of diseased Megalobrama amblycephala

AH196 Ascites of diseased Ctenopharyngodon idella

AH301 Kidney of diseased Megalobrama amblycephala

NJ- 35 Diseased Carassius auratus (Pang et al., 2015)
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2.2.2 | Trial two

To confirm the effect of NE on the growth of A. hydrophila strains 
AH33, AH189, AH301, and NJ- 35, the strains were inoculated in 
serum- SAPI medium with and without 100 μM NE. The turbidity at 
600 nm was then measured at 36 hr. Trials were repeated twice and 
four replicates were conducted for each bacterial strain.

2.3 | Analysis of gene expression by quantitative 
RT- PCR

A. hydrophila AH196 cells were cultured in serum- SAPI medium 
containing 10% FBS to exponential phase (OD600, 0.6) with 0 and 
100 μM NE treatment, collected by centrifugation (8,000 g, 5 min), 
and washed twice with sterilized physiological saline. The pellets 
were resuspended with precooled RNAiso Plus (Takara, Dalian, 

China)	and	frozen	at	−80°C.	Total	RNA	was	then	isolated	following	
the guide of RNAiso Plus kit (Takara, Dalian, China), and RNA quan-
tities and concentrations were measured with a Nanodrop 2000 
Spectrophotometer (Thermo Scientific, Waltham). Virulence- 
related gene expression analyses were performed in triplicate with 
qRT- PCR using the Takara one- step SYBR® PrimeScript™ PLUS 
RT- PCR kit (Takara, Dalian, China). The reaction solutions were 
prepared with 100 ng RNA as template, and the following PCR 
amplification	protocol:	 42°C	 for	5	min	 and	95°C	 for	10	s	 for	 the	
reverse	transcription	reaction,	followed	by	40	cycles	of	95°C	for	
5	s,	58°C	for	34	s	and	72°C	for	30	s.	All	samples	were	analyzed	in	
triplicate and the transcription levels of target genes were normal-
ized to the expression of the housekeeping gene rpoB, and then 
calculated with the 2−ΔΔCT method. Primers were designed using 
the NCBI online primers design tool Primer- Blast (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/) (Table 2).

Gene Primer sequences (5′ → 3′) Description
Amplicon 
size (bp)

aerA CACGTCCATGTCTTCACCGA 
AGCGCGAATTTCATCAAGCC

Toxin: aerolysin 102

ast CTATGAGCTGAGCGATGGCA 
TCCCGTCGAACTTGAAGTGG

Toxin: heat- stable cytotonic 
enterotoxin

119

ahp TCTATGCGCTGGAGTCGTTC 
AGGACATGCCCACGTTGTAG

Enzyme: serine protease 174

act TCAAGGCCGATGTCAGCTAT 
GTCCCACTGGTAACGAATGC

Enzyme: cytolytic enterotoxin 158

hly TCTACCTCAACGTCAACCGC 
TCCGCACTATCTTGGCATCC

Toxin: hemolysin 189

alt TGGATGCCGAGCAGAACAT 
CTCTTTCACCGAAGTCACGC

Toxin: heat labile cytotonic 
enterotoxin

149

lip CACCTATACCCTGAGCGTGA 
GAAGTAAGGCAGCTTGACGG

Enzyme: lipase 178

ela TACCGCAACTGGTACAACAC 
CGGAGTTCTGCTCGGTAAAG

Enzyme: elastase 196

aha AAGCCGTCAAGGTTACTGAC 
GTCACCAGTGTTGTTGGTCT

Adhesion: adhesin 182

sodB CCGAGTTTGAAGGCAAGTCT 
GACTTGGTGAACGCATCCTT

Oxidative stress: ferrous 
superoxide dismutase

205

flaA AGCATCAGCTCTCAAAGTGG 
CACTGACGTTCTCCGAGATG

Motility and adhesion: polar 
flagellin A

154

flaB CAGTCTGAACCAGACAGGTG 
CAGCCATTACGTTTTGAGCC

Motility and adhesion: polar 
flagellin B

170

ompW TACTTCGGTGATGCCAACAG 
CATTGATCGCCATGTCCAGA

Porin and adhesion: outer 
membrane protein W

166

ompA TGGATCTGCAAGCTCGTTAC 
CTACGTAGGAAGTGCGGAAC

Porin and adhesion: outer 
membrane protein A

144

fur ATTGGTCTCGCTACCGTCTA 
CGGAGAACTCGATCACCTTG

Iron acquisition and regulation: 
ferric uptake regulator

163

ahyR GCGGTGATGAACGACAGTAT 
GCAGACCTTGCCCATTTACT

Quorum system: LuxI/R- type 
response regulator

168

rpoB ACCGACGAAGTGGACTATCT 
CGGCGTTCATAAAGGTGGAT

Housekeeping gene: RNA 
polymerase beta subunit

145

TABLE  2 Primers used in this study

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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2.4 | Protease and hemolysis assays

A. hydrophila AH196 was grown to exponential phase (OD600 of 
0.6) in serum- SAPI media with 0 and 100 μM NE added. Broth cul-
tures were centrifuged and the supernatants were filtered through 
0.22 μm MCE membrane filters.

The protease activity of A. hydrophila AH196 was examined using 
azocasein (Sigma, St. Louis) as an enzyme substrate based on meth-
ods described in Chu, Zhou, Zhu, and Zhuang (2014). Briefly, 1 ml 
of azocasein (3 mg/ml in 50 mM Tris–HCl buffer, pH 7.5) was added 
to 150 μl of AH196 supernatant, and then incubated for 30 min at 
37°C.	The	 reaction	was	 terminated	by	 adding	10%	precooled	 tri-
chloroacetic acid (500 μl) and the supernatant was collected after 
centrifugation. The supernatant (100 μl) was neutralized with iso-
pyknic 1 N NaOH in 96- well plates, and the absorbance was then 
measured at 400 nm with a Multiskan GO spectrophotometer.

The hemolysis activity of AH196 was measured using 4% sheep 
erythrocyte (Nanjing SenBeiJia, Nanjing, China) as a substrate based 
on modified methods that were previously described (Luo et al., 
2016). Sheep erythrocyte (4%) was centrifuged and washed with 
phosphate buffer (PBS, pH 7.4). Five microliters of washed erythro-
cyte	was	then	incubated	at	37°C	with	245	μl of the culture super-
natant, PBS (negative control), or 1% Triton X- 100 (positive control, 
100% lysis for sheep erythrocytes), respectively. After 30- min incu-
bation, the reaction mixture was centrifuged (2700 g, 10 min), and 
the absorbance of the supernatant (200 μl) was measured at 540 nm 
using a spectrophotometer. Hemolytic activity (%) was defined as 
[(OD540	 sample	−	OD540 negative control) × 100]/OD540 positive 
control. All assays were repeated twice with four replicates.

2.5 | Lipase and motility assays

Lipase and motility assays followed methods described by Yang et al. 
(2014) with some modifications. A. hydrophila AH196 was grown in nu-
trient broth overnight, pelleted, washed, and diluted to 1 × 107 CFU/
ml. A 5 μl aliquot of bacterial suspension was spotted on the center of 
experimental plates. After autoclaved sterilization, two types of agar 
were mixed with NE (100 μM final concentration) for lipase and mo-
tility assessment. Control plate agar was mixed with equal volumes 
of vehicle solvent. Lipase assay plates were made by supplementing 
serum- SAPI agar with 1% (v/v) Tween 80 (Sinopharm, Shanghai, China). 
After	incubation	for	48	hr	at	30°C,	opalescent	zones	and	colony	diam-
eters were measured, and the ratio between both parameters was cal-
culated to measure lipase activity. The motility assays were performed 
on semisolid agar plates (serum- SAPI medium + 0.5% (wt/v) agar) and 
diameters of swimming motility halos were determined after incuba-
tion	for	24	hr	at	30°C.	Both	lipase	and	motility	assays	were	conducted	
twice with four technical replicates each time.

2.6 | Crucian carp challenge test

Juvenile crucian carp (Carassius auratus gibelio; 48.1 ± 2.5 g and 
12.1 ± 1.1 cm) were obtained from the experimental station of the 

Freshwater Fisheries Research Centre at the Chinese Academy 
of Fishery Sciences. Prior to challenging, a total of 120 fish were 
acclimatized in 70 × 50 × 40 cm3 aquariums, at a temperature of 
29.5	±	1.0°C,	 dissolved	 oxygen	 >5	mg/L,	 and	 given	 commercial	
feed three times each day. Fish (n = 120) were divided evenly into 
four groups with three replicates: AH196 + NE, AH196, NE, and the 
control group. A. hydrophila AH196 was grown overnight in serum- 
SAPI	medium	at	30°C.	Broth	cultures	were	centrifuged	at	8,000	×	g 
for 5 min, washed twice, and diluted to 1 × 106 CFU/ml with ster-
ile physiological saline. Fish in the AH196 + NE and AH196 groups 
were intraperitoneally injected with 200 μl of A. hydrophila AH196 
suspension, while the other groups were administered 200 μl sterile 
physiological saline. At 4 hr postinjection, the AH196 + NE and NE 
groups were intraperitoneally injected with 100 μl of NE (100 μM), 
while fish in the other groups were injected with 100 μl of stroke- 
physiological saline solution. Fish were observed in 6 hr intervals, 
and dead fish were removed for traditional bacteriological inspec-
tion. The holistic survival percentage was analyzed and expressed 
as a Kaplan–Meier survival curve with a log- rank test. The challenge 
tests were carried out under the instruction and supervision of the 
Ethical Committee for Animal Experiments of Nanjing Agricultural 
University (Nanjing, China). All animal procedures abided by the 
guidelines of laboratory animal welfare ethical review and regula-
tions for the administration of affairs concerning experimental ani-
mals in China.

2.7 | Statistical analysis

All data are presented as the mean ± SD. The growth assay data 
were analyzed by one- way ANOVA followed by Tukey’s post hoc 
tests. Data from the gene expression profiles, protease, hemolysis, 
lipase, and motility assays were analyzed by Welch’s t test. The sur-
vival of crucian carp was analyzed and expressed as a Kaplan–Meier 
survival curve with a log- rank (Mantel–Cox) test. A probability (p) 
value < 0.05 was considered as statistically significant, and a prob-
ability (p) value < 0.01 was considered as extremely significant. All 
figures were plotted using the GraphPad Prism program version 7 
(https://www.graphpad.com/, RRID: SCR_002798).

3  | RESULTS

3.1 | Growth response of Aeromonas hydrophila to 
NE

To investigate the response of A. hydrophila AH196 growth with 
NE in vitro, minimal nutrient, low- iron SAPI medium that was sup-
plemented with 10% FBS was used to imitate host environment 
(Figure 1). Based on preliminary tests, we observed that all con-
centrations of NE could not stimulate growth of AH196 in serum- 
SAPI medium when initial inoculum densities were 103−105 CFU/
ml (data not shown). There were no significant differences in 
OD600 among the groups with 0, 12.5, 25, and 50 μM NE additions. 

https://www.graphpad.com/
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When compared to control cultures, the maximum cell density of 
Aeromonas hydrophila AH196 were 1.31- , 1.27- , 1.04- , 1.01- , and 
1.02- fold higher in 200, 100, 50, 25, and 12.5 μM of NE added 
serum- SAPI medium, respectively (at 36, 36, 72, 72, and 72 hr, re-
spectively). Moreover, addition of 100 and 200 μM NE considerably 
enhanced AH196 growth after 18 hr (p < 0.05). In the second trial 
experiments, the addition of 100 μM NE significantly stimulated 
the growth of different A. hydrophila isolates AH33, AH189, AH301, 
and NJ- 35 from cyprinid fish (p < 0.01), and almost doubled the 
growth stimulation effect of A. hydrophila NJ- 35 when compared to 
control group (Figure 2).

3.2 | Virulence- associated genes expression

Variation in gene expression of A. hydrophila AH196 with and with-
out NE addition is shown in Figure 3. NE addition resulted in sig-
nificantly upregulated expression of ahp (1.96- fold), ela (1.84- fold), 
aha (1.92- fold), ompW (2.02- fold), ompA (1.66- fold), fur (1.46- fold), 
ahyR (1.59- fold), ast (1.32- fold), hly (1.32- fold), sodB (1.35- fold), and 
flaB (1.33- fold) (p < 0.01). In contrast, the addition of NE resulted in 
markedly downregulated expression of act (0.78- fold) and flaA (0.65- 
fold) (p < 0.01). There was no statistical significance of the expres-
sion of aerA (0.95- fold), alt (0.93- fold), and lip (1.03- fold) after NE 
addition (p > 0.05).

3.3 | Protease activity, lipase activity, 
hemolysis, and swimming motility

The protease activity, lipase activity, hemolysis, and swimming motil-
ity of Aeromonas hydrophila AH196 were shown in Figure 4. Bacterial 
cell populations in the NE treatment group showed an observable 
enhancement in protease activity (Figure 4a; p < 0.01), while sig-
nificant differences in lipase activity, hemolysis, and motility were 

not observed when compared to untreated groups (Figure 4b–d; 
p > 0.05).

3.4 | Virulence enhancement of Aeromonas 
hydrophila by NE in vivo

We performed artificial challenge tests and concomitant changes of 
NE levels in crucian carp in order to assess whether NE can affect 
A. hydrophila AH196 infection and virulence in vivo. Survival data for 
fish within 96 hr for the four groups (AH196 + NE, AH196, NE, and 
control) are shown in Figure 5. No fish death was observed in the 
NE and control groups. In contrast, fish injected with A. hydrophila 
AH196 and saline had a 0.23 ± 0.06 accumulated mortality rate 
(77% survival). The injection of NE following the infection of A. hy-
drophila AH196 resulted in marked increases in fish mortality rate 
reaching 0.63 ± 0.15 (37% survival) when compared to other groups 
(p < 0.01). The moribund fish presented hemorrhagic septicemia 
symptoms, and bacteria that were isolated from dying fish organs 
(liver, spleen, and kidney) were identified as A. hydrophila AH196.

4  | DISCUSSION

The addition of NE at 100 and 200 μM markedly accelerated the 
growth of Aeromonas hydrophila AH196 in 36–72 hr (Figure 1), 
and similar results were observed in other strains (NJ35, AH33, 
AH189, AH301) that were tested with 100 μM NE treatment at 
36 hr (Figure 2). The stimulation of growth by NE is consistent with 
what has been observed in other bacterial pathogens including 
Streptococcus pneumoniae (Gonzales, Castillo- Rojas, Castillo- Rodal, 
Tuomanen, & López- Vidal, 2013), Vibrio harveyi (Yang et al., 2014), 

F IGURE  1 Effect of different concentrations of the 
catecholamine norepinephrine (NE) on the growth of Aeromonas 
hydrophila AH196 in serum- SAPI medium supplemented with 
10% fetal bovine serum. For some points, the error bars showing 
SD of eight replicates are shorter than the height of the symbol. 
NE (200 μM), indicates the addition of 200 μM NE; NE (100 μM), 
indicates the addition of 100 μM NE, and so forth; the control was 
supplemented with an equal dosage of sterile saline
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and Pseudomonas aeruginosa (Lyte & Ernst, 1992). Under lower NE 
concentration (12.5, 25, and 50 μM), no significant growth differ-
ences were observed in A. hydrophila AH196. However, this result 
was in contrast to previous reports that 10 μM NE could induce 
log- fold changes in A. hydrophila growth (Dong et al., 2016; Kinney 
et al., 1999). This difference may be attributed to the variation 
of experimental conditions including transferrin levels, bacterial 
strains, and inoculum densities in different studies (O’Donnell 
et al., 2006). The medium used is crucial to investigate the effect 
of NE to the bacterial growth or virulence. Most researches mim-
icked the host iron- limited condition with serum supplement, in 
which the iron was sequestered by transferrin. Both adult bovine 
serum (ABS) and FBS are commonly used medium supplements, 
and contain bacteriostatic constituents, such as transferrin, com-
plement, and antibodies. However, bovine serum contains essen-
tial nutrients for cell growth and its composition and content are 
often different following the change of the gender, age, physiologi-
cal condition, and nutritional condition of the blood donors. Based 
on preliminary tests, we found that NE significantly enhanced the 

growth of Aeromonas hydrophilia AH196 in the medium with ABS 
and FBS, and a higher growth stimulation of Aeromonas hydrophilia 
AH196 was observed in serum- SAPI medium containing FBS rather 
than that of ABS (data not shown). The previous studies also have 
chosen serum- SAPI medium supplemented FBS as a culture me-
dium to assess the effect of NE on the growth of Vibrio cholerae 
(Halang et al., 2015), Aeromonas hydrophilia (Dong et al., 2016), 
Campylobacter jejuni (Xu et al., 2015), and Vibrio parahaemolyticus 
(Nakano, Takahashi, Sakai, & Nakaya, 2007).

Iron is an indispensable trace element for bacterial growth, 
proliferation, and virulence. In vertebrates, iron is sequestered by 
transferrin, a high- affinity iron- binding protein in serum, difficult to 
access by invading pathogenic bacteria. The underlying mechanism 
for how NE enhances the pathogenic bacteria under iron- restricted 
environment has attracted much attentions. It was considered that 
the catecholamine reduces the ferric iron- binding affinity of trans-
ferrin, which were responsible for the bacteriostatic nature of serum 
and mucosal secretions (Freestone, Sandrini, Haigh, & Lyte, 2008; 
Freestone et al., 2007; Sandrini et al., 2014). Recently, Dong et al. 

F IGURE  3 Fold change in the 
virulence- associated gene expression 
profiles of Aeromonas hydrophila 
AH196 after treatment with 100 μM 
norepinephrine. Virulence- associated 
gene expression levels of A. hydrophila 
AH196 were analyzed by qRT- PCR and 
normalized to the reference gene rpoB. 
Asterisks indicate a significant difference 
when compared to untreated A. hydrophila 
(**p < 0.01; ns: p	>	0.05)
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F IGURE  4 Effect of norepinephrine 
on protease activity, lipase activity, 
hemolysis, and swimming motility 
of Aeromonas hydrophila AH196. An 
initial AH196 density of 102 CFU/ml 
was cultured to logarithmic growth in 
the absence or presence of 100 μM 
norepinephrine (NE), washed twice, and 
adjusted to equivalent cell densities 
(OD600 = 0.6) in order to determine (a) 
protease activity via azocasein assays, 
(b) hemolysis via spectrophotometry, (c) 
swimming motility on soft serum- SAPI 
agar supplemented with 100 μM NE, and 
(d) lipase activity on serum- SAPI agar 
containing 1% Tween 80 and 100 μM NE. 
**p < 0.01; ns: no statistical significance 
(p	>	0.05)
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(2016) reported that A. hydrophila growth stimulation by NE required 
the TonB2 energy transduction system instead of the amonabactin 
siderophore, which implies that bacteria contain stress hormone- 
related iron acquisition systems.

The pathogenesis of A. hydrophila is multifactorial, and charac-
terized by the involvement of a number of virulence factors, such as 
adhesins (Fang, Ge, & Sin, 2004), outer membrane proteins (omps; 
Confer & Ayalew, 2012), aerolysins (Howard, Garland, Green, & 
Buckley, 1987), hemolysins (Asao, Kinoshita, Kozaki, Uemura, & 
Sakaguchi, 1984), enterotoxins (Chopra, Houston, Peterson, & Jin, 
1993; Sha et al., 2005), serine protease (Cascón, Fregeneda, et al., 
2000; Méndez et al., 2012), and elastase (Cascón, Yugueros, et al., 
2000). Further, ahyR encodes a LuxR- type quorum sensing regula-
tor that regulates the expression of virulence factors in A. hydroph-
ila (Kirke, Swift, Lynch, & Williams, 2004; Swift et al., 1997, 1999). 
Additionally, the iron- responsive ferric uptake regulator (fur) also 
plays a significant role in iron homeostasis and pathogenesis of 
A. hydrophila (Carpenter, Whitmire, & Merrell, 2009). Adhesion in 
the host is an important primary step of the infection procedure of 
pathogenic bacteria. In the present study, the relative expression 
of aha, ompW, and ompA genes increased significantly in the pres-
ence of NE. The protein products of aha, ompW, and ompA gene 
are crucial adherence and pathogenic factors, located in the outer 
cell layer, and are involved in maintaining cytoskeletal structure, 
biofilm formation, transport of nutrient substances, and resistance 
to host immune defenses (Khushiramani et al., 2012; Maiti, Shetty, 
Shekar, Karunasagar, & Karunasagar, 2012). The result in this report 
suggested that NE enhanced the adhering capacity of A. hydroph-
ila and accelerated the development of infectious disease, and was 
consistent with observations by Chen, Lyte, Stevens, Vulchanova, 

and Brown (2006) that NE stimulated the upregulated expression 
of the intimin- encoding gene eae in Escherichia coli O157:H7. Our 
results also showed that NE effectively promoted the expression of 
flaB (structural polar flagellin gene), but simultaneously suppressed 
the expression of polar flagellin structural gene, flaA of A. hydroph-
ila. Intriguingly, our swimming assay results suggested that NE does 
not significantly affected the motor ability of Aeromonas hydrophila. 
Combined with the above results, we speculated that the changes in 
motility might be the consequence of interactive effects of flagellar 
motility- related genes. Lateral flagella (laf, another type of flagella in 
A. hydrophila) is responsible for the motility, adherence, and biofilm 
formation when bacteria grow over viscous environment or surface 
(Beaz- Hidalgo & Figueras, 2013; Kirov et al., 2002). Yang et al. (2014) 
reported that NE notably increased the swimming motility and the 
expression of polar flagella structural and regulation genes of Vibrio 
harveyi, meanwhile NE upregulated the gene expression of both lat-
eral flagellar flagellin and regulator for threefold, which provided an 
insight into the effect of NE on bacterial motility mechanisms and 
pathogenic processes. Worthy to note, the swimming motility in 
the study was detected using LB35 plate containing 0.3% agar. The 
majority of A. hydrophila strains produce two types of extracellular 
proteases: a serine protease with caseinolytic activity encoded by 
the ahp gene, and an elastase with both caseinolytic and elastolytic 
activity encoded by the ela gene (Cascón, Fregeneda, et al., 2000; 
Rivero, Anguita, Mateos, Paniagua, & Naharro, 1991). Both proteases 
could break down the structure of host cells and tissues, thereby 
supplying nutrient elements for bacterial growth and propagation, 
in addition to damaging macrophages (Ascencio & Wadström, 1991). 
Indeed, NE was effective to promote proteinase activity and alter 
the expression of ahp and ela of A. hydrophila, which suggested that 
NE facilitated the infection process and virulence of A. hydrophila. 
The theromstable cytotonic enterotoxin (ast) and hemolysin (hly) 
are vital exotoxins of A. hydrophila, and can promote the hemoly-
sis, cytotoxicity, and enterotoxigenesis (Chopra et al., 1993). Our 
results also indicated that NE enhanced ast and hly gene expression 
of A. hydrophila.

Fur, an predominant iron- regulating factor in Gram- negative 
bacteria, regulates iron metabolism- related genes and cellular 
processes by sensing iron availability in the surrounding environ-
ment, such as acid resistance, oxidative and nitrosative stress, 
chemotaxis, and the expression of virulence factors (Escolar, 
Pérez- martín, & De Lorenzo, 1999; Salvail & Massé, 2012). Our 
results indicated that NE considerably upregulated fur and sodB 
gene expression in A. hydrophila. To maintain intracellular iron ho-
meostasis, fur activity is activated in iron- rich environments, while 
the repression of fur activity is alleviated in low- iron conditions, 
which then promotes the synthesis of siderophores to uptake iron 
(Porcheron & Dozois, 2015). Based on our results, overexpression 
of fur is a reflection of high ferric levels in bacteria. Meanwhile, 
activation of fur inhibits the synthesis of the siderophores. This 
supports the hypothesis that there are several mechanisms for 
iron acquisition in A. hydrophila. Several transcriptional analyses 
studies have demonstrated that sod was positively regulated by 

F IGURE  5 Crucian carp survival with norepinephrine (NE) 
treatment after Aeromonas hydrophila AH196 infection. Crucian 
carp were inoculated intraperotineally 100 μM norepinephrine 
or equivoluminal vehicle solvent at 4 hr post infection with 
2 × 105 CFU of AH196, and other two groups were separately 
administered corresponding volumes of norepinephrine and normal 
saline in order to assess the effects of NE on AH196- induced 
mortality (**p < 0.01)
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fur (Holmes et al., 2005; Oglesby, Murphy, Iyer, & Payne, 2005). 
Hydroxyl radicals may be produced by fenton chemistry reactions 
that then result in oxidative stress during iron metabolism (Touati, 
Jacques, Tardat, Bouchard, & Despied, 1995). Miura, Muraoka, 
Fujimoto, and Zhao (2000) showed that DNA damage could be 
induced by catecholamine hormones in the presence of iron. 
Therefore, the upregulation of sodB could result in catalytic con-
version of superoxide radicals, thereby promote tolerance to the 
extremely toxic and oxidative compounds and ultimately enhance 
A. hydrophila viability. This explanation agrees well with previous 
research that the effect of NE on sodB gene expression (Graziano 
et al., 2014). Sha, Lu, and Chopra (2001) showed that the repres-
sion of act at the transcriptional level was relieved in fur isogenic 
mutants. Conversely, the upregulated fur could repress act gene 
expression, which may explain the downregulation of act in NE- 
exposed A. hydrophila.

ahyR, homolog of LuxR of Vibrio fischeri quorum sensing sys-
tem, which can coordinate gene expression via sensing the accu-
mulation of signal molecules secreted by A. hydrophila (Defoirdt, 
Boon, Bossier, & Verstraete, 2004; Suga & Smith, 2003). The ahy-
R/LuxR could positively regulate the virulence factors expression, 
serine protease (Rui, Liu, Ma, Wang, & Zhang, 2008), and casein-
ase activity (Natrah et al., 2011). Here, NE- induced ahyR gene 
expression and caseinase activity in A. hydrophila indicated that 
NE might be involved in ahyR- mediated expression of virulence 
factors.

A. hydrophila is a well- acknowledged opportunistic patho-
gen, and widely occurs in aquaculture environment and the 
gastrointestine of healthy fish. Fish stress caused by handling, 
temperature change, low dissolved oxygen and other factors 
can markedly increase the infection and disease outbreak 
caused by A. hydrophila (Dror et al., 2006; Peters, Faisal, Lang, 
& Ahmed, 1988). It seems like that A. hydrophila could sense 
and respond to the stress hormone of fish host. Therefore, in 
this report authors used an in vivo challenge model by injecting 
pathogenic bacteria A. hydrophila and exogenous stress hor-
mone NE to confirm the affect of stress hormone on patho-
genic bacteria infection. The LD50 of A. hydrophila AH196 in 
crucian carp challenged with intraperitoneal injection was 
3.7 × 106 CFU/ml. To acquire the strongest possible virulence 
enhancement by NE, a lower concentration (1 × 106 CFU/ml) 
of bacterial inocula was employed in our study. Our findings 
showed that NE increased the proliferation and expression of 
virulence- related genes in A. hydrophila, and the death rate of 
crucian carp. In vivo challenge tests in crucian carp agreed well 
with previous reports that virulence enhancement associated 
with NE exposure in Vibrio campbellii (Pande, Suong, Bossier, & 
Defoirdt, 2014), Vibrio harveyi (Yang et al., 2014), and Vibrio par-
ahaemolyticus (Suong et al., 2017). Hence, the exogenous stress 
hormone NE can enhance the virulence and pathogenicity of 
A. hydrophila in fish host. However, further studies are needed 
to reveal how stress hormone NE enhances the growth and vir-
ulence of A. hydrophila.
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