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Accurate reconstruction of the regulatory networks that control gene expression is one of the key current challenges in
molecular biology. Although gene expression and chromatin state dynamics are ultimately encoded by constellations of
binding sites recognized by regulators such as transcriptions factors (TFs) and microRNAs (miRNAs), our understanding
of this regulatory code and its context-dependent read-out remains very limited. Given that there are thousands of
potential regulators in mammals, it is not practical to use direct experimentation to identify which of these play a key role
for a particular system of interest. We developed a methodology that models gene expression or chromatin modifications
in terms of genome-wide predictions of regulatory sites and completely automated it into a web-based tool called
ISMARA (Integrated System for Motif Activity Response Analysis). Given only gene expression or chromatin state data
across a set of samples as input, ISMARA identifies the key TFs and miRNAs driving expression/chromatin changes and
makes detailed predictions regarding their regulatory roles. These include predicted activities of the regulators across the
samples, their genome-wide targets, enriched gene categories among the targets, and direct interactions between the
regulators. Applying ISMARA to data sets from well-studied systems, we show that it consistently identifies known key
regulators ab initio. We also present a number of novel predictions including regulatory interactions in innate immunity,
a master regulator of mucociliary differentiation, TFs consistently disregulated in cancer, and TFs that mediate specific
chromatin modifications.

[Supplemental material is available for this article.]

Since the seminal work of Jacob and Monod (1961), much has been

learned about the molecular mechanisms by which gene expres-

sion is regulated and the molecular components involved. His-

torically, most work has focused on transcription factors (TFs),

arguably the most important regulators of gene expression, which

bind to cognate sites in DNA and regulate the rate of transcription

initiation. However, more recently it has become clear that the

state of the chromatin, which can be modulated through modifi-

cations of the DNA nucleobases and of the histone tails of nucle-

osomes, also plays a crucial role. For example, the local chromatin

state affects the ability of TFs to access their binding sites, and the

chromatin state can in turn be modified through TF-guided re-

cruitment of chromatin modifying enzymes. Furthermore, an en-

tirely new layer of post-transcriptional regulation has been un-

covered in recent years in the form of microRNAs (miRNAs) (Bartel

2009). These guide RNA-induced silencing complexes to target

mRNAs, inhibiting their translation and accelerating their decay

(Fabian et al. 2010).

In spite of these many insights, our current understanding of

the function of genome-wide gene regulatory networks in mam-

mals is still rudimentary. For example, we only know the sequence

specificity of less than half (Matys et al. 2003; Wasserman and

Sandelin 2004; Pachkov et al. 2007) of the ;1500 (Vaquerizas et al.

2009) TFs in mammalian genomes. Our knowledge of how TF

binding is affected by chromatin state, of the combinatorial in-

teractions between TFs and their cofactors, and the impact of post-

translational modifications on TF activity, is even more fragmen-

tary. Our understanding of the transcriptome-wide effects of

miRNAs on gene expression remains similarly limited. Given that

we are clearly still far from being able to develop realistic quanti-

tative models of genome-wide gene regulatory dynamics, the most

constructive contribution that computational approaches can

currently provide is to develop models that help guide experi-

mental efforts.

Due to the dramatic decrease in high-throughput measure-

ment costs, it has become relatively straightforward to measure

gene expression (i.e., with microarray or RNA-seq) or chromatin

state (with ChIP-seq) genome-wide across a set of samples for a

particular system of interest. Consequently, researchers interested

in a particular developmental or cellular differentiation process, or

in the response of a tissue to a particular perturbation, have in-

creasingly turned to genome-wide profiling of expression and

various chromatin marks, with the aim of using such data to elu-

cidate the key regulatory circuitry acting in their system. However,

deriving insights into regulatory circuitry from high-throughput

data requires sophisticated computational analysis methods.

In recent years, comparative genomic methods have been de-

veloped that allow relatively accurate computational prediction of

regulatory sites for hundreds of TFs and miRNAs on a genome-wide

scale (van Nimwegen 2007; Friedman et al. 2009; Arnold et al.

2012a). In addition, through extensive experimental efforts, ge-

nome-wide annotations of transcript structures (The FANTOM

Consortium et al. 2005; Djebali et al. 2012) and promoters (Balwierz

et al. 2009) have become available. Capitalizing on these de-

velopments, we recently presented a general method called Motif
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Activity Response Analysis (MARA) for inferring key gene regula-

tory circuitry from genome-wide gene expression data by model-

ing the observed gene expression dynamics in terms of computa-

tionally predicted regulatory sites. We showed that this method

can reconstruct core transcription regulatory networks in a human

differentiation system ab initio (The FANTOM Consortium et al.

2009). Furthermore, several recent studies confirm that computa-

tional modeling of observed expression and chromatin dynamics

is a powerful approach to reconstructing regulatory circuitry

(Novershtern et al. 2011; Yosef et al. 2013) (to give just two ex-

amples) and show that MARA-like approaches can be extended to

include miRNA regulation (Setty et al. 2012) and the dynamics of

genome-wide histone modifications (Arnold et al. 2012b).

Unfortunately, applying MARA-like methods to high-

throughput data is technically challenging and requires the ex-

pertise of dedicated computational biology groups. Thus, whereas

many laboratories are now routinely producing high-throughput

data sets, and methodologies for analyzing such data have been

described in the literature, the vast majority of groups that produce

data have to develop collaborations with expert computational

groups to apply these methods. Indeed, in recent years MARA has

been applied to a large range of mammalian systems studied by

various experimental collaborators and experimentally validated

predicted regulatory circuitry in these systems (Summers et al.

2010; Aceto et al. 2012; Arner et al. 2012; Hasegawa et al. 2012;

Pérez-Schindler et al. 2012; Suzuki et al. 2012; Eisele et al. 2013;

Meier-Abt et al. 2013; Tiwari et al. 2013a,b; Vervoort et al. 2013).

Although these studies further validated the power of the method,

they required a considerable investment of time and effort for the

analysis of each new data set. Through these experiences we be-

came convinced that lack of easy access to such computational

analysis procedures is currently a major bottleneck in the field, and

we decided to invest our efforts into developing a completely au-

tomated system for performing MARA.

Here we present ISMARA (Integrated System for Motif Activity

Response Analysis), a completely automated computational tool

that aims to make the computational reconstruction of regulatory

circuitry from high-throughput data easily accessible to any re-

searcher. Given as input a set of genome-wide gene expression or

chromatin state measurements across a number of samples,

ISMARA uses motif activity response analysis to identify the key

regulators (i.e., TFs and miRNAs) driving gene expression/chro-

matin state changes across the samples, the activity profiles of

these regulators, their target genes, and the sites on the genome

through which these regulators act. The analysis combines pre-

calculated annotations of regulatory sites for hundreds of regula-

tors across genes in mammalian genomes with automated pro-

cessing of input data, modeling and parameter inference, and post-

processing to provide a large collection of analysis results. To use

ISMARA, users only need to upload their data to the web server

http://ismara.unibas.ch/ and submit it to the system, without the

need of setting or tuning any parameters. All results are presented

through a user-friendly graphical web interface. In ISMARA, the

motif activity response analysis has been extended to model not

only gene expression data from various platforms (microarray,

RNA-seq), but essentially any sequencing data reflecting a genomic

mark (ChIP-seq), including chromatin modifications or TF bind-

ing. In addition, ISMARA models not only the effects of TFs on

mammalian gene expression but also the effects of miRNAs.

Below, we first outline the methodologies that we developed

for automating the computational modeling and provide an

overview of all results that ISMARA provides by applying it to RNA-

seq data of a human tissue atlas. After this, we further demonstrate

ISMARA using a number of example data sets that highlight dif-

ferent aspects of the method.

Results
As schematically depicted in Figure 1, ISMARA takes raw gene ex-

pression (microarray or RNA-seq) or chromatin state (ChIP-seq)

data from any number of samples and automatically models

this data in terms of computationally predicted regulatory sites,

thereby predicting the genome-wide regulatory interactions that

drive the observed expression or chromatin state changes across

the samples. ISMARA is available through a web interface http://

ismara.unibas.ch/ as part of our SwissRegulon resources (Pachkov

et al. 2007). Users can directly upload unprocessed microarray

(CEL files), RNA-seq, or ChIP-seq data (BED or BAM files), which

are then analyzed automatically without the need for any addi-

tional input from the user (Fig. 1B). The results are made available

through a web interface and can also be downloaded in flat-file

format.

In order to be able to provide such completely automated

analysis, ISMARA makes use of precalculated genome-wide anno-

tations of promoters, sets of transcripts associated with each pro-

moter, multiple alignments of promoter regions across seven

mammals, a curated collection of mammalian regulatory motifs,

TFBS predictions for all motifs across all promoters, and predicted

target transcripts of miRNAs (Fig. 1A). Additionally, we developed

a substantial number of analysis procedures in order to automati-

cally process and normalize the raw input data (Fig. 1B) and

transform them into a standardized format to which the motif

activity response analysis can be applied (Fig. 1C). The analysis

procedures involved in all these steps are outlined in Methods and

detailed in the Supplemental Methods.

Overview of the analyses performed by ISMARA

To give an overview of the analysis results that ISMARA automat-

ically provides for any data set, and to outline how these analyses

are performed, we applied ISMARA to an example RNA-seq data set

of expression profiles across 16 human cell types, i.e., data from the

Illumina Body Map 2 (GEO accession GSE30611) (IBM2). The re-

sults obtained after submitting the raw RNA-seq data to ISMARA

are available at http://ismara.unibas.ch/supp/dataset1_IBM/ismara_

report/.

As described in Methods, ISMARA infers the motif activities

according to a linear model (Fig. 1D) using a Bayesian procedure.

Importantly, a Gaussian prior on motif activities is used to avoid

overfitting, and the parameter of this prior is fit automatically by

ISMARA for each input data set using a cross-validation scheme.

Motif activities are fitted from 80% of the promoters and the per-

formance of the model, i.e., the fraction of the variance in Eps

explained by the model, is assessed on the remaining 20% of

promoters.

Although our model fits Eps, it is important to note that it is

not the model’s aim to provide an accurate fit of the signal Eps. As

discussed in the introduction, we do not expect the highly sim-

plified linear model to provide an accurate fit to the signal Eps at

individual promoters. Indeed, the model explains 7.7% of the

variance in Eps for the IBM2 data, and across the data sets studied

here, we find that the model typically captures 5%–15% of the

variance of Eps across samples (Supplemental Fig. 2). Although

these fractions are modest, given that tens of thousands of pro-
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Figure 1. Outline of the Integrated System for Motif Activity Response Analysis. (A) ISMARA starts from a curated genome-wide collection of promoters
and their associated transcripts. Using a comparative genomic Bayesian methodology (Arnold et al. 2012a), transcription factor binding sites (TFBSs) for
;200 regulatory motifs are predicted in proximal promoters. Similarly, miRNA target sites for ;100 seed families are annotated in the 39 UTRs of
transcripts associated with each promoter (Friedman et al. 2009). (B) Users provide measurements of gene expression (microarray, RNA-seq) or chromatin
state (ChIP-seq). The raw data are processed automatically, and a signal is calculated for each promoter in each sample. For ChIP-seq data, the signal is
calculated from the read density in a region around the transcription start. For gene expression data, the signal is calculated from read densities across the
associated transcripts (RNA-seq) or intensities of associated probes (microarray). (C ) The site predictions and measured signals are summarized in two
large matrices. The components Npm of matrix N contain the total number of sites for motif m (TF or miRNA) associated with promoter p. The components
Eps of matrix E contain the signal associated with promoter p in sample s. (D) The linear MARA model is used to explain the signal levels Eps in terms of
bindings sites Npm and unknown motif activities Ams, which are inferred by the model. The constants cp and ~cs correspond to basal levels for each promoter
and sample, respectively. (E) As output, ISMARA provides the inferred motif activity profiles Ams of all motifs across the samples, s, sorted by the significance
of the motifs. A sorted list of all predicted target promoters is provided for each motif, together with the network of known interactions between these
targets (provided by the String database, http://string-db.org/) and a list of Gene Ontology categories that are enriched among the predicted targets.
Finally, for each motif, a local network of predicted direct regulatory interactions with other regulators is provided.
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moters are involved, they are extremely significant, i.e., using

randomization of the association between site-count and expres-

sion, we estimate that the P-value for explaining 7.7% of the var-

iance by chance is ;10�235 (Supplemental Methods; Supplemental

Fig. 3).

ISMARA’s main aim is to identify which regulatory motifs, m,

play an important role and how these motifs contribute to Eps

across the samples. First, ISMARA’s output lists all regulatory motifs

sorted by a Z-score, which summarizes the importance of the motif

for explaining the expression variation across the samples. This

score roughly corresponds to the average number of standard de-

viations the motif activity is away from zero (see Methods and

Supplemental Methods). Besides the Z-score of each motif, the list

also displays the set of TFs or miRNAs that bind to sites of the

motif, a thumbnail of its activity across the input samples, and

a sequence logo for each motif (Supplemental Fig. 4). Following the

link from the motif name leads to a page with a large number

of predictions regarding the motif’s precise regulatory role. To il-

lustrate these, Figure 2 shows some of ISMARA’s results for the

HNF1A, MYB, hsa-miR-124/hsa-miR-506, and the SREBF motifs.

HNF1A was the most significant motif for the IBM2 data set,

and its predicted activity is highly tissue-specific, being almost en-

tirely restricted to liver and kidney (Fig. 2A; Supplemental Figs. 5, 6).

The associated transcription factor hepatocyte nuclear factor 1 ho-

meobox A (HNF1A) is relatively well-studied and indeed known to be

mainly expressed in liver, kidney, stomach, and intestine (Kuo et al.

1990; Serfas and Tyner 1993), where it is essential for organ function

(Pontoglio et al. 1996). Figure 2A also illustrates that the inferred

motif activities are highly reproducible. In fact, motif activities are

more reproducible than the expression profiles from which the motif

activities were inferred (Supplemental Fig. 16). The reason for this

high reproducibility of motif activities is that each motif, m, typically

targets hundreds to thousands of promoters, and the inferred motif

activities, Ams, are statistical averages of the behaviors of a large

number of promoters. This averaging causes the complexities at in-

dividual promoters to effectively cancel out and ensures that the

overall influence of a motif can still be reliably inferred.

For many of the regulatory motifs, there are multiple TFs that

can bind to the sites of the motif, and it is not a priori clear which of

the TFs is most responsible for the motif activity in a given system.

ISMARA infers motif activities from the behavior of the predicted

targets of the motif. That is, roughly speaking, an increased activity

is inferred when its targets show on average an increase in ex-

pression that cannot be explained by the presence of sites for other

motifs in their promoters. The mRNA expression profiles of the TFs

associated with a motif thus provide independent information

about the link between the TFs and the motif activities, and

ISMARA provides an analysis of the correlation between motif

activities and the expression profiles of the associated TFs. For

HNF1A, there is a good correlation between mRNA expression of

the TF and the inferred motif activity (Fig. 2A, inset). However, for

the fourth most significant motif (POU2F), only one of the three

POU2F factors, POU2F2 (also known as OCT2), shows significant

correlation of its mRNA level with motif activity, and it is the most

highly expressed. This suggests that POU2F2 is mainly responsible

for the motif activity in these tissues (Supplemental Figs. 7, 8). The

fact that the correlation is positive also strongly suggests that

POU2F2 acts as an activator. In contrast, whenever a negative

correlation between motif activity and TF expression is observed,

the TF most likely acts as a repressor, e.g., as observed for the

known repressor ZHX2 (Supplemental Fig. 9; Kawata et al. 2003).

However, it should be noted that motif activity does not need to be

a direct function of TF expression, i.e., the effect of a TF on its

targets will not only depend on its expression but possibly on post-

translational modifications, on cellular localization, and on the

presence of specific cofactors. Therefore, although a strong corre-

lation between TF expression and motif activity is a good in-

dication that the TF is responsible for the motif activity, the ab-

sence of such a correlation does not imply that the TF is not

involved in the motif’s activity.

ISMARA predicts individual target promoters p for each motif m

by calculating the difference Spm of the log-likelihood of the model

with the original site-count matrix N and the log-likelihood of

the model in which only the binding sites for motif m in promoter

p have been removed (Methods and Supplemental Methods). For

each motif, a searchable and resizable list is provided of all tar-

get promoters, their associated transcripts, and associated genes

(Supplemental Fig. 10). For HNF1A, the accuracy of ISMARA’s tar-

get predictions is suggested by the fact that most of the top pre-

dicted targets are supported by the literature, including some of the

oldest known direct targets of HNF1A (Courtois et al. 1988). For

each target promoter, ISMARA provides a link to the genome

browser view of the promoter (Supplemental Fig. 11), showing the

precise genomic location of the predicted regulatory site. To pro-

vide the user with a more intuitive picture of the predicted list of

targets of the motif, a link is provided to a network view of the

target genes as provided by the STRING database (Jensen et al.

2009), where network links indicate known associations between

the genes. For HNF1A, the STRING network reveals a large, highly

connected cluster of predicted targets that are known to be involved

in the metabolism of drugs and toxins in the liver (Supplemental

Fig. 12). As another means to provide insights into the pathways

targeted by a given motif, ISMARA also provides lists of enriched

Gene Ontology categories (Fig. 2; Supplemental Fig. 13; Ashburner

et al. 2000), which in this case confirms that HNF1A targets genes

involved in the metabolism of drugs and xenobiotics.

To gain insight in the transcription regulatory networks that

control expression profiles, it is of particular interest to identify

direct regulatory connections between the TFs themselves. In

ISMARA, a direct regulatory interaction from motif m to m9 is

predicted when motif m is predicted to target a promoter of one of

the TFs associated with m9. To visualize the predicted direct regu-

latory interactions between regulators, ISMARA provides, for each

motif m, a local network picture that shows all predicted regulatory

connections between m and promoters of TFs that are associ-

ated with other motifs (Supplemental Fig. 14). The user can inter-

actively change the cutoff on the target score Spm to draw this

picture. For HNF1A, we find that the strongest predicted targets are

HNF4A, FOXA2, NR5A2, and HNF1A itself (Supplemental Fig. 14). In

addition, HNF4A and FOXA2 are predicted to target the HNF1A

promoter as well. Remarkably, all these predictions are supported by

independent experimental evidence (Piaggio et al. 1994; Boj et al.

2001; Bartoov-Shifman et al. 2002; Tomaru et al. 2009; Bochkis et al.

2012; Molero et al. 2012).

ISMARA predicts that the MYB motif is by far most active in

testis, and it targets genes that are involved in meiosis and sper-

matogenesis (Fig. 2B). In addition, the MYB motif is predicted to

target the RFX4, RFX2, and NR5A1 promoters. A literature search

reveals that MYBL1, a close homolog of MYB that binds to the

same regulatory sites, is a master regulator of male meiosis and

spermatogenesis (Toscani et al. 1997; Bolcun-Filas et al. 2011).

Moreover, RFX2 has been implicated as a direct target of MYBL1 in

spermatogenesis (Horvath et al. 2009). ISMARA’s prediction that

RFX4 is also regulated by the MYB motif (presumably through

Balwierz et al.
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Figure 2. Results for the Illumina Body Map 2. Each panel corresponds to a motif (indicated with name and sequence logo) and shows the inferred
motif activities across the 16 tissues (activities with error bars in panels A and C, and activity Z-values in panels B and D). Tables show Gene Ontology
categories enriched among predicted targets of each motif, and individual target promoters (D). The networks (B,C) show direct regulatory interactions
between the motif and other regulators. (A) Red and black curves correspond to motif activities from two replicate measurements. The inset shows the
correlation between motif activity and HNF1A mRNA levels. (B) The inset shows that MYB is predicted to directly target the RFX4 promoter with target score
8.134. (C ) The regulatory network inset and GO table show that hsa-miR-124/hsa-miR-506 is predicted to directly target many TFs. (D) The red bars show
Z-values of the average motif activity of the SREBF motif for samples coming from older (age 58–86) and younger (age 19–47) donors.
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MYBL1) is novel to our knowledge. Finally, ISMARA’s prediction

that the MYB promoter is targeted by the E2F motif is also sup-

ported by the literature (Campanero et al. 1999).

To illustrate ISMARA’s predictions of the regulatory role of

miRNAs, Figure 2C shows results for the second most significant

miRNA seed family, hsa-miR-124/hsa-miR-506. This seed family

has the strongest negative activity in brain, and its targets are

highly enriched for TFs (Fig. 2C). Indeed, hsa-miR-124 is a well-

known brain-specific miRNA (Landgraf et al. 2007). Moreover,

of the top nine predicted TF target genes of hsa-miR-124, six

(TEAD1, CEBPA, AR, SP1, SNAI2, NFATC1) are supported by

independent experimental evidence (Lim et al. 2005; Baek et al.

2008; Ponomarev et al. 2011; Liang et al. 2013; Shi et al. 2013),

again confirming the high accuracy of ISMARA’s target predictions.

Of course, most of the results highlighted in Figure 2, such as

the function of HNF1A in liver and the brain-specific role of hsa-

miR-124, are well-known from the literature. However, all these

results, including very specific predictions of the precise targets

of each regulator, were obtained by a completely automated

analysis of RNA-seq data from 16 human tissues, without any

free parameters or specific processing of the data. Moreover, they

constitute only a small selection of the predictions made by

ISMARA.

By default, ISMARA focuses on regulatory motifs that explain

changes in expression levels across the input samples. However,

some users may be interested in regulators that are predictive for

a consistently high or consistently low expression level across all

samples. To address this, ISMARA also fits the absolute expression

levels of the promoters, i.e., averaged over all input samples, in

terms of ‘mean activities’ (Methods; Supplemental Methods). For

the IBM2 data set, we find that the TFs YY1 and NRF1 are most

predictive of high average expression, whereas the known re-

pressors REST and RREB1 are most predictive for low average ex-

pression (Supplemental Fig. 15).

Experiments are often performed in multiple replicates, and

ISMARA implements procedures for specifically identifying motifs

that behave reproducibly across the replicates. The ISMARA results

page links to a section where users can provide batch and replicate

annotation for their samples, which is then used by ISMARA to

calculate motif activity profiles that are averaged over replicates

using a rigorous Bayesian procedure (Supplemental Methods). In

addition, updated motif Z-scores quantify to what extent a motif’s

activity varies across samples in a way that is reproducible across

the replicates (Supplemental Methods). For example, the replicate-

averaged results for the IBM2 data set are available at http://ismara.

unibas.ch/supp/dataset1_IBM/averaged_replicates/averaged_report/.

Apart from replicate averaging, this procedure can further be

used to calculate contrasts between subsets of samples. To illustrate

this, we noted that the samples of the 16 tissues of the IBM2 data

set derived from donors of different ages, and we investigated

whether any motifs have consistently different activities between

samples from older and younger individuals. We divided the

samples into those deriving from donors aged 19–47 and those

deriving from donors aged 58–86. We then directed ISMARA to

calculate averaged activities for ‘young’ and ‘old’ samples for

each motif (results at http://ismara.unibas.ch/supp/dataset1_IBM/

averaged_age/averaged_report/). We found that only the SREBF

motif is significantly differently regulated between old and young

samples (Fig. 2D). The targets of SREBF are up-regulated in older

tissues relative to the younger ones and are highly enriched for

lysosomal genes. Lysosomes are responsible for the degradation of

many macromolecules, including proteins, and increase in lyso-

somal mass is a well-known characteristic of aging and senescence

in cells (Cuervo and Dice 2000; Kurz et al. 2000). In addition, ev-

idence is increasing that a progressive decrease in the efficiency

of autophagy and lysosomes with age plays a key role in aging-

associated degenerative changes in mammals (Rubinsztein et al.

2011). Several recent findings support that SREBP TFs play a key

role in these processes. SREBF1 expression increases with age in rat

brains (Okamoto et al. 2006), SREBF1-mediated lipogenesis is in-

volved in senescence (Kim et al. 2010), SREBF2 regulates autophagy

(Seo et al. 2011), and SREBF activity is regulated by mTOR complex

1 (Peterson et al. 2011). It is remarkable that simply by contrasting

motif activities in tissues from younger and older donors, ISMARA

was able to automatically identify SREBF as a key regulator of aging-

related changes in expression of lysosomal genes.

As another example of the power of motif activity contrasts

across sets of samples, we searched for motifs consistently dis-

regulated in cancer by joint analysis of the human GNF atlas of 79

tissues and cell lines (Su et al. 2004) and the NCI-60 reference

cancer cell lines (Ross et al. 2000) (for full results, see http://ismara.

unibas.ch/supp/dataset2/ismara_report/). Supplemental Tables 2

and 3 show the motifs that are most consistently up-regulated or

down-regulated in cancers, including miRNAs. As discussed in the

Supplemental Material, many of the top disregulated motifs, such

as HIF1A and hsa-miR-205 miRNA (Supplemental Fig. 17), are well-

known in cancer biology, again supporting the accuracy of ISMARA’s

predictions. Besides well-known oncogenes and tumor suppres-

sors, ISMARA also makes several novel predictions of regulators

consistently disregulated in cancers, including the TFs HAND1,

KLF12, BPTF, FOXD3, and ZNF143.

Inferring motif activity dynamics: inflammatory response

To illustrate ISMARA’s analysis of time series data, we applied it to

a time series of expression data obtained after activation of human

umbilical vein endothelial cells (HUVECs) with tumor necrosis

factor (TNF, also known as TNF-alpha). Messenger RNA expression

was measured every 15 min for the first 4 h after treatment, and

every 30 min for the next 4 h (Wada et al. 2009). Whereas the

original study focused solely on nascent transcription, we here show

that standard application of ISMARA to this data set (http://ismara.

unibas.ch/supp/dataset3/ismara_report/) uncovers the transcrip-

tion regulatory network involved in this inflammatory response in

remarkable detail.

The response of endothelial cells to TNF is known to be me-

diated by TFs of the NFkappaB family, GATA2, IRF1, and JUN

(Inoue et al. 2006) TFs. TFs of the NFkappaB family in particular are

crucial for the resulting inflammatory response (Kempe et al.

2005). Indeed, ISMARA infers that the two most significant motifs

are IRF1,2,7 and NFKB1/REL/RELA. The activity of NFKB1/REL/

RELA increases sharply in the first 45 min and slower afterward,

until it reaches a steady activity after 3 h. The activity of the

IRF1,2,7 motif increases steadily starting at 30 to 45 min after

treatment until the end of the time course (Fig. 3A). As shown by

NFKB1/REL/RELA’s local network figure (Fig. 3B and on the

ISMARA results website), ISMARA predicts that IRF1 is activated

directly at the level of transcription by these regulators, which is

confirmed by the experimental literature (Harada et al. 1994).

Other predicted targets of NFKB1/REL/RELA that are also signifi-

cantly up-regulated in this process are TNF receptor genes, com-

ponents of the JAK-STAT pathway (note that STAT2,4,6 is the 11th

most significant motif, indicating that STAT activity changes, af-

fecting the level of its targets) and MHC class I genes. The latter are
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also predicted to be regulated by IRF1,2,7, which is confirmed by

experimental data (Ten et al. 1993). ISMARA makes the novel

predictions that both NFKB1/REL/RELA and IRF1,2,7 activate the

fifth most significant motif, PRDM1, which is an important

developmental regulator in the B-cell and T-cell lineages and is

required for the secretory pathway in B-cells (Martins and Calame

2008). PRDM1 activity increases, like that of IRF, across the entire

time course, and these two regulators appear to share many of their

predicted targets, including type 1 interferon pathway genes, the

immunoproteasome (Seifert et al. 2010), ubiquitin conjugating

enzymes, antigen peptide transporters, and MHC class I genes.

These targets suggest that the IRF and PRDM1 TFs may be re-

sponsible for activation of the antigen presenting pathway.

Although our TFBS predictions incorporate cross-species

conservation analysis, this does not mean that the predicted tar-

gets must be conserved across mammals. For example, the third

most significant TF target of the IRF motif is the ATF5 promoter,

which is targeted through a TFBS that is primate-specific (Supple-

mental Fig. 18).

To provide an example assessment of the accuracy of ISMARA’s

genome-wide target predictions, we compared the predicted tar-

gets of NFKB1/REL/RELA with targets identified through ChIP-seq

in lymphoblastoid cell lines derived from 10 individuals of African,

European, and Asian ancestry (Kasowski et al. 2010). We find that

almost two-thirds of the top 50 targets, >50% of the top 150 tar-

gets, and ;40% of the top 300 targets are supported by ChIP-seq

binding at the promoter (Supplemental Fig. 19). To put these

numbers in perspective, we compared the validation of ISMARA’s

targets with the variability in NFKB1/REL/RELA binding across

individuals and replicate samples. We used the ChIP-seq data from

each sample to predict target promoters, and then ‘validated’ these

‘predictions’ using the other ChIP-seq data sets in complete anal-

ogy to the way we validated ISMARA’s targets. The typical valida-

tion rate for the ChIP-seq data was higher than for the ISMARA

target predictions, i.e., 60%–70% versus 40%–66%. This is not

surprising given that all ChIP-seq data were obtained in the same

lymphoblastoid cell type, which differs from the HUVEC cells.

Still, we found significant variability across the ChIP-seq data sets,

and the targets from some ChIP-seq data sets had lower in-

tersection with the other ChIP-seq data sets than ISMARA’s targets

(Supplemental Fig. 19). This analysis shows that ISMARA’s ge-

nome-wide predictions can reach accuracies comparable to those

obtained from a ChIP-seq study.

Finally, the third most significant motif is XBP1, which is

activated only after 2.5 h. Its predicted targets are highly over-

represented for endoplasmic reticulum (ER) genes and genes in-

volved in vesicle-mediated and Golgi transport, consistent with

the fact that XBP1 is a major regulator of ER stress and the unfolded

protein response (UPR) (Glimcher 2010). Moreover, several studies

support that the UPR is a general characteristic resulting from in-

flammation or TNF activation in endothelial cells (Gargalovic et al.

2006; Civelek et al. 2009). Interestingly, the induction of XBP1’s

activity occurs at the same time that the NFKB1/REL/RELA activity

stops increasing, which is in line with studies showing that the

UPR can attenuate the induction of inflammation as mediated by

TFs of the NFkappaB family (Kaser et al. 2008; Kitamura 2011; Li

et al. 2011). The induction of XBP1’s activity is not reflected in the

expression of XPB1 itself, which is almost constant across the time

course (Supplemental Fig. 20). This underscores that ISMARA in-

fers a motif’s activity from the expression of its predicted targets

and does not use the regulator’s own expression. Indeed, it has

been established that XBP1 activity is regulated post-transcrip-

tionally through alternative splicing (Yoshida et al. 2001; Calfon

et al. 2002). Together, these results demonstrate that ISMARA re-

Figure 3. Analysis of an inflammatory response time series of human umbilical vein endothelial cells responding to TNF. (A) Time-dependent activities
of the three most significant motifs, i.e., NFKB1/REL/RELA (red), IRF1/2/7 (black), and XBP1 (blue). Error bars denote standard deviations of the inferred
activities. (B) Summary of the inferred core regulatory network. Selected top motifs are shown together with interactions between them and pathways/
functional categories that are enriched among the targets of these motifs. The intensity of the color corresponds to the Z-score of the motif, its time-
dependent activity is indicated inside the node, and the thickness of each edge corresponds to its target score Spm.
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constructs the core regulatory circuitry of the innate immune re-

sponse in HUVEC cells (Fig. 3B) ab initio using only time course

expression data.

Identifying novel master regulators: mucociliary
differentiation of bronchial epithelial cells

Next, we turned to an example system for which much less is

known, namely the mucociliary differentiation of bronchial epi-

thelial cells on an air–liquid interface. Aiming to elucidate the

regulation of bronchial development, Ross et al. (2007) performed

differentiation experiments in triplicate over a period of 28 days

with cells from three separate donors. This data was then analyzed

with commonly used bioinformatic procedures, i.e., genes were

clustered into coexpression clusters, and the clusters were analyzed

for over-represented gene ontology categories and pathways. This

analysis uncovered clusters associated with TGF-beta pathway

genes, extra-cellular adhesion genes, and genes associated with the

microtubule cytoskeleton, but no key regulators or regulatory in-

teractions that drive these expression changes were identified.

In contrast, applying ISMARA to this gene expression data set,

we obtain the prediction that by far the most important regulatory

motif in this system is RFX, whose activity is strongly increasing

over the period from roughly day 4 to day 10 in all three donors

(Fig. 4A) (http://ismara.unibas.ch/supp/dataset4/ismara_report/).

The predicted targets of RFX are highly enriched in genes known to

be associated with cilium assembly, axoneme, and the microtubule

cytoskeleton genes (Fig. 4B), suggesting that RFX directs cilio-

genesis in bronchial epithelial cells.

The RFX family of TFs contains seven members, and it is not

a priori clear which of these are driving the bronchial differentia-

tion. Comparison of the mRNA expression profiles with activity

profiles shows that two of the family members, RFX2 and RFX3,

exhibit a striking correlation in their expression with the motif

activity (Fig. 4A,C). Together these results strongly suggest that the

TFs RFX2/3 are master regulators of ciliogenesis in this system. This

prediction is consistent with previous studies that have shown that

Rfx3 is necessary for the ciliogenesis of nodal cilia in mouse em-

bryonic development (Bonnafe et al. 2004) and during ciliogenesis

of motile cilia in a mouse cell-culture system (El Zein et al. 2009).

Strikingly, ISMARA’s results on the IBM2 data set also identi-

fied the RFX motif as the key regulator of ciliogenesis in sper-

matogenesis. As discussed above, in that system ISMARA predicted

that the RFX2 and RFX4 promoters were directly targeted by the

MYB motif (most likely through the MYBL1 TF). Here we find that

ISMARA predicts MYB to target the RFX2 promoter in the muco-

ciliary differentiation system as well (Fig. 4B). In addition, ISMARA’s

prediction that RFX directly up-regulates FOXJ1 in this system was

also made in the results on the IBM2 data set. Indeed, Rfx3 was

found to activate Foxj1 during ciliogenesis in the mouse cell-

culture system mentioned above (El Zein et al. 2009). These ob-

servations suggest that the core regulatory network involved in

ciliogenesis, with MYBL1 targeting RFX promoters and RFX TFs

targeting FOXJ1, is conserved across multiple mammalian systems.

Figure 4. Mucociliary differentiation. (A) Inferred RFX motif activity profile in mucociliary differentiation of bronchial epithelial cells from three independent
donors (black, red, and blue lines). (B) Key predicted regulators and their targets in this system. Selected top motifs are shown together with predicted
interactions between them and pathways/functional categories that are enriched among predicted targets of these motifs. The intensity of the color cor-
responds to the Z-score of the motif, its time-dependent activity for each donor is indicated inside the node, and the thickness of the edges corresponds to the
target score Spm. (C ) mRNA expression profiles of the RFX2 (solid) and RFX3 (dashed) genes across the differentiation (colors of the donors as in A).
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As indicated in Figure 4B, ISMARA additionally predicts that,

in this system, IRF1,2,7 up-regulates innate immune response

genes, and a short spike of E2F activity up-regulates cell-cycle genes

at day 1. Finally, there is a group of motifs (TBP, FOS_FOS{B,L1}_

JUN{B,D}, RXR{A,B,G}, HOX{A6,A7,B6,B7}, and GLI1..3) whose

targets are progressively down-regulated across the differentiation

time course. The targets of these motifs are generally enriched for

extracellular proteins involved in cell adhesion, cell–cell junctions,

and signaling. More specifically, targets of GLI1..3 involve genes

from the TGF-beta pathway, targets of TBP involve nucleosomal

and intermediate filament cytoskeletal genes, and targets of the

homeodomain motif (HOX{A6,A7,B6,B7}) are enriched for de-

velopmental genes and transcription factors. The genes in these

pathways are most likely involved in the transition of the tissue

from squamous to columnar epithelial that occurs during differ-

entiation. Thus, in contrast to the methods used in the original

study (Ross et al. 2007), ISMARA predicts which regulators are

directing various aspects of the differentiation process, including

ciliogenesis, the innate immune response, and the transition from

squamous to stratified epithelial. As far as we are aware, these

predictions of the core regulatory network controlling mucociliary

differentiation are all novel.

Interactions between TFs and miRNAs: epithelial-mesenchyme
transition

To illustrate ISMARA’s ability to integrate the role of both TFs and

miRNAs in the gene regulatory network, we took advantage of data

from a system in which miRNAs are known to play important

regulatory roles: the epithelial-to-mesenchymal transition (EMT).

We applied ISMARA to expression measurements from epithelial

and mesenchymal subpopulations (Scheel et al. 2011) (for results,

see http://ismara.unibas.ch/supp/dataset5/ismara_report/) and used

replicate averaging to identify regulators that explain the differ-

ences between epithelial and mesenchymal cells (for results, see

http://ismara.unibas.ch/supp/dataset5/averaged_report/). As dis-

cussed in the Supplemental Material and Supplemental Figure 21,

ISMARA automatically inferred much of the key regulatory in-

teractions between TFs and miRNAs involved in EMT (for a review,

see Polyak and Weinberg 2009) using only the gene expression data.

TF activities affecting chromatin state: analysis of ChIP-seq data

Beyond analyzing gene expression data, motif activity response

analysis can be applied to modeling any signal along the genome

in terms of the local occurrence of TFBSs. Indeed, in recent work

(Arnold et al. 2012b) we applied the MARA approach to ChIP-seq

data mapping the dynamics of trimethylation at lysine 27 of his-

tone 3 (H3K27me3) and identified TFs involved in recruiting this

epigenetic mark that is set by the Polycomb system. In ISMARA,

the analysis of ChIP-seq data has now been completely automated.

In particular, given a ChIP-seq data set, ISMARA quantifies the

signal at all promoters across all samples and models this in terms

of the TFBSs at each promoter. For the details of ISMARA’s pro-

cessing and normalization of the ChIP-seq data, see Methods and

Supplemental Methods. Similarly to the transcriptomic data,

ISMARA thus by default focuses on the variation in ChIP-seq sig-

nals at promoters only. However, the approach can easily be applied

genome-wide; and to allow expert users to apply MARA to any

collection of genomic regions, the ISMARA website includes an

‘expert mode’ that allows users to upload their own signal and site-

count matrices and apply MARA with these matrices.

To illustrate ISMARA’s results on ChIP-seq data, we make use

of data from the ENCODE Project in which, besides gene expres-

sion, nine different chromatin marks were measured across eight

different cell types (all modifications and cell types are listed in

Supplemental Tables 4 and 5) (Ernst et al. 2011). We first ran

ISMARA separately on each of the 10 data sets, i.e., expression and

nine chromatin modifications (see Supplemental Table 6 for the

URLs of the results on all data sets). We observed that motifs that

are highly significant for explaining differences in levels of a par-

ticular chromatin mark across tissues were often also highly sig-

nificant for explaining mRNA expression differences. This was

particularly the case for methylation of lysine 4 on histone H3

(H3K4me2, H3K4me3), for acetylation of histone H3 (H3K9ac,

H3K27ac), and for trimethylation of lysine 36 on histone H3

(H3K36me3). For example, Figure 5A shows the activity profiles for

these marks for the SNAI1..3 motif, which is recognized by the

snail TFs (see Supplemental Fig. 22 for additional examples). As is

clear from these figures, for these motifs the activity profile for

expression is highly similar to those of all of these histone marks.

Indeed, this reflects that these chromatin marks are associated with

promoter activity (Wang et al. 2008), and several recent studies

have shown that the levels of these marks can be used to predict

gene expression levels (Karlic et al. 2010; Dong et al. 2012; Tippmann

et al. 2012).

To investigate the correlations between the levels of the dif-

ferent chromatin marks more quantitatively, we performed prin-

cipal component analysis (PCA) of the levels of the 10 different

marks across all promoters, separately for each sample (Supple-

mental Methods). Strikingly, we find that in each sample the first

principal component explains the majority of the variance across

promoters, typically explaining ;60% of the total variance (Sup-

plemental Fig. 23). Moreover, we find that the first principal com-

ponent looks virtually identical for each sample (Supplemental

Fig. 23), and Figure 5B shows the first principal component obtained

using PCA on the pooled data from all cell types. The first principal

vector has its highest positive component along the expression

axis; and the activation-associated marks H3K4me3, H3K4me2,

H3K9ac, H3K27ac, and H3K36me3 also all have a strong positive

component in this vector, whereas the known repressive mark

H3K27me3 has a negative component. These findings strongly

suggest that variation along the first principal vector corresponds

roughly to variation in ‘promoter activity.’ In addition, the fact

that this first principal vector is identical in all tissues suggests that

the relative levels of the different marks in this first principal vector

result not from tissue-specific but from general factors, e.g., con-

ceivably they may result from the general transcription machinery

recruiting chromatin modifying enzymes.

Because the variation in promoter activity captures almost

two-thirds of the variation in all 10 measured levels at the pro-

moter, any motif explaining variation in expression will also ap-

pear to explain variation in all chromatin marks associated with

promoter activity and confounds identification of TFs that are

involved in affecting specific marks. To address this, for each motif

we discarded the part of its activity profile along the first PCA

component, retaining only variation in motif activities orthogonal

to promoter activity. As illustrated in Figure 5C and Supplemental

Figure 22, after removal of the first principal component, there are

no longer any obvious correlations in the remaining motif activity

profiles for different activating marks.

We next analyzed the remaining motif activities and calcu-

lated, for each motif and each mark, a Z-value quantifying the

motif’s contribution to explaining the mark’s levels and also a
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Figure 5. ISMARA predicts TFs involved in recruiting specific chromatin marks. (A) Activity across cell types of the SNAI1..3 motif in explaining expression
(black), and levels of the chromatin marks H3K4me3 (dark green), H3K4me2 (light green), H3K9ac (dark blue), H3K27ac (light blue), and H3K36me3
(brown). (B) First principal component explaining the majority of variation in chromatin mark levels across all cell types. The bars indicate the relative
contributions to the principal component of each mark. (C ) Motif activities of the SNAI1..3 motif, as in A, but after removal of the first principal component. (D)
Z-values and specificities (see text) of motifs for explaining H3K27me3 levels. The REST motif, with both highest Z-value and highest specificity, is indicated in
red. (E) As in D, for H3K9ac levels. The two most significant motifs are shown in red. (F) As in D and E, for H3K27ac levels. (G) Activity, after removal of the first
principal component, of the RFX motif for explaining H3K9ac (dark blue) and H3K27ac (light blue) levels. (H) As in G, for the ATF5_CREB motif.



‘specificity’ that measures the fraction of a motif’s overall signifi-

cance that is associated with a given mark (Supplemental

Methods). Strikingly, we find that for many of the marks, the

motifs that most significantly affect the mark are also among the

most specific for that mark. For example, REST is the motif with

the highest Z-value for H3K27me3 levels and is also by far the

most specific for H3K27me3 (Fig. 5D). Indeed, in recent work

(Arnold et al. 2012b), we showed that REST is involved in recruit-

ing this mark during the differentiation of murine embryonic stem

cells into pyramidal neurons, specifically at the neural progenitor

state. With respect to the two acetylation marks, i.e., H3K9ac and

H3K27ac, we find that the same two motifs, i.e., RFX and ATF/

CREB, are most significant for both these marks (Fig. 5E,F). It is well

known that ATF/CREB TFs can recruit histone acetylases (HATs),

such as CREB binding protein (CREBBP) and EP300 (Yuan and

Gambee 2001); and for RFX TFs it has also been established that

they can recruit HATs at particular promoters (Masternak et al.

2003). Our results thus suggest that recruitment of HATs by TFs

bound to ATF/CREB and RFX motifs make an important contri-

bution to genome-wide histone acetylation at promoters. More-

over, the activity profiles of these motifs for H3K9ac and H3K27ac

are highly similar, suggesting that these two marks may be re-

cruited through a common or highly overlapping pathways. Sup-

plemental Figure 24 shows the most significant motifs for each

of the other marks. Among the additional predictions made by

ISMARA is that the PITX motif is associated with both mono- and

dimethylation of lysine 4 of histone 3. This prediction is supported

by recent biochemical evidence that PITX2 can recruit methyl-

transferases that methylate H3K4 (Gan et al. 2011). As expected,

CTCF is the most significant motif explaining CTCF binding.

ISMARA also makes several predictions that are completely novel,

as far as we have been able to determine: It predicts that the he-

patocyte nuclear factors HNF1A and HNF4A have the most sig-

nificant effect on the levels of the H3K36me3 mark, which is

known to be set by elongating RNA polymerase (Kizer et al. 2005;

Yuan et al. 2009), and the YY1 and the NF-Y complex (consisting of

NFYA, NFYB, and NFYC) most significantly explain variations in

H4K20me1 levels.

Discussion
The advent of high-throughput technologies now allows the rou-

tine measurement of genome-wide mRNA expression across con-

ditions, and such data in principle provide the opportunity to

systematically investigate gene regulation on a genome-wide scale

across different model systems. However, a major bottleneck in the

field is that such investigations require sophisticated computa-

tional approaches that are not available to most experimental re-

searchers. Here we have presented ISMARA, a completely auto-

mated system that enables any researcher to apply sophisticated

computational modeling, on data from their system of interest,

and obtain concrete predictions on the key regulators acting in

their system, their activities, their genome-wide targets, and so on.

That the computational model at the core of ISMARA, i.e.,

motif activity response analysis, is a powerful method for recon-

structing regulatory interactions from high-throughput data has

already been demonstrated, not only in its original application

(The FANTOM Consortium et al. 2009), but in a substantial

number of recent studies across a wide range of mammalian sys-

tems (Summers et al. 2010; Aceto et al. 2012; Arner et al. 2012;

Arnold et al. 2012b; The FANTOM Consortium et al. 2012; Hasegawa

et al. 2012; Pérez-Schindler et al. 2012; Eisele et al. 2013; Meier-Abt

et al. 2013; Tiwari et al. 2013a,b; Vervoort et al. 2013). In each of

these studies, MARA successfully inferred key regulators and their

regulatory interactions ab initio. The applications in this work

not only further confirm that in systems where key regulatory

interactions are already known, ISMARA successfully infers them,

but it also provides a large collection of novel regulatory pre-

dictions across different systems in human and mouse, e.g., novel

regulators that are disregulated in cancers, novel regulatory in-

teractions in the inflammatory response, and the core regulatory

circuitry involved in mucociliary differentiation and ciliogenesis.

We believe that by empowering experimental researchers to auto-

matically apply this approach to their own data, ISMARA can make

a substantial contribution to the study of gene regulatory networks.

The applications we presented highlighted several of ISMARA’s

advantages. First, by inferring a regulator’s activity from the be-

havior of its targets, ISMARA does not rely on changes in a TF’s

expression to infer activity changes and readily detects activity

changes due to alternative splicing, post-translation modifica-

tions, changes in cellular localization, etc. Second, when motif

activity is transcriptionally regulated, comparing motif activity with

TF expression allows ISMARA to identify the relevant TF(s), i.e.,

as illustrated by the identification of RFX2 and RFX3 as the key

regulators of mucociliary differentiation. Such comparisons can

also indicate whether a regulator acts as a repressor or an activator.

An important goal of ISMARA is to provide predictions that are

amenable to direct experimental follow-up. In this respect, the

GO enrichment and STRING network analysis are typically very

helpful in identifying the biological processes and pathways tar-

geted by each motif, often suggesting potential markers for ex-

perimentally validating their predicted regulatory roles. Similarly,

ISMARA’s predictions of direct regulatory interactions between the

key regulatory motifs provide concrete hypotheses regarding the

regulatory circuitry that is acting in a given system, e.g., the pre-

dicted regulatory feedbacks between NFKB1/REL/RELA, IRF TFs,

and PRDM1, or the prediction that MYBL1 is an upstream activator

of RFX TFs in ciliogenesis. Moreover, the links to a genome browser

view of the individual binding sites on the genome (Pachkov et al.

2007) allow for targeted validation of such individual regulatory

interactions. There are many indications that the actions of miRNAs

and TFs are tightly integrated (Cui et al. 2006; Hornstein and

Shomron 2006; Zhou et al. 2007), and ISMARA’s incorporation of

miRNA regulation allows for the automated identification of regu-

latory interactions between TFs and miRNAs as demonstrated by the

analysis of the EMT data. Finally, gene expression regulation involves

a tight interplay between the actions of TFs and changes in the

chromatin state. ISMARA’s ability to not only model expression data,

but any ChIP-seq signal at promoters genome-wide, allows for

the identification of key TFs that are involved in dynamic regulation

of the chromatin state, as exemplified here by the analysis of ChIP-

seq data from the ENCODE Project, which predicted, among other

things, regulatory factors involved in recruiting histone acetylations.

There are of course several limitations to ISMARA’s current

approach which we aim to address in future work. First, using

a simple linear model (Gao et al. 2004) has the advantage of being

exactly solvable, but it ignores saturation effects that undoubtedly

occur in reality. Second, the approach currently assumes that a

given TF acts either mainly as an activator or mainly as a repressor,

whereas it is clear that some TFs can act as an activator on some

targets and as a repressor on others. Indeed, it has been recently

shown (Bauer et al. 2010) that allowing such dual function of TFs

can significantly increase correlation between model predictions

and measurement. Explicitly considering higher-order constella-
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tions of TFBSs, e.g., the occurrence of pairs or triplets of TFBSs for

particular combinations of TFs, is another extension that we are

currently evaluating. The regulatory motifs currently included

in ISMARA represent ;350 of the roughly 1500 mammalian TFs.

However, through developments in protein array technology

(Bulyk 2006) and the decreasing cost in ChIP-seq experiments,

regulatory motifs for a rapidly increasing number of additional

mammalian TFs have recently become available. We are currently

working on curating a new, highly extended set of regulatory

motifs, which we expect to incorporate into ISMARA in the near

future.

Finally, ISMARA currently focuses solely on predicted TFBSs

in proximal promoters, ignoring the effects of distal enhancers. In

contrast to promoters, accurate genome-wide maps of enhancers

have not been available until recently. However, the discovery

that active enhancers exhibit characteristic chromatin modifica-

tion patterns (Heintzman et al. 2009), DNA methylation patterns

(Stadler et al. 2011), and more generally DNA accessibility patterns

(Boyle et al. 2008), has now led to the first genome-wide mappings

of enhancers in specific cell types (Shen et al. 2012). If a set of

relevant enhancers for a particular system of interest is available, it

is in principle straightforward to predict TFBSs in these enhancers,

and we are currently developing methodology for automatically

incorporating the effects of TFBSs at distal enhancers into MARA.

However, enhancers are highly cell-type specific; and in many

cases, the data that users upload to ISMARA may come from sys-

tems for which no accurate mappings of distal enhancers are

available. Therefore, automated incorporation of the effects of

distal enhancers into ISMARA will only be possible when general

methods for mapping active enhancers in any system have become

available. Of course, the dynamics of chromatin accessibility and

enhancer activity are themselves also controlled by constellations

of regulatory sites on the genome, and our ultimate goal is to de-

velop computational models that are able to predict genome-wide

DNA accessibility and enhancer activity in terms of local constel-

lations of regulatory sites.

Methods
In this section we outline the methods that were used for au-
tomated processing and modeling of the data. More detailed
descriptions of all procedures are provided in Supplemental
Methods.

Promoteromes and regulatory site predictions

For each model organism of interest (in this work we will focus
exclusively on data from human and mouse), ISMARA relies on
two precalculated resources: a genome-wide annotation of pro-
moters and a comprehensive collection of transcription factor
binding site (TFBS) predictions in all promoters (Fig. 1A,C). The
genome-wide annotation of promoters in human and mouse, i.e.,
so-called ‘‘promoteromes,’’ were constructed primarily from deep
sequencing data of transcription start sites (deepCAGE data)
(de Hoon and Hayashizaki 2008) using Bayesian methods that we
described previously (Balwierz et al. 2009). To infer expression
levels of promoters from microarrays of RNA-seq data, it is neces-
sary to associate all promoters with the transcripts that they drive.
We thus collected the 59 ends of all known mRNA mappings from
the UCSC Genome Database, filtered these for mapping quality,
and clustered all promoters and 59 ends that are within 150 base
pairs (bps). In this way, we obtained comprehensive sets of pro-
moters and their associated transcripts for both human (36,383

promoters) and mouse (34,050 promoters). We also classified the
promoters into CpG-rich and CpG-poor promoters based on their
CG and CpG content.

We next comprehensively predicted TFBSs in the proximal
promoter regions of all promoters. Briefly, we curated a collection
of 190 WMs representing ;350 mammalian TFs using data from the
JASPAR (Wasserman and Sandelin 2004) and TRANSFAC (Matys
et al. 2003) databases, additional motifs from the literature, and our
own analysis of ChIP-chip and ChIP-seq data. For each promoter, we
extracted 500 bps upstream of and downstream from the TSS and
orthologous segments in six other mammals. The seven orthologous
sequences were then multiply aligned using T-Coffee (Notredame
et al. 2000). Using the 190 regulatory motifs and a phylogenetic tree
of the species (Supplemental Fig. 1) as input, we then applied our
MotEvo algorithm (Arnold et al. 2012a) to predict functional TFBSs
for all TF regulatory motifs across all promoters in human and
mouse (Fig. 1A,C). MotEvo is a Bayesian algorithm that considers all
possible ways in which configurations of binding sites for all
motifs, as well as additional conserved elements of unknown
function, can be assigned to the input alignments, calculating likeli-
hoods for all configurations using a rigorous model of the evolution of
TFBSs and neutral sequence across the phylogeny. Since different
motifs show different positioning preferences and abundances relative
to TSS, which differ between CpG-rich and CpG-poor promoters, we
also incorporated position-dependent prior probabilities for all motifs,
separately for CpG and non-CpG promoters. We summarize the
TFBS predictions in a matrix N, where Npm is the sum of the pos-
terior probabilities of all predicted TFBSs for motif m in promoter p.

When modeling expression levels in terms of regulatory sites
using a linear model, it is relatively straightforward to extend the
modeling to not only include effects of TFBSs but also the effects
of miRNA regulation, e.g., as recently introduced in a supervised
learning scheme for modeling regulation in glioblastomas (Setty
et al. 2012). In ISMARA, the effects of miRNA regulation have been
incorporated into a completely automated procedure that can be
applied to any expression data set. Specifically, we used miRNA
target site predictions from TargetScan using preferential conser-
vation scoring (PCT) (Friedman et al. 2009), which assigns target
scores for 86 miRNA seed families to all RefSeq transcripts. To
associate a target score Npm for miRNA seed family m targeting
promoter p, we average TargetScan’s scores over all transcripts as-
sociated with promoter p.

Processing of raw microarray, ChIP-seq, and RNA-seq data

To perform ISMARA analysis, the user only needs to upload raw
microarray (i.e., CEL files), RNA-seq, or ChIP-seq (BED or BAM
files) data. The latter should contain the genomic mappings of the
raw sequencing reads. The first part of ISMARA’s analysis consists
of processing these raw data into a matrix E, where Eps denotes the
‘signal’ associated with promoter p for sample s.

When gene expression data is provided in the form of
microarrays, ISMARA first automatically detects the particular type
of microarray used and then applies corrections for background
and unspecific binding tailored to that microarray type. Micro-
array platforms currently supported by ISMARA are listed in Sup-
plemental Table 1. Using Gaussian mixture modeling, probes are
classified into ‘expressed’ and ‘non-expressed’ for each sample.
Probes that are consistently nonexpressed are removed and the
intensities of the remaining probes are quantile normalized. In-
stead of relying on annotation of the manufacturer, we map all
probe sequences to all transcripts associated with our promoters.
The final log-expression of a given promoter is given by a weighted
average of the log-intensities of all probes mapping to the tran-
scripts associated with the promoter.
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In many applications of next-generation sequencing data,
a main aim of the analysis is to detect genomic regions that are
significantly enriched, or transcripts that are significantly differ-
entially expressed, so that the analysis crucially depends on the
noise statistics of sequencing data (Balwierz et al. 2009; Anders and
Huber 2010). In contrast, ISMARA aims to model the variation in
‘signal’ Eps, i.e., the amount of chromatin immunoprecipitation or
the amount of expression, across promoters p and samples s in
terms of predicted TFBSs. Our aim is thus not to assess the statis-
tical significance of changes in the signal, but to estimate the rel-
ative strength of the signal across promoters and conditions.
When processing ChIP-seq data, the signal Eps is calculated as the
estimated logarithm of the fraction of reads in sample s that map to
a 2-kilobase region centered on promoter p. To avoid large fluctu-
ations in Eps at promoters with low signal due to sequencing noise,
this estimate involves using a uniform prior distribution across the
genome.

When processing RNA-seq data, the mapped reads are first
mapped to our transcript set in a weighted manner. That is,
when a read maps to n separate transcripts, each transcript’s read
count is incremented by 1/n. The expression of each transcript is
then estimated by dividing its read count by transcript length,
and the expression of a promoter is calculated by summing the
expression of the transcripts associated with it. The final level Eps

is the logarithm of the estimated number of transcripts per
million transcripts in the cells of sample s that derived from
promoter p.

Inference of motif activities

At the core of ISMARA is the MARA model (The FANTOM
Consortium et al. 2009) which, similar to previous linear mod-
eling approaches (Gao et al. 2004; Nguyen and D’haeseleer 2006),
assumes that the ‘signal’ at each promoter p is a linear function of
its binding sites Npm:

Eps ¼ ~cs þ cp þ+
m

NpmAms þ noise; ð1Þ

where cp is a term reflecting the average activity of promoter p
across the samples; ~cs reflects the total expression in sample s; and the
Ams are the (unknown) activities of each motif m in each sample s,
which the model will infer. We set the constants ~cs and cp to their
maximum likelihood estimates.

As a result, Equation (1) is renormalized into

E9
ps ¼ +

m

N9
pmA9

ms þ noise; ð2Þ

where the matrix E9 is obtained by subtracting the row and column
averages from the entries of E. Similarly, N9 is obtained by sub-
tracting the column averages, i.e., the average number of sites ÆNmæ
for each motif m, from the entries of N. Finally, the activities A9 are
obtained by subtracting the average motif activities Am across the
samples from the activities Ams. That is, in Equation (2) the ex-
pression changes across the samples, and promoters are modeled in
terms of changes in site counts across promoters and changes in
motif activities across the samples.

As explained in the Supplemental Methods, the noise term in
the above equation is dominated not by measurement or bi-
ological replicate noise, but by the error in the model, and we
assume these errors are Gaussian distributed with an unknown
variance, s2, that is integrated out of the likelihood. To infer
the activities, ISMARA uses a Bayesian procedure that combines

the Gaussian likelihood model for the difference between the
measured signal E9

ps and the predicted signal with a Gaussian prior
distribution for the activities. This prior distribution, which fa-
vors small activities, is used to avoid overfitting. Its parameter is
estimated automatically using 80/20 cross-validation: The activ-
ities are inferred on a randomly chosen ‘training set’ of 80% of
the promoters, and the prior’s parameter is set so as to maximize
the fit of the predicted expression profiles on the ‘test set’ con-
sisting of the remaining 20% of the promoters. In this way,
ISMARA automatically adapts its prior to each data set that is
submitted.

The final posterior distribution of motif activities is a multi-
variate Gaussian, which is determined using singular value de-
composition (see Supplemental Methods). By projecting the mul-
tivariate Gaussian onto individual motifs, ISMARA also calculates
standard deviations dA9

ms on all motif activities. Finally, the overall
significance of each motif m in explaining variations in E9

ps is
summarized by a z-like statistic,

zm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S
+
S

s¼1

A9
ms

dA9
ms

 !2
vuut ; ð3Þ

where S is the number of samples. The Z-scores calculate how
many standard deviations away from zero on average the inferred
motif activities are.

Popular alternatives to a Gaussian prior include Laplacian
priors, also referred to as Lasso regularization (Tibshirani 1996), or
a product of Gaussian and Laplacian priors, also referred to as
elastic net regularization (Zou and Hastie 2005). These priors are
often considered attractive because they induce sparsity, i.e., a
subset of the fitted parameters will be set strictly to zero. However,
since ISMARA by default sorts motifs by their significance zm,
motifs with weak activities move to the bottom of the list, where
they will be ignored by most users. Moreover, in some cases a user
might be interested in the inferred activity of a particular motif,
even if its significance is weak, and the Gaussian prior ensures that
a nonzero motif activity profile is inferred for every motif.

Although users will typically be primarily interested in motif
activity changes that explain expression changes across the con-
ditions, in some situations it would also be interesting to fit the
average expression ÆEpæ of each promoter, i.e., averaged across all
samples, in terms of average motif activities Am. ISMARA fits such
average activities using the same procedure, using a separate prior
for the average motif activities Am, and fitting this prior separately
using cross-validation.

Target predictions

ISMARA also predicts which individual promoters are regulated by
each motif m. As detailed in the Supplemental Methods, for each
promoter with predicted TFBSs for the motif (i.e., Npm > 0), ISMARA
estimates the log-likelihood ratio Spm of the entire model with the
TFBSs for m in p present and the model in which the entry Npm has
been set to zero. That is, we in silico mutate the promoter p such
that its TFBSs for motif m are removed and then recalculate the
probability of the data E with this mutated site-count matrix, in-
tegrating over all unknown activities. Thus, Spm rigorously quan-
tifies how much removal of the sites for m in p decreases the fit of
the model to the data.

Finally, enrichment of targets within particular Gene Ontol-
ogy categories is done by selecting all targets where inclusion of
motif m substantially helps predicting the expression levels (Spm > 1)
and performing a standard hypergeometric test. Target networks
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between motifs are constructed by drawing a link from motif m to
m9 whenever m is predicted to target one of the promoters asso-
ciated with a TF that is associated with motif m9.

Materials

The publically available data sets of gene expression profiling
were obtained from Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo): time course of HUVEC after TNF treatment
(GSE9055), mucociliary differentiation of airway epithelial cells
(GSE5264), Novartis (GNF) SymAtlas (GSE1133), epithelial and
mesenchymal subpopulations within immortalized human mam-
mary epithelial cells (GSE28681), ENCODE ChIP-seq (GSE26386)
and expression profiling (GSE26312) in human cell lines, and the
Illumina Body Map 2 (GSE30611). Microarray files from the NCI-
60 samples were downloaded from the project web page (http://
genome-www.stanford.edu/nci60/).
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