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Abstract

Lysine succinylation is one of the dominant post-translational modification of the protein that
contributes to many biological processes including cell cycle, growth and signal transduction
pathways. Identification of succinylation sites is an important step for understanding the func-
tion of proteins. The complicated sequence patterns of protein succinylation revealed by prote-
omic studies highlight the necessity of developing effective species-specific in silico strategies
for global prediction succinylation sites. Here we have developed the generic and nine species-
specific succinylation site classifiers through aggregating multiple complementary features. We
optimized the consecutive features using the Wilcoxon-rank feature selection scheme. The
final feature vectors were trained by a random forest (RF) classifier. With an integration of RF
scores via logistic regression, the resulting predictor termed GPSuc achieved better perfor-
mance than other existing generic and species-specific succinylation site predictors. To reveal
the mechanism of succinylation and assist hypothesis-driven experimental design, our predic-
tor serves as a valuable resource. To provide a promising performance in large-scale datasets,
a web application was developed at http:/kurata14.bio.kyutech.ac.jp/GPSuc/.

Introduction

Different types of protein post-translational modifications (PTMs) serve the proteome with
the functional and structural assortment and control cellular dynamics and plasticity [1].
Lysine succinylation is considered one type of PTM, which contributes to regulating many cel-
lular pathology and physiology [2-4]. The succinyllysine was first revealed to occur in the
active site of homoserine trans-succinylation processes, while in the intermediate reaction a
succinyl assembly was transformed from succinyl-CoA to homoserine [4-7]. Succinylation
was found in the regulation of gene transcription [8] and enzyme activities in nucleus, cyto-
plasm and mitochondria [9-11]. It indicates that lysine succinylation potentially regulates a
variety of important biological processes. To identify lysine succinylation, diverse high-
throughput proteomic technology has been adopted in numerous organisms by succinylation
enrichment and mass spectrometry analyses [3, 6, 7, 10, 12-17]. Nonetheless, improvements
in succinylation analysis with experimental identification of protein succinylation sites are still
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difficult and time-consuming tasks. Owing to various limitations of experimental methods, in
silico analysis for prediction of succinylation sites is in high demand.

To date, numerous of bioinformatics implementations have been established to predict suc-
cinylation substrates [18-27]. Zhao et al. proposed a predictor SucPred based on Support Vec-
tor Machine (SVM), in which four types of encoding methods were used [18]. The encoding
methods include grouped weight based encoding, auto-correlation functions, normalized van
der Waals volume and position amino acids weight composition. Another SVM-based predic-
tor iSuc-PseAAC developed by Xu et al., adopts the pseudo amino acid composition encoding
scheme to improve the prediction performance [19]. Xu et al. developed another SVM-based
predictor SuccFind considering amino acid composition (AAC), an amino acid index (AAin-
dex) physicochemical properties and k-space amino acid pair composition (CKSAAP) [20].
Jea et al. developed two predictors, iSuc-PseOpt [22] and pSuc-Lys [24], by using the general
pseudo amino acid composition encoding with random forest (RF) classifiers. Lopez et al.
developed a structure-based predictor SucStruct using a decision tree classifier [25]. Hasan et.
al. developed two predictors termed as SuccinSite and SuccinSite2.0 based on the amino acid
frequency and properties with combined RF classifier scores [21, 23]. The SuccinSite2.0 pre-
dictor integrated seven species-specific and their generic model classifiers. This predictor used
combination of two sequence features information, i.e. profile-based composition of k-spaced
amino acid pairs (pCKSAAP) and binary amino acid codes (BE) with a RF classifier. Dehzang
et al.http://www.sciencedirect.com/science/article/pii/S0022519317302072 developed two pre-
dictors, PSSM-Suc and SSEvol-Suc, based on position-specific scoring matrix (PSSM) encod-
ing and secondary structure information [27, 28]. Lopez et al. developed another predictor,
termed Success, using evolutionary and structural properties of amino acids[29]. A specifica-
tion of those succinylation site prediction tools was summarized in S1 Table.

However, the overall performance of the above-mentioned existing predictors is still not
satisfying and there is further room to improve the prediction performance. In the current
study, we develop generic and 9 species-specific succinylation classifiers named Global Predic-
tion of Generic and Species-specific Succinylation Sites (GPSuc) based on combining of five
sequence encoding features: pPCKSAAP, AAC, AAindex, BE, and PSSM features. We opti-
mized the consecutive feature vectors and trained them by a random forest (RF) classifier.
With an integration of RF scores via logistic regression (LR), the GPSuc outperformed other
existing generic and species-specific succinylation site predictors. It provides valuable insights
into the processes and functions of succinylation. Moreover, we systematically analyzed criti-
cally important features that influence the performance of classifiers. The GPSuc predictor was
implemented as a web application at http://kuratal4.bio.kyutech.ac.jp/GPSuc/.

Materials and methods
Data preparation

One of the main challenges in predicting succinylation sites is to obtain the suitable dataset for
model development. Since the training data should be derived from experiments, experimen-
tally identified 10,000 succinylated proteins were collected from nine species. Then the redun-
dant protein samples were removed by using CD-HIT with a 30% identity threshold cutoff
[30]. To classify the succinylated proteins, experimentally identified lysine succinylated resi-
dues were adopted as positive samples (i.e., succinylation sites), while the remaining lysine res-
idues in these sequences were regarded as negative samples (i.e., non-succinylation sites).

The generic and seven species-specific datasets of H. sapiens, M. musculus, M. tuberculosis,
E. coli, T. gondii, S. cerevisiae, and S. lycopersicum were retrieved from the SuccinSite2.0 [23].
They were the same dataset as the SuccinSite2.0. In a generic model, 124 succinylated proteins
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with 254 succinylated sites and 2,977 non-succinylated sites were obtained as a test dataset.
The training dataset contained 2,198 succinylated proteins with 4,750 validated succinylation
and 9,500 putative non-succinylation sites. In addition, after removing 30% sequence redun-
dancy, we collected the datasets of the two species of T. capsulatus (150 succinylated proteins
were set as training samples while 33 proteins randomly as test samples) and T. aestivum (53
succinylated proteins were set as training samples while 20 proteins randomly as test samples)
[15, 16]. It is noted that, in the test dataset, all the succinylation and non-succinylation sites
were used and analyzed to simulate the real situation. Training dataset was randomly pooled
with a succinylation to non-succinylation site ratio of 1:2. The information of the generic and
nine species datasets are listed in S2 Table. The all curated datasets are publicly available at
http://kuratal4.bio.kyutech.ac.jp/GPSuc/.

Computational framework

An overview of the computational framework of the proposed GPSuc predictor is shown in Fig
1. For each of lysine succinylated or non-succinylated proteins, a sequence flanking window of
+20 residues that possesses a succinylated/non-succinylated lysine in the center was considered
[23]. When the sequence contains less than 41 amino acids, our method provides gaps (-) to the
missing positions to compensate a window size of 41. The sequence window was encoded in the
five consecutive features of AAC, BE, AAindex, PSSM, and pCKSAAP. The combination of the
feature vectors was optimized using a non-parametric Wilcoxon-rank sum (WR) test. The
resulting five collections of the encoded features were independently put into RF models to pro-
duce five independent RF prediction scores. Eventually, the five prediction scores by the RF
were integrated through the LR method to construct the GPSuc predictor. After combining the
prediction scores, a confident cutoff was considered to identify the succinylation site. The opti-
mum RF decision trees were grown up through the training dataset based on the 10-fold CV.

Features encoding

To establish an accurate species-specific prediction model, the individual sequence fragment
was encoded into a numeric feature vector. It is a critical step to represent the collective archi-
tecture of the classifier. Therefore, to obtain the local information around each succinylated
lysine, a high-quality sequence encoding method was essential. As a substitute for retaining a
general binary representation of corresponding amino acid sequences, five types of feature
encodings were adopted: AAC, AAindex, BE, PSSM, and pCKSAAP schemes. Details in each
feature encoding scheme was described as follows.

Amino acid composition

AAC feature encoding is one of the most popular schemes and widely used in protein bioinfor-
matics research [26, 31]. It can produce protein sequences information by replicating amino
acid occurrence frequencies. In this study, AAC was calculated based on amino acid occur-
rence frequencies in the sequence fragments surrounding the succinylation and non-succiny-
lation sites (the site itself is not counted). Each of sequence fragments, 20 frequencies were
calculated for 20 types of amino acids.

AAindex encoding

In AAindex database (version 9.1), the primary physicochemical and biochemical properties
of the amino acids were extracted [32]. After several trails, twelve types of high-quality amino
acid indices such as TSAJ990101[33], MAXF760101 [34], NAKH920108[35], BLAM930101
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Fig 1. The computational framework of GPSuc.
https://doi.org/10.1371/journal.pone.0200283.9001

[36], BIOV880101[37], CEDJ970104[38], NOZY710101 [39], KLEP840101[40], NAKH900109
[41], LIFS790101[42], HUTJ700103 (http://www.genome.jp/aaindex/AAindex/list_of indices)
and MIYS990104[43] were transformed into the succinylation and non-succinylation
sequence windows for generating the feature vectors. Values “NA” in the amino acid indices
were replaced by 0 in this study. In a sequence window through AAindex encoding, a
492-dimension (41x12 = 492) feature vector was generated.

Binary encoding

A 20-dimensional binary vector for each residue in the sliding window was generated by BE
scheme [21]. Through BE, an 820-dimension (41x20 = 820) feature vector was obtained for a
sequence fragment.

PSSM encoding

The PSI-BLAST (version 2.2.26+) against the whole Swiss-Prot non-redundant database
(December 2010) was used to generate PSSM matrix [44], which includes two default parame-
ters: e-value cutoff and iteration times. They were set to 1.0x10™* and 3, respectively. Then, the
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feature vectors were extracted using sliding sequence fragments. To each sequence, the dimen-
sion of the PSSM vector was 820 (41x20). We considered 20 amino acids without counting

any gap (-).

pCKSAAP encoding

The compositions of k-space amino acid pairs, pPCKSAAP feature vectors, were extracted from
the generated PSSM profile for each sequence window[45]. If the amino acid residue pair
occurs T times between r and r+k+1, the pPCKSAAP feature scores were calculated and nor-
malized using the following equation:

25:1 max[min{PSSM(r, n,), PSSM(r + k + 1,n,)}, 0]

L= 1
Sy L—k—-1 )

where n;and n; (i, j = 1, 2, . . ., 20) represent 20 types of amino acid residues. The PSSM (r, 1;)
denoted the amino acid pair of #; with the '™ row position of the PSSM score in n;{k}n;. The
PSSM (r+k+1, n;) represents the amino acid pair #; at the (r+k+1)" row position of PSSM. Details
in the pCKSAAP scheme are available in our previous study [46]. For each sequence fragment,
the dimension of pPCKSAAP was 2000 (dimension 5% (20x20) = 2000 at k = 0,1,2,3 and 4).

Wilcoxon rank-sum test

Based on succinylated and non-succinylated samples, five types of features were generated.
Among the generated features, there may be some redundant and uncorrelated information,
which can affect the speed and accuracy of a predictor. Therefore, feature selection strategies
are necessary to pick out informative features that can prevent overfitting, to improve the pre-
diction performance and to understand inherent properties of succinylation sequences. We
employed the WR test to select differentially expressed features.

Assuming that a positive-group has r scores/observations and a negative-group has s scores /
observations with test statistics, W was defined as the sum of the ranks of the annotations for
the positive-group (or negative-group). The following steps were conducted for the WR test.

1. Associate the r + s annotations with rank observations from the smallest to largest group,
where r ranks are allocated to the positive-group and s ranks are allocated into the negative-
group. Calculate W of the positive-group.

2. Discover all the possible permutation of the ranks.

3. Each permutation of the rank is calculated and the p-value is calculated as follows.

r4s
P, = (rank sums < observed rank sum of W)/( ) ) (2)

Statistical learning

To classify the models of lysine succinylation sites, a supervised statistical learning approach,
RF was employed [47]. RF is one of the most precise statistical learning algorithms and pro-
vides highly accurate classification results in bioinformatics research [21, 23, 48, 49]. RF works
as an ensemble and de-correlated decision trees, which ‘votes’ for one of the two classes, either
succinylation or non-succinylation samples. The experimentally verified lysine succinylation
samples were labeled ‘+1’, while the other lysine residues labeled -1’. Based on the positive and
negative samples, five different types of features were generated using a series of input feature
encodings. These generated features were input into RF classifiers to identify whether or not
the lysine residues are succinylated.
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Logistic regression

For prediction of succinylated and non-succinylated sites, the outputs of distinct RF scores
were combined using an LR method. The LR scheme was successfully used in protein ubiqui-
tin site prediction [50]. The final prediction probability scores were defined:

og( 2 5) = iS4 o)

where k is the number of individual features with probability P, 3, is the regression coefficient
with prediction score S, and o is the constant term. A generalized linear model of an R package
software (http://www.R-project.org/) was considered to access the LR.

Performance evaluation

To calculate the prediction performance of each model of GPSuc, the threshold-independent
and threshold-dependent indices were measured. The values of area under the curve (AUC)
were calculated and the receiver operating characteristic (ROC) curve was depicted using
threshold independent parameters by an R-package (https://cran.r-project.org/web/packages/
pROC/index.html). Using the threshold dependent parameters, four statistical indexes: accu-
racy (Ac), specificity (Sp), sensitivity (Sn), and Matthews correlation coefficient (MCC), were
calculated, defined as follows:

nTP + nTN
Ac = (4)
nTP + nTN + nFP + nFEN

nTN
Sp=——— 5
P = TN T nFp ()

nTP
Sn=———— 6
N 0TP ¥ nEN (©)

MCC — nTP x nTN — nFP x nFN 7)
\/(nTN + nEN) x (nTP + nFP) x (nTP + nFN) x (nTN + nFP)

where nTP represents the number of the observed positive residues predicted to be the positive
sample, nTN the number of the observed negative residues predicted to be the negative sample,
nFP the number of the observed positive residues predicted to be the negative, and nFN the
number of the observed negative residues predicted to be the positive sample, respectively.

We used the test dataset to examine the prediction performance of GPSuc. On the other
hand, we applied a 10-fold CV test to the training dataset to examine the prediction perfor-
mance of GPSuc. First, the training dataset was evenly separated into 10 subgroups. One sub-
group was given as the test set, and the remaining 9 subgroups as the training set. We repeated
this procedure 10 times by changing the training and test samples from 10 subgroups. By cal-
culating the average value of Sp, Sn, Ac, and MCC, the performances of 10-fold results pro-
duced a single estimation.

Results and discussion
Analysis of compositional biases around succinylation sites

First, given that distinct distribution patterns of the sequence surrounding the succinylation
sites in the 9 species datasets, a two-sample graph software was used [51] to classify and display
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the position-specific amino acid appearance in the sequences surrounding the succinylated
sites, as shown in Fig 2. In brief, in the two sample logo graphs, the cumulative percentage of
over- and under-represented residues was reported with respect to the Y-axis, respectively.
Therefore, the letters presented over and under the X-axis indicate frequently observed resi-
dues. The sequence patterns for H. sapiens and S. cerevisiae resembled each other. Thus, a H.
sapiens succinylation site predictor could be used to predict succinylation sites of S. cerevisiae.
The sequence patterns of succinylation proteins of H. capsulatum, M. tuberculosis, T. gondii, S.
lycopersicum, and T. aestivum are scattered compared to the other 4 species. For instance, the
charged residues (E, K, R and D) were enriched and depleted in H. sapiens, M. musculus, E.
coliand S. cerevisiae. In M. tuberculosis, S. lycopersicum and T. aestivum the neutral residues
(C,F, S, and G) were depleted.

Second, we contemplated the average amino acid occurrence frequency (AAF) scores for
each amino acid residue in the surrounding succinylated and non-succinylated sequence win-
dows, as shown in Fig 3. The AAF distribution was found to depend on species. For example,
amino acid ‘K’ has very high AAF scores for the 6 species: H. sapiens, H. capsulatum, M. mus-
culus, S. cerevisiae, S. lycopersicum and T. aestivum. Amino acid ‘R’ showed higher AAF scores
in H. sapiens, E. coli, M. musculus, M. tuberculosis and T. aestivum than the other species.
Here, a non-parametric Kruskal-Walis hypothesis test was accessed to identify whether two
samples were significantly different. The p-values were filtered in the corresponding window
positions of neighboring succinylated and non-succinylated sites and corrected by the Bonfer-
roni test. For many amino acids surrounding succinylation sites in the nine species, statistical
differences were observed between the succinylated and non-succinylated samples, with a p-
value of less than 0.05 (S3 Table). These results suggest that the AAF features show visible dif-
ferences between succinylation and non-succinylation samples in the different species. The
AAF could be a useful measure for succinylation site identification.

Third, to detect the distinct amino acids among the succinylated samples in the nine experi-
ential datasets, a chi-square goodness of fit test was conducted. The number of the total succi-
nylated sites were 1405, 382, 438, 760, 2231, 308, 1051, 275 and 145 for nine species of H.
sapiens, H. capsulatum, M. musculus, M. tuberculosis, E. coli, T. gondii, S. cerevisiae, S. lycopersi-
cum and T. aestivum, respectively (S2 Table). The amino acid occurrence numbers at different
sequence window positions (~-5 to +5) were detected. The statistical differences in the amino
acid occurrence numbers between succinylated and non-succinylated samples were calculated
by the Bonferroni correction test (S4 Table). We found that most of p-values were lower than
0.01, indicating that the amino acid residues of nine species-specific models are significantly
different. The above analysis recommended that the lysine succinylation sites across different
species have distinctive location-specific modifications. It is, therefore, essential to construct
an accurate prediction of species-specific succinylation sites.

Analysis of evolutionary features of succinylation sites

In the PTM analysis, evolutionary information is an important representative feature [23, 35,
52, 53]. The PSSM feature was considered to measure the evolutionary conservative informa-
tion around the succinylated and non-succinylated samples. S1 Fig shows the comparison of
the mean PSSM values (MPV) between the succinylated and non-succinylated samples for
nine species. In H. sapiens, H. capsulatum, E. coli, S. cerevisiae, S. lycopersicum and T. aestivums
species, the MPVss of the surrounding succinylated sites showed higher scores than those of the
non-succinylated ones. It suggested that succinylated samples have a tendency to be more con-
served than non-succinylated samples. Furthermore, to examine whether succinylated and
non-succinylated sites are significantly dissimilar, a non-parametric Kruskal-Walis test was
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Fig 2. Sequence logos illustrating the amino acid appearance in the sequences surrounding the succinylation sites (http://www.twosamplelogo.org/)
Nine species: H. sapiens, H. capsulatum, M. musculus, E. coli, M. tuberculosis, T. gondii, S. cerevisiae, S. lycopersicum, and T. aestivum were used

https://doi.org/10.1371/journal.pone.0200283.9002

performed. The calculated and filtered p-values were adjusted by the Bonferroni test (S5
Table). The MPVs of some window positions of the surrounding succinylated and non-succi-
nylated sites were found significantly different with p-value < 0.05, indicating that the PSSM
features can capture evolutionary information of the local sequences.
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Analysis of physicochemical properties of succinylation sites

The property of AAindex is the most spontaneous feature in PTM prediction tasks. In the pre-
ceding work, different AAindex properties were used [18, 21], which demonstrated that physi-
cochemical properties play a significant role in succinylation site prediction. After several
trials, 12 types of important AAindex properties were considered (S6 Table). The average val-
ues of physicochemical property ‘amino acid composition of multi-spanning proteins’
(NAKH920108) [35] at each position of the succinylation and non-succinylation samples were
defined as mean values of physicochemical properties (MPP). The MPPs depended on the spe-
cies as shown in S2 Fig. Particularly, the MPPs are varied at window positions of -5, -4, -1, +2,
+14 and +16. We used the Kruskal-Walis test to assess statistical significance among the nine
species. The filtered p-values were corrected by the Bonferroni test. The MPPs of some window
positions around the succinylation sites were found significantly different with p-value< 0.05
(S7 Table).

Investigation of feature importance and impact in a generic predictor

As mentioned above, to make a more robust generic predictor, we retrieved the same training
and test datasets as collected from the SuccinSite2.0 predictor (Materials and Methods). Ini-
tially, to inspect the performance for generic site prediction by ‘GPSuc’, the sequence windows
were encoded as numerical feature vectors based on the five consecutive features of AAC, BE,
AAindex, PSSM, and pCKSAAP. The calculated feature vectors often have redundant and
uncorrelated information that impairs the prediction performance. Therefore, feature selec-
tion strategies are essential to reduce the dimensionality and optimize the collective contribu-
tion features. The feature vectors were optimized using the WR scheme in this study. The WR
scheme reduced the dimensionality of the high dimensional pPCKSAAP and AAindex features
more than other methods. After several trials in the generic classifier, top 390 and 250 feature
vectors were collected from the pCKSAAP and AAindex schemes, respectively. The collected
feature vectors were transformed into a new ordered feature based on low to high WR values.
The corresponding features were adopted from the other three feature vectors (AAC, BE, and
PSSM).

The final five encoding feature vectors for a generic model were trained by the RF classifier.
The optimum RF decision trees were grown up through the training dataset based on the
10-fold CV. Then the collected RF scores were combined by the LR method to construct
GPSuc. The combination of RF scores of five encodings via the LR method provided the high-
est AUC values of the generic classifier were 0.840 and 0.779 for the training and test datasets
of the generic model, respectively (Table 1). As observed, the generic predictor performance

Table 1. AUC values of different combination of feature scores for training and test dataset in a generic
predictor.

Datasets Predictors AUC
Training pCKSAAP + AAindex 0.827
pCKSAAP + AAindex+ Binary 0.831
pCKSAAP + AAindex+ Binary +AAC 0.834
pCKSAAP + AAindex+ Binary +AAC+PSSM (GPSuc) 0.840
Test pCKSAAP + AAindex 0.752
pCKSAAP + Binary + AAindex 0.767
pCKSAAP + Binary + AAindex+PSSM 0.773
pCKSAAP + Binary + AAindex+PSSM+AAC (GPSuc) 0.779

For combining the features, different LR parameters were added.

https://doi.org/10.1371/journal.pone.0200283.t001
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indexes of Sp, Sn, Ac, and MCC were 0.903, 0.537, 0.781, and 0.498 for the training dataset,
respectively (Table 2). The species-specific predictors of the GPSuc showed high performance.
In summary, the performance of the generic and species specific classifier of the GPSuc
showed high prediction performance.

Performance comparison to existing generic predictors

We evaluated the predictive performances of different succinylation site prediction tools,
including iSuc-PseAAC, iSuc-PseOpt, pSuc-Lys, SuccinSite and SuccinSite2.0, as shown in
Table 3. The performance evaluation of different schemes is often difficult because they use
different training samples with different ratios of positive to negative datasets and diverse
assessment procedures. Since many approaches are not publicly available, including SucPred,
SuccFind [26], SucStruct [25], PSSM-Suc [27], SSEvol-Suc[28] and Success[29], these six appli-
cations were not employed in this study. To make a fair comparison, a test dataset was col-
lected from the published test dataset of SuccinSite2.0 [23]. As shown in Table 3, the generic
classifier of GPSuc improved the performances of other existing predictors in terms of Sn and
MCC. The GPSuc showed 4% and 9% higher MCC scores than the SuccinSite2.0 and Succin-
Site predictors, and outperformed Suc-PseAAC, iSuc-PseOpt and pSuc-Lys predictors. The
prediction results proved that the generic classifier of GPSuc is much more powerful and con-
cise than the other existing predictors.

Species-specific succinylation site prediction of GPSuc

To evaluate the performance of the species-specific classifiers of GPSuc, the test and training
samples of the nine species were collected from the SuccinSite2.0 predictor and recently pub-
lished articles (Materials and Methods). The proposed nine species-specific classifiers were
trained and tested based on the consecutive five sequence features of AAC, BE, AAindex,
PSSM, and pCKSAAP. To optimize the model features, a WR feature selection strategy was
employed by applying a 10-fold CV test to the training dataset of each species. After several
trails, the WR feature selection test was found effective in the pPCKSAAP and AAindex schemes
compared to other model features vectors. Therefore, the optimal feature vectors were trans-
formed from the pPCKSAAP and AAindex schemes for nine species. In H. sapiens model, the
top 260 and 440 feature vectors were collected as optimum features from AAindex and
PCKSAAP schemes, respectively. Similarly, from AAindex and pCKSAAP schemes, we col-
lected the top 200 and 340 features for H. capsulatum, the top 150 and 390 features for M. mus-
culus, the top 200 and 350 features for E. coli, the top 240 and 350 features for M. tuberculosis,
the top 220 and 450 features for S. cerevisiae, the top 150 and 290 features for T. gondii, the top

Table 2. Performance of generic and species-specific succinylation site prediction on the training dataset.

Performances Sp Sn Ac MCC
Generic 0.903 0.537 0.781 0.498
H. sapiens 0.903 0.545 0.784 0.524
H. capsulatum 0.901 0.411 0.738 0.39

M. musculus 0.890 0.512 0.764 0.429
E. coli 0.890 0.422 0.734 0.408
M. tuberculosis 0.890 0.289 0.700 0.201
S. cerevisiae 0.896 0.655 0.816 0.536
T. gondii 0.896 0.535 0.776 0.519
S. lycopersicum 0.897 0.478 0.757 0.447
T. aestivum 0.887 0.418 0.731 0.406

https://doi.org/10.1371/journal.pone.0200283.t002
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Table 3. Performance of exiting generic tools on the test dataset.

Performances/ prediction schemes Sp Sn Ac MCC
iSuc-PseAAC 0.887 0.122 0.827 0.013
iSuc-PseOpt 0.758 0.303 0.722 0.038
pSuc-Lys 0.826 0.224 0.779 0.036
SuccinSite 0.882 0.371 0.842 0.199
SuccinSite2.0 0.882 0.454 0.848 0.261
GPSuc 0.883 0.499 0.853 0.296

https://doi.org/10.1371/journal.pone.0200283.t003

250 and 450 features for S. lycopersicum and the top 120 and 400 features for T. aestivum,
respectively. Based on low to high WR scores, these optimal feature vectors were reconstructed
into new well-ordered feature vectors.

Training set performance  mTest set performance
1 H. sapiens 1 H. capsulatum 1 M. musculus

nl=nna=nmi

0 > < D>
< D> & R L A S 8
% S Q@*\§° 5 & > &S FIFTES
ol Vy ¢S & v & & v &
] ] )
1 E. coli . M. tuberculosis i T. gondii
Q 82 008 Q98
= 0.4 = 0.6 =06
<o =04 <04
'3 & & & & % " ¢ S
g < D> RN & z
@Vy Q’yﬁ s F& a}ys FFT %%@6“& KU S o,%%@éé\ Q
)
QQ ¢S y Ck' Ky R oe& Qck' w ¢S
S. cerevisiae . .
1 8. lycopersicum 1 T. aestivum

> >
Q e S & IR S K 0 >
%Vy Q&» w & & K v? Q S& w & & Q}@ b‘:’ G $ &
Ck' vf R Q°$ & Vy R o @ Vg}o Q% N
N N Ko ¢

Fig 4. Performance evaluation using single five features and the ‘combined model’ for prediction succinylation sites in nine species. Gray colors represent the AUC
value of training dataset while red colors show that of the test dataset. ‘Combined’ indicates the performance by the combined five encoding features. The final H.
sapiens model was given as a linear combination of the five AAC, AAindex, binary, PSSM, and pCKSAAP features with LR coefficient values of 0.142, 1.566, 0.665, 0.342
and 0.667, respectively. In the same way, the combined H. capsulatum, M. musculus, E. coli, M. tuberculosis, S. cerevisiae, T. gondii, S. lycopersicum and T. aestivum were
given with (0.102, 0.466, 0.462, 0.242 and 1.367), (0.155, 1.077, 0.575 and 0.761), (0.121, 0.473, 0.763, 0.230 and 1.214), (0.127, 0.358, 0.404, 0.109 and 1.066), (0.320,
0.391, 0.553, 0.182 and 1.122), (0.117, 0.331, 0.734, 0.139 and 1.014), (0.113, 0.417, 0.818, 0.103 and 1.172), and (0.112, 0.462, 0.723, 0.164 and 1.299), respectively. The
LR constant terms for each species were set to zero.

https://doi.org/10.1371/journal.pone.0200283.g004
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Fig 5. ROC curve of nine species-specific predictors of GPSuc. (A)Training data performances over a 10-fold cross-validation test. (B) Test

dataset performances.

https://doi.org/10.1371/journal.pone.0200283.9005

Five final feature vectors for each species, including the two optimal feature vectors of
PCKSAAP and AAindex, were trained by RF classifiers. The collected RF scores were com-
bined by the LR method to construct the GPSuc. Then we plotted the ROC curves and calcu-
lated the AUC.

The AUC values for each feature encoding model and their combined model (GPSuc) were
plotted in a bar plot (Fig 4). The combination of five encoding features via the LR method
(GPSuc) provided a more powerful predictor than single encoding models. Use of pCKSAAP,
AAindex and BE features performed a little higher than the other two features. Using the ROC
curves, the performance on the training dataset by the combined model (GPSuc) reached
AUC values of 0.882, 0.807, 0.826, 0.811, 0.732, 0.866, 0.926, 0.859 and 0.847 for H. sapiens, H.
capsulatum, M. musculus, E. coli, M. tuberculosis, T. gondii, S. cerevisiae, S. lycopersicum, and
T. aestivum, respectively (Fig 5A). Finally, the combined models (GPSuc) for the nine species-
specific classifiers were evaluated by using test datasets. The GPSuc for the test dataset pro-
duced AUC values of 0.885, 0.694, 0.736, 0.712, 0.702, 0.756, 0.831, 0.730 and 0.691 for H. sapi-
ens, H. capsulatum, M. musculus, E. coli, M. tuberculosis, T. gondii, S.cerevisiae, S. lycopersicum,
and T. aestivum, respectively (Fig 5B). The above findings support that the proposed species-
specific classifiers provide a useful guide to hypothesis-driven experimental design and identi-
fication of novel species-specific succinylation sites.

Comparison with an existing species-specific succinylation site predictor

We compared the performance of the species-specific classifier of GPSuc with SuccinSite2.0,
which represents the state-of-the-art predictor available, as shown in Table 4. SuccinSite2.0 is
the species-specific classifier for 7 species of H. sapiens, M. musculus, M. tuberculosis, E. coli, T.
gondii, S. cerevisiae, and S. lycopersicum [23]. To make a fair comparison, we employed the
same training and test datasets as SuccinSite2.0. The species-specific classifiers of GPSuc for
the seven species achieved a much better performance than SuccinSite2.0 in terms of Sn, and
MCC (S8 Table). In the test dataset, the above 7 species-specific classifiers of GPSuc provided
nearly 4%, 5%, 6%, 5%, 11%, 4% and 5% higher MCCs than the SuccinSite2.0, respectively. In
summary, GPSuc outperformed the SuccinSite2.0 predictor.

Conclusions

We designed a generic and nine species-specific predictors to classify potential succinylation
sites. The GPSuc predictor interpreted high prediction performance in both general and

Table 4. Performance comparison of a species-specific predictor using the test dataset.

Species / Measurements SuccinSite2.0
Sp
H. sapiens 0.872
M. musculus 0.780
E. coli 0.733
M. tuberculosis 0.720
S. cerevisiae 0.826
T. gondii 0.824
S. lycopersicum 0.815

https://doi.org/10.1371/journal.pone.0200283.t004

GPSuc
Sn Ac MCC Sp Sn Ac MCC
0.632 0.866 0.241 0.877 0.693 0.872 0.279
0.461 0.769 0.101 0.788 0.523 0.779 0.146
0.456 0.685 0.192 0.740 0.562 0.710 0.246
0.440 0.664 0.139 0.719 0.501 0.675 0.188
0.512 0.807 0.216 0.822 0.596 0.809 0.249
0.452 0.790 0.191 0.822 0.593 0.801 0.296
0.401 0.771 0.172 0.817 0.471 0.800 0.220
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species-specific models. It greatly improved the prediction results compared to previous
predictors. Our analysis shows the sequence patterns of succinylation sites are significantly dif-
ferent in the nine species, and the GPSuc combining multiple features using LR analysis
improved the prediction performance. To identify the designated succinylation site, a user-
friendly online server for GPSuc was established that is particularly beneficial for some hypoth-
esis-driven experiments. GPSuc serves as a complementary and powerful predictor for identi-
fication in vitro or in vivo species-specific succinylation site.
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