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Simple Summary: In the present review the authors report the predictive value of FDG/PET-
CT (PET) on treatment outcome of Hodgkin lymphoma patients showing a post-chemotherapy
residual mass, based on the published reports of PET-guided consolidation radiotherapy after
different-intensity chemotherapy regimens such as ABVD or BEACOPPescalated. A special focus
will be dedicated to the role of PET for assessing patients with a residual mass during and after
immunotherapy with immune checkpoint inhibitors. Finally, the interpretation criteria of PET will
be also reviewed, and the role of alternative imaging techniques discussed.

Abstract: In the present review, the authors report the published evidence on the use of functional
imaging with FDG-PET/CT in assessing the final response to treatment in Hodgkin lymphoma.
Despite a very high overall Negative Predictive Value of post-chemotherapy PET on treatment
outcome ranging from 94% to 86%, according to different treatment intensity, the Positive Predicting
Value proved much lower (40–25%). In the present review the Authors discuss the role of PET
to guide consolidation RT over a RM after different chemotherapy regimens, both in early and in
advanced-stage disease. A particular emphasis is dedicated to the peculiar issue of the qualitative
versus semi-quantitative methods for End-of Therapy PET scan interpretation. A short hint will be
given on the role of FDG-PET to assess the treatment outcome after immune checkpoint inhibitors.
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1. Introduction

In medical oncology, the treatment response has been traditionally assessed with
standard radiological tools such as Contrast-enhanced Computed Tomography (CeCT) to
detect the therapy-induced tumor shrinkage, and the criteria for unidimensional Residual
Mass (RM) assessment have been categorized in the so-called Response Evaluation Criteria
in Solid Tumor (RECIST) criteria [1]. Later, thanks to the systematic use of functional
imaging with 67Ga−Gallium scintigraphy and, most of all, of [18F]-Fluorodeoxyglucose
Positron Emission Tomography (FDG-PET), it became clear that the dimensional criteria
for tumor response assessment, based on changes in tumor size, were imperfect. In sev-
eral cancers and, most of all, in lymphoma, the chemotherapy-induced tumor shrinkage
takes time, and a RM mass can take years after treatment to disappear [2]. In the orig-
inal observation of Radford et al., a chest radiograph was regularly performed during
the clinical follow-up of 110 patients affected by Hodgkin lymphoma (HL) presenting
at baseline with a classical mediastinal bulky lesion, treated with chemotherapy and/or
radiotherapy [3]. Up to 59% of the residual radiological abnormalities underwent fur-
ther shrinkage after the first year of follow-up and 45% of them reverted to normal. As
a matter of fact, despite the very good response to therapy, treatment of HL can result in
a CeCT-detected RM in up to 80% of patients, most frequently in the anterior medi-
astinum, without any clinical evidence of disease relapse or progression [3,4]. This chal-
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lenge has been met in the millennium turnaround by functional imaging, notably by PET,
in which FDG uptake is sustained by viable neoplastic tissue, independent from changes in
tumor size [5].

Fused functional imaging with FDG-PET and CeCT in a single whole-body scanning
session (PET/CT) proved superior to CeCT to assess the response to treatment in this
clinical context [6,7].

This modern approach to assess the effectiveness of treatment is based on an advanced
imaging method, aimed at tracing the glycolytic activity of the cells, that proved able to pick
up even minimal residual viable neoplastic tissue at the end of therapy. The peculiar ability
of the glucose analog 18F-Fluordo-deoxy-D-glucose (FDG) to trace the neoplastic tissue
relies on the elevated glycolytic metabolism of the tumor, which proved to be a hundred
times higher than the normal tissues, accounting for the well-known “Warburg effect”
activity described by the German physiologist Warburg [8]. On the other hand, the HL
tissue shows a completely different neoplastic architecture compared to other neoplasms,
characterized by a few, scattered neoplastic cells, the Reed-Sternberg and Hodgkin (HRS)
cells, embedded in a largely predominant non-neoplastic micro-environment (ME) tissue
of “accessory” cells, (ME cells) such as macrophages, T- and B-lymphocytes, eosinophils,
plasma cells, and endothelial cells, which are responsible for the immortalization of HRS
cells [9]. ME cells are also characterized by a very high glycolytic activity: in vitro cultures
of HRS showed that the glycolytic enzymes accounted for more than 40% of the proteins
recovered in the surnatant [10]. This characteristic microstructural architecture underpins
the superior performance of functional imaging with FDG-PET compared to standard
radiological methods for treatment response assessment during and after therapy in HL.
While inducing HRS cells kill, chemotherapy also switches off the cytokine network, which
activates the neoplastic HRS cells, thus turning off at the same time the functional activity of
the ME cells. In conclusion, this double block of FDG uptake in these two different cellular
compartments functions just as an “amplifier” of the PET signal, like an “HiFi” amplifier
for the acoustic signal. The net result, in terms of imaging, is (1) an increase of detection
power of FDG-PET and (2) an abrupt “on-off” switch of the PET images during and after
therapy [11]. The scope of post-chemotherapy “Consolidation” radiotherapy (cRT) consists
in eradicating the minority of the neoplastic tissue still metabolically active and surviving
a very effective chemotherapy, very often inside a residual post-chemotherapy mass (RM).
PET-guided cRT is aimed to cure persisting viable neoplastic tissue, while sparing undue
toxicity to the largest fraction of PET-negative patients.

As a matter of fact, despite the evidence in the CT of a post-chemotherapy RM, as
a possible harbinger of residual HL, the Negative Predictive Value (NPV) of a negative
PET/CT proved very high, ranging between 80% and 100% [4,12], depending on the
effectiveness of the chemotherapy regimen administered, thus ruling out the possibility
of persisting disease in a PET-negative RM. The systematic use of PET/CT for end-of
treatment (EoT) assessment of response in HL definitely made obsolete the concept of
Response Complete Unconfirmed (RCU), proposed to define a complete response in which
a CeCT-detected RM persisted [13], and introduced, at the same time, the concept of
true metabolic response [14], which was finally incorporated in the Lugano criteria for
lymphoma response assessment as “Complete Metabolic Response” [15].

The NPV of PET/CT after chemotherapy for HL proved strictly correlated with the
effectiveness of the treatment delivered, ranging from 94% for BEACOPP escalated to 86%
for VEBEP [16–18] (see below Sections 2 and 3).

2. Residual Mass after ABVD Chemotherapy

In the pioneer experience of Naumann et al., 43 HL patients, presenting at baseline
with classical bulky lesion (n = 30) or large nodal mass (n = 13), showed a residual mass
(RM) after chemotherapy alone (n = 10) or chemoradiation (n = 33) [4]. The treatment
response was assessed with FDG-PET: 39 had a negative and 4 a positive scan. The
negative and positive predictive values on long-term treatment outcome were 100% and
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25%, respectively. In 2015, Savage et al. [17], on behalf of the British Columbia Cancer
Agency (BCCA), reported their retrospective experience in post-chemotherapy response
assessment in a large cohort of HL patients in stage I bulky, or stage IIB–IVB, presenting at
baseline with a large nodal mass, treated with six cycles of ABVD (also including patients
in stage I bulky). All the patients included in this study had a negative end-of-treatment
(EoT) PET, despite the presence of a residual mass (RM) detected on contrast-enhanced
CT (CeCT) with the largest diameter measuring ≥ 2 cm [17]. Out of 316 patients included
in the study, 264 (83.5%) in complete metabolic response had no further therapy, while
41 out of 52 (79%), showing a single or multiple FDG-avid persisting lesion, underwent
consolidation radiotherapy. Unfortunately, no blinded, independent, central review for
PET scan was planned, and the PET images were reported by the local PET sites according
to traditional visual criteria, in which any residual FDG uptake was considered a harbinger
of disease. With a median follow-up of 4.6 years (range 0.6–13.5 years), the 5-year freedom
from treatment failure (FFTF) for the whole cohort was 83% and 5-years overall survival
(OS) was 94.5%. Overall, patients with a negative EoT PET scan had a superior 5-years
FFTF compared to those with a positive scan (89% vs. 56%, p < 0.00001). Remarkably, in
the PET-negative group, there was no difference in outcome comparing the bulky (n = 112)
and non-bulky (n = 152) subgroups, with a 5-years FFTF and OS of 89% vs. 88.5% (p = 0.50),
and of 96% vs. 94% (p = 0.51), respectively. The authors concluded that: (1) ABVD-treated
advanced-stage HL patients, including those with bulky disease with a negative PET scan
after ABVD, have an excellent outcome without the need for additional consolidative RT;
(2) thanks to a PET-guided approach, the Canadian Authors were able to significantly
reduce the need for RT in the overall therapeutic strategy of HL.

In 2008, the Italian HD 0607 trial was launched to assess the efficacy of an interim PET-
adapted strategy in advanced stage Hodgkin lymphoma [19]. In this trial, patients with
both a negative PET after two and six ABVD courses presenting at baseline with a Large
Nodal Mass (LNM)—defined as a nodal mass with the largest diameter ≥ 5 cm measured in
the CeCT scan performed for staging purposes, with or without evidence of a residual mass
after chemotherapy (RM)—were randomly allocated to receive consolidation radiotherapy
(cRT) or no further therapy (NFT). Both interim and EoT PET scans underwent blinded
independent central review, and PET images were scored according to the 5-point Deauville
scale [20]. Among 296 randomized patients, the largest diameter of LNM detected in the
CeCT performed at baseline was 5–7 cm in 101 (34%)—Subgroup A; 8–10 cm in 96 (32%)—
Subgroup B; while a classical bulky (diameter > 10 cm) was detected in 99 (33%)—Subgroup
C. Two-hundred-and-eighty of them (88%) showed a post-chemotherapy RM. The median
dose of consolidation radiotherapy delivered was 30.6 (range 24–36) Gy. After a median
follow-up of 5.9 (0.5–10) years, the 6-years Progression-Free Survival (PFS) of patients
randomized to cRT or NFT was: 91% (95% CI, 84% to 99%) and 95% (95% CI, 89% to 100%,
p = 0.62) in Subgroup A; 98% (95% CI, 93% to 100%) and 90% (95% CI, 80% to 100%, p = 0.24)
in Subgroup B; and 89% (95% CI, 81% to 98%) and 86% (95% CI, 77% to 96%, p = 0.53) in
Subgroup C (classical bulky) [21] (Figure 1). The authors concluded that (1) consolidation
radiotherapy does not improve treatment outcome, in terms of 6-years PFS and OS, in
advanced-stage HL patients in complete metabolic response after ABVD, whatever the
size of the LNM and whatever the Deauville score of the negative EoT PET (scored 1 to 3);
(2) the pattern of recurrence in patients randomized to radiation and to NFT was similar,
as in the radiation arm no imbalance of disease recurrence in new nodal areas compared
to the areas involved at baseline was recorded; (3) the percentage of patients requiring
cRT fell from 47% in patients with a PET-negative RM after ABVD to only 7%, in patients
with a persisting positive EoT PET without evidence of disease progression or relapse.
Very important, (4), the authors stressed that the most frequently detected LNM was in
the mediastinum, which allowed to spare undue toxicity to the myocardium in up to 83%
of the patients and to female breast tissue in nearly half of them, without compromising
treatment outcome.
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Figure 1. C.M., male, aged 38 years, admitted for evening fever >38 °C, night sweats, weight loss >10 kg., cough, and 
enlarged cervical and supraclavicular nodes. On CT scan, a classic mediastinal bulky with a size of 13 ×11 cm was detected. 
Hemoglobin was 11.9 gr/dL, WBC 11,060 × 109/L, Neutrophils 75%, Lymphocytes 15.6%, platelets 381 × 109/L, LDH 287 
U/L (NV: < 460 UI/L). The Bone Marrow Biopsy was negative. The patient was in stage IIB X, with an IPS score of 2 (male, 
albumin < 4 gr/dL). The patient was enrolled in the HD 0607 clinical trial and treated with two ABVD cycles, with complete 
resolution of symptoms. A chest CT scan after two ABVD cycles showed a persisting mass of 6.2 × 4.4 cm and PET/CT was 
negative. The patient continued with ABVD for four further cycles, while still asymptomatic. A second chest CT scan after 
six ABVD cycles showed a persisting mass of 6 × 4.2 cm, and the EoT PET/CT was negative. The patient entered the 
randomized study of consolidation RT Vs. No Further Treatment (NFT), and he was randomized to NFT. Permission was 
obtained from Prof. Corrado Tarella on behalf of Italian lymphoma group GITIL (Gruppo Terapie Innovative nei Linfomi). 

Quite recently, the results of the GHSG trial HD 17 were published [22]. In this trial, 
1100 patients (aged 18–60 years) with newly diagnosed, histologically confirmed, stage 
IA–IIB classical, or nodular lymphocyte-predominant Hodgkin Lymphoma, fulfilling the 
characteristics of early unfavorable or intermediate Hodgkin Lymphoma according to the 
GHSG criteria, were enrolled at 224 hospitals and private practices in Germany, Switzer-
land, Austria, and the Netherlands. Eligible patients had to present at diagnosis with at 
least one of the following risk factors: a bulky mediastinal mass (i.e., measuring at least a 
third of the maximum transverse diameter of the thorax); extranodal involvement; either 
an erythrocyte sedimentation rate of 50 mm/h or higher without B-symptoms, or an eryth-
rocyte sedimentation rate of 30 mm/h or higher with B-symptoms; or involvement of three 
or more nodal areas. Overall, 1100 patients were enrolled, and 979 patients were randomly 
allocated to the standard combined-modality treatment group (n = 486) consisting of the 
2 + 2 regimen (two cycles of escalated BEACOPP plus two cycles of ABVD), followed by 
30 Gy involved-node radiotherapy (INRT), whatever the results of post-chemotherapy 
PET/CT or in the EoT PET-guided therapy (n = 493), consisting of the 2 + 2 regimen for all 
the patients randomized in this arm, followed by 30 Gy INRT only to patients with a pos-
itive post-chemotherapy PET. At a median follow-up of 46·2 months (IQR 32·7–61·2), the 
5-year PFS was 97·3% (95% CI 94.5–98.7) in the standard combined-modality treatment 
group and 95·1% (92.0–97.0) in the PET4-guided treatment group (hazard ratio 0·523 (95% 
CI 0.226–1.211)). The between-group difference was 2.2% (95% CI −0.9 to 5.3) and fulfilled 
the criteria for a non-inferiority result. A descriptive post-hoc subgroup analysis of pa-
tients in the per-protocol analysis population with initial bulky disease or a large medias-
tinal tumor showed non-inferiority of PET-guided treatment in this subgroup of patients, 

Figure 1. C.M., male, aged 38 years, admitted for evening fever >38 ◦C, night sweats, weight loss > 10 kg, cough, and
enlarged cervical and supraclavicular nodes. On CT scan, a classic mediastinal bulky with a size of 13 × 11 cm was detected.
Hemoglobin was 11.9 gr/dL, WBC 11,060 × 109/L, Neutrophils 75%, Lymphocytes 15.6%, platelets 381 × 109/L, LDH
287 U/L (NV: <460 UI/L). The Bone Marrow Biopsy was negative. The patient was in stage IIB X, with an IPS score of
2 (male, albumin < 4 gr/dL). The patient was enrolled in the HD 0607 clinical trial and treated with two ABVD cycles,
with complete resolution of symptoms. A chest CT scan after two ABVD cycles showed a persisting mass of 6.2 × 4.4 cm
and PET/CT was negative. The patient continued with ABVD for four further cycles, while still asymptomatic. A second
chest CT scan after six ABVD cycles showed a persisting mass of 6 × 4.2 cm, and the EoT PET/CT was negative. The
patient entered the randomized study of consolidation RT Vs. No Further Treatment (NFT), and he was randomized to
NFT. Permission was obtained from Prof. Corrado Tarella on behalf of Italian lymphoma group GITIL (Gruppo Terapie
Innovative nei Linfomi).

Quite recently, the results of the GHSG trial HD 17 were published [22]. In this
trial, 1100 patients (aged 18–60 years) with newly diagnosed, histologically confirmed,
stage IA–IIB classical, or nodular lymphocyte-predominant Hodgkin lymphoma, fulfilling
the characteristics of early unfavorable or intermediate Hodgkin lymphoma according
to the GHSG criteria, were enrolled at 224 hospitals and private practices in Germany,
Switzerland, Austria, and the Netherlands. Eligible patients had to present at diagno-
sis with at least one of the following risk factors: a bulky mediastinal mass (i.e., mea-
suring at least a third of the maximum transverse diameter of the thorax); extranodal
involvement; either an erythrocyte sedimentation rate of 50 mm/h or higher without
B-symptoms, or an erythrocyte sedimentation rate of 30 mm/h or higher with B-symptoms;
or involvement of three or more nodal areas. Overall, 1100 patients were enrolled, and
979 patients were randomly allocated to the standard combined-modality treatment group
(n = 486) consisting of the 2 + 2 regimen (two cycles of escalated BEACOPP plus two
cycles of ABVD), followed by 30 Gy involved-node radiotherapy (INRT), whatever the
results of post-chemotherapy PET/CT or in the EoT PET-guided therapy (n = 493), con-
sisting of the 2 + 2 regimen for all the patients randomized in this arm, followed by 30 Gy
INRT only to patients with a positive post-chemotherapy PET. At a median follow-up of
46.2 months (IQR 32.7–61.2), the 5-year PFS was 97.3% (95% CI 94.5–98.7) in the standard
combined-modality treatment group and 95.1% (92.0–97.0) in the PET4-guided treatment
group (hazard ratio 0.523 (95% CI 0.226–1.211)). The between-group difference was 2.2%
(95% CI −0.9 to 5.3) and fulfilled the criteria for a non-inferiority result. A descriptive
post-hoc subgroup analysis of patients in the per-protocol analysis population with initial
bulky disease or a large mediastinal tumor showed non-inferiority of PET-guided treat-
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ment in this subgroup of patients, with a 5-year progression-free survival of 96% (95% CI
91.0–98.2) in the combined-modality treatment group (n = 225), and 96.5% (93.1 to 98.2)
in the PET4-guided treatment group (n = 267; difference 0.5% (95% CI –3.6 to 4.6)).
A post-chemotherapy RM > 2.5 cm was found in 32% (standard arm) and 35% (experimen-
tal arm) of the patients. Post-hoc sensitivity analyses in PET4-negative patients supported
this finding; 5-year progression-free survival in the combined-modality treatment group
(n = 122) was 96.7% (87.3 to 99.2) and 97.0% (92.2 to 98.9) in the PET4-guided treatment
group (n = 157), with a difference of 0.4% (–5.0 to 5.8) between the two groups.

3. Residual Mass after BEACOPPescalated Chemotherapy in Advanced Hodgkin
lymphoma

The dilemma of the interpretation of a RM after BEACOPPescalated chemotherapy evolved
similarly, albeit slower than after ABVD. In the pre-PET/CT era, the German Hodgkin
Study Group (GHSG) considered any RM [23] or, later, a RM measuring ≥ 1.5 cm [24], as
an harbinger of residual disease and, therefore, subjected to consolidative radiotherapy at
a dose 30–40 Gy. About 60–65% of patients responding to BEACOPPescalated therapy had
a RM ≥ 1.5 at the end of treatment, mainly in the mediastinum, but despite consolidation
radiotherapy, few of these patients eventually relapsed [24,25].

In the randomized HD 12 trial conducted on 730 advanced-stage HL patients, the
first attempts to omit radiotherapy in patients with a CeCT-detected post-chemotherapy
RM ≥ 1.5 cm, with an otherwise incomplete or partial response (CR or PR) after
8 BEACOPPescalated or 4 BEACOPPescalated + 4 BEACOPPbaseline were unsuccessful, as
an inferior Freedom from Treatment Failure (FFTF) was recorded in patients treated with
chemotherapy alone compared to those undergoing combined modality treatment (differ-
ence: 5.8%; 95% CI: 10.7% to 1.0%) [24]. The authors concluded that the trial showed clear
limitations of CeCT as a tool to select patients needing consolidative RT.

The first results on the role of FDG-PET in RM interpretation after BEACOPP, reported
by Weihrauch et al. in 2001 in 28 patients with advanced HL, showed only a moderate
positive predictive value (PPV) of 60% and a much higher negative predictive value (NPV)
of 95%, as a likely consequence of the conservative definition of a negative PET result (any
visual focally increased FDG uptake was considered positive) [25]. The introduction of
the criteria of the Imaging Subcommittee of the International Harmonization Project in
Lymphoma (IHPC) in 2007 and, later, of the 5-point Deauville scale (DS) [26], dramatically
improved the interpretation of the PET/CT results and pushed forward the understanding
of the meaning of a RM after BEACOPPescalated chemotherapy.

In the GHSG HD15 trial that enrolled 2182 HL patients, only patients with a post-
chemotherapy RM measuring ≥ 2.5 cm in the CeCT and showing a focal FDG uptake
in EoT PET received additional radiotherapy with 30 Gy, while patients with a negative
PET or those without a RM did not [16]. The criterion for a negative EoT PET was,
according to IHPC criteria, the presence of a residual FDG uptake with an intensity not
superior to that of the surrounding background or, in the case of a RM with a larger
diameter ≥ 2 cm, not higher than that of the FDG uptake measured in the mediastinal
blood pool [27]. Out of 739 patients with a RM ≥ 2.5, the PET was positive in 191 (26%).
The NPV was very high: 94.1% at 12 months (95% CI 92.1–96.1), thus allowing a marked
reduction of the percentage of patients requiring consolidation RT from 71% recorded in
the HD 9 trial to only 11% [16,23]. In other words, patients in partial remission by CeCT
with a PET-negative RM after chemotherapy had a prognosis very similar to the patients
without RM (4-year progression-free survival of 92.1%). FDG PET/CT assessment also
showed that prognosis of patients with a positive EoT PET before consolidative RT was
worse than that recorded in patients with PET-negative RM treated with chemotherapy
alone without RT (PFS at 48 months of 86.2% compared to 92.6%; 95% C.I. for difference
0.9–12.0, log rank p = 0.022).

The definition of negative EoT PET used in the HD15 trial corresponded to DS score
of 1–2 (DS1,2). In ABVD-treated patients, not only DS1–2 but also DS3 at the end of
chemotherapy was consistent with CMR. However, there was no formal proof that this
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held true also in patients treated with BEACOPPescalated, until the results of EoT PET
reappraisal in the more recent trial of GHSG (HD18) in patients with advanced HL were
available. In this trial, the same conservative definition for a positive/negative interim and
end-of-therapy PET as in HD15 trial was originally used, adopting a Deauville score ≥ 3 (DS3)
as a result for a positive scan. Accordingly, a PET positive RM measuring ≥ 2.5 cm in the EoT
CeCT was treated with consolidating radiotherapy with a dose of 30 Gy [28]. However,
in a subsequent analysis of interim PET after 2 BEACOPPescalated in which a Deauville
score ≥ 4 for a positive PET was adopted, showed that PFS at 3 years (95.9%) was not
different for patients with DS1–2 (92.2%) [29]. Unfortunately, the same analysis was not
performed for EOT PET, due to a low number of cases. Nevertheless, the ≥4 cutoff for
a positive EoT PET was adopted during the course of the HD18 trial in the last few years to
guide consolidation RT, and the same cutoff was adopted in the current recommendations
of GHSG [30] to restrict the use of consolidation radiotherapy on a RM after BEACOPP
escalated, regardless of the size of the residual mass.

4. Interpretation Criteria for PET/CT at the End of Therapy in Patients with a
CT-Detected Residual Mass

In 2014, the so-called Lugano classification indicated the criteria for response as-
sessment in Hodgkin and non-Hodgkin lymphoma patients undergoing restaging with
FDG-PET [15]. Visual response assessment according to the Deauville 5-point scale is pre-
ferred to semiquantitative metrics with Standardized Uptake Value (SUV) [31]. Complete
metabolic response is defined by a PET scan scored 1 to 3, while a score of 4 to 5 identifies
residual disease. However, in the presence of a RM these criteria proved imperfect. In
a recent retrospective study in 169 patients with advanced-stage HL and a RM with a size
ranging between 1 and 4.2 cm, a DS score of 1 was found in 99 patients, a score of 2 in 3,
a score of 3 in 24, a score of 4 in 32, and a score of 5 in 11 patients. The 43 patients with
positive PET at restaging received imaging-guided biopsy; histology showed malignancy
(HL) in 100% of DS 5 scores and only in 12.5% of DS 4 scores [32].

Nonetheless, DS continues to be the preferred interpretation tool in EoT FDG-PET/CT
in Hodgkin lymphoma, while the semiquantitative approach by ∆SUVmax has been
proposed with conflicting results in adult [33] and pediatric [34] HL patients.

5. Texture Analysis—Radiomics in Hodgkin lymphoma

Cancer cells show consistent heterogeneity with variable cell dimension and mor-
phology, phenotype profiles, gene expression, metabolism, motility, proliferation, and
metastatic potential; this complex phenomenon also reflects genome instability and epige-
netic variation, and it has been associated with differences in outcome across several cancer
types. Primary Mediastinal B-Cell Lymphoma (PMBCL) very often presents with a very
large single mass in the upper anterior mediastinum; it putatively derives from a thymic B
cell-precursor, and it could be considered to lie on a pathobiologic spectrum of diseases,
the so-called Mediastinal Grey Zone Lymphomas, including Nodular sclerosis Hodgkin
lymphoma (typically CD15- and CD30-positive) and PMBCL itself (CD20-positive) [35].
High heterogeneity of intra-tumoral Fluoro-deoxy-glucose (FDG) uptake distribution on
PET/CT has been suggested as a possible marker of chemoresistance in solid tumors. In
2018, Ceriani et al. investigated the prognostic value of metabolic heterogeneity (MH) in
103 PMBCL patients prospectively enrolled in the International Extranodal Lymphoma
Study Group (IELSG) 26 study, aimed at clarifying the role of PET in this lymphoma
subtype [36]. MH was estimated using the area under curve of cumulative standardized
uptake value-volume histogram (AUC-CSH) method. Progression-free survival at 5 years
was 94% vs. 73% in low and high-MH groups, respectively (p < 0.0001).

In the early 60s of the last century, the pioneer studies on the role of laparotomy in
the surgical staging of HL demonstrated the tumor spread had a crucial prognostic role
in this disease [37]. More than 50 years later, during the 2021 International Congress on
Malignant Lymphoma in Lugano, Durmo et al. presented their retrospective experience on
the prognostic role of lesion dissemination (DMAX) features in a retrospective cohort of
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advanced-stage HL treated in a single Institution [38]. DMAX was defined as the largest
distance between two lesions measured from FDG-PET/CT scans.

Briefly, all lesions detected in baseline PET/CT were semiautomatically segmented,
and the centroid of each lesion was automatically obtained and considered as the lesion
location. The distances between all pairs of lesions were calculated and DMAX was
obtained for each patient. DMAX was then dichotomized according to the median value
within our cohort. In univariate analysis, International Prognostic Score (IPS) > 2 (HR
2.20 CI 1.26–3.87, p = 0.006), a positive interim PET (HR 3.32 CI 1.73–6.39, p < 0.001), and
DMAX > 20 cm (HR 2.42 CI 1.31–4.47, p = 0.005) were all associated with shorter PFS.

The rapidly increasing amount of information generated by medical imaging is cur-
rently assessed for its prognostic and predictive role in treatment outcome in the so-called
machine learning process. In this process, mathematical algorithms extract single or
multiple morphologic parameters with a still unknown prognostic role from large data
sets generated from prospective clinical trials. New predictive or prognostic models are
thus generated moving from these “new” biomarkers retrospectively extracted from large
databases to be validated prospectively in well-designed clinical trials [39].

6. Residual Mass after Immune Checkpoint Inhibitors Therapy

The interpretation of a RM during or after therapy with immune check point inhibitors
(CPI) is even more challenging for at least two reasons. First, because the length of treat-
ment with CPI is not defined and most patients are treated until progression, thus being
assessed for the treatment response during, and not after, CPI administration. Second,
more importantly, because of the mechanism of action of these drugs, consisting in reacti-
vation of endogenous tumoricidal immune activity that may lead to transient or persisting
pseudo-progressions or partial responses that remain partial overtime. As a matter of fact,
tumor imaging with FDG-PET during CPI administration yielded the following changes:
(1) an increase in the size of overall tumor burden in the first 6 months of therapy,
(2) an isolated increase in the FDG uptake without a change in lesion size or (3) even
the appearance of new lesions [40]. Therefore, a provisional modification of the Lugano
criteria was proposed through the introduction of a new response category termed in-
determinate response (IR) to avoid premature cessation of effective treatment with CPI
in patients that might be classified otherwise as having progressive disease [41]. This
proposed classification, which at a first glance sounds like an oxymoron (how to determine
a treatment response with indeterminate criteria) requires after the first assessment, to
repeat a second assessment within 12 weeks from the first one, and reevaluation of the
original findings to determine whether they portrayed a true or a pseudo progression.
However, these criteria have never been prospectively evaluated and are not reported in
real life setting [42] or clinical trials [43–45]. Nevertheless, the dilemma on how to assess
the response of HL patients during immunotherapy was faced by investigators of the
Checkmate-205 trial in which de-novo advanced stage HL patients treated with nivolumab
in combination with AVD, despite a positive EoT PET, achieved durable remissions [46].
Recently, a retrospective study of 45 patients from 34 institutions was conducted to assess
the role of CeCT and PET/CT in response assessment to Nivolumab with relation to overall
survival [47]. Patients were examined with CT and FDG PET/CT at two time points: after
a median of 2 months (primary) and 6.7 months (secondary assessment) after the start of
Nivolumab treatment. CeCT and PET/CT were assessed according to the 2014 Lugano
Classification [15] and the 2016 revised LYRIC criteria [41]. The authors found that 2-year
OS in patients with CMR at primary assessment was 100%, including those failing to
achieve CR on CeCT performed at the same timepoint. Additionally, all patients classified
as having progressive disease at primary assessment using CeCT (12 of 45 patients) were
classified as having progressive metabolic disease at primary assessment using PET/CT. In
fact, PET/CT reclassified as CMR 11/45 in the first and 11/36 in the second turnaround
of CT assessment. The concordance between CeCT and PET/CT second assessment was
better compared to first assessment (kappa Cohen 0.78 compared to 0.62). The fact that
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PET/CT outperformed CeCT, identifying a clinically relevant response earlier, is consistent
with all previous experience with PET/CT in HL. However, these preliminary data should
be taken with caution due to the concerns on the confounding message of two different
and opposite physio pathological mechanisms both perceived with a positive signal on
PET: The first due to a restored immune cell-mediated tumor lysis, the second to a persist-
ing viable neoplastic tissue [40]. Indeed, some of the patients in preliminary reports [40]
showed unique behavior or signs of pseudo-progression. The rate of patients with pseudo
progressive lesions was 16.7% of early progressive patients on primary assessment using
CT (2/12), 12.5% of early progressive patients on primary assessment using PET/CT (2/16),
and 4.4% of the overall cohort (2/45). However, despite a lack of overt progression on CT
(12) or on PET/CT (16) on the first assessment, subsequently a diagnosis of true progressive
disease became undeniable, meaning the abnormal findings detected on CT and on PET,
which were classified in the former scans as IR according to LYRIC criteria, were indeed
true progressions. Moreover, the authors observed that few cases with pseudoprogressive
lesions involved only one anatomic site (e.g., retroperitoneal lymph nodes, liver), but other-
wise most of these patients met unequivocal criteria of disease progression [47]. Altogether,
the above reported findings in HL patients assessed during immunotherapy suggest that
a substantial number of IRs per LYRIC are indeed true HL progression.

Nevertheless, false positive results of PET/CT remain a challenge that partially may
explain the equivalent outcome for patients who underwent ASCT directly after anti-PD-1
therapy regardless of pre-transplant PET result with 18-month PFS of 85% in PET-positive
and PET-negative patients [48]. These patients may require histopathology verification as
it was done in four patients treated with Brentuximab Vedotin and Nivolumab in whom
despite PET-positive lesions (scored as DS 4 or 5), no evidence of lymphoma was found
on biopsy [49]. A promising possible solution is the association of PET imaging with
biomarkers such as the circulating cell-free tumor DNA (cfDNA), which proved able to
“mirror” the total tumor burden with a very high specificity. A linear relationship with
metabolic tumor volume (MTV) measured with PET/CT and cfDNA value in the plasma
was recently demonstrated in longitudinal studies of HL patients at diagnosis, interim
during treatment, after treatment end, and at disease relapse [50]. CfDNA assay in the
presence of temporary “flares” of PET/CT could be the ideal biomarker to improve the
overall accuracy for response assessment during and after CPI administration.

7. PET/MRI for Lymphoma Staging and Restaging

To date, no major advantages have been shown for lymphoma staging and restaging
with PET coupled with Magnetic Resonance Imaging (PET/MRI) compared to PET/CT. In
a recently published study, 66 consecutive patients with histologically proven Hodgkin or
non-Hodgkin lymphoma (NHL) were prospectively evaluated [51]. Each patient had whole
body PET/CT, followed by whole body PET/MR. Ninety-five nodal and eight extranodal
sites were identified on both PET/CT and PET/ MRI. In addition, three nodal and one ex-
tranodal sites were identified on PET/MRI. For positive lesion detection, reader agreement
in PET/MR was perfect between the two readers and almost perfect between PET/CT
and PET/MRI (k > 0.978). Intermodality agreement between PET/CT and PET/MRI was
also near-perfect to perfect for staging/disease status (0.979–1.000), but there were no
advantages of PET/MRI over PET/CT. In another study on 18 patients including 5 HL and
13 NHL, the SUVmax from FDG-PET/MR (21.3 ± 2.07) vs. FDG-PET/CT (mean 23.2 ± 2.8)
demonstrated a strongly positive correlation (rs = 0.95 (0.94, 0.99); p < 0.0001) [52]. There
was no correlation found between Apparent Diffusion Coefficient (ADC) and SUVmax
from FDG-PET/MR (r = 0.17 (−0.07, 0.66); p = 0.09).

The calculation of ADC of free water molecules movement across the extra cellular
space has been advocated as an indirect parameter to measure the tissue cellular density
and, consequently, to assess tumor response with MRI in oncology [53]. In fact, dynamic
longitudinal studies in animal models have shown early ADC changes after chemotherapy
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onset as early as in day 1 [53], and more consistently in the days 4.5–7 after chemotherapy
administration [54].

However, the main problems are reproducibility and reliability of ADC: ADC values
tend to vary when different scan parameters or methods of measurement are applied,
limiting reproducibility and comparability between centers. Intra-patient reproducibility
of ADC proved indeed sub-optimal, with a range of relative difference of 4–9%, and the
difference exceeded 3–5% while repeated measures of the same subjects using the same
imager were performed; therefore, substantial errors in the absolute ADC values appear to
be unavoidable [55]. At this writing, there are no data of direct comparison of PET/CT and
PET/MRI in lymphoma restaging.

Quite recently, a new MRI-derived parameter has been proposed, the Total Tumor
Load (TTL) for treatment response assessment at the end of therapy. This marker originates
from the promising results obtained by WB-DWI and ADC in multifocal disease, such as
bone metastases and multiple myeloma, and the resulting need to dispose of an efficient
tool able to evaluate this kind of lesion. This tool harnesses a threshold-based segmentation
algorithm on MRI whole-body diffusion-weighted images, in order to identify regions
of disease, while providing both the overall diffusion tumor volume and the histogram
metrics of the corresponding computed ADC maps [56]. A high b-value image (acquired
or computed) is used as input, in order to maximize the contrast between lesions and
healthy tissue. This method was assessed in a cohort of 20 HL patients who underwent
PET/CT followed by PET/MRI with WB-DWI at baseline before any treatment (T0), after
two chemotherapy cycles (T1), and at the end-of-treatment (T2). The analysis of WB-DWI
images at each time point was performed using the syngo.via Frontier MR Total Tumor
Load released research prototype v1.3.3 (Siemens Healthineers, Erlangen, Germany). The
MRI Total Tumor Load was calculated at six segmentation thresholds (5%, 10%, 20%, 40%,
60%, and 80%) and using Lugano criteria applied on PET/CT images as reference standard
(see Figure 2).
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Figure 2. Whole-body diffusion weighted imaging (WB-DWI) image analysis and data extraction process using syngo,
via Frontier MR Total Tumor Load software. Reprinted from [56].

Using the WB-DWI images as input (1. Data Loading step), b800 images were au-
tomatically segmented, setting a signal intensity threshold (e.g., 40%) at each WB-DWI
acquisition time point (e.g., T0). No subsequent mask editing was made (2. Automatic
segmentation). The overall mask volume (diffusion volume, DV) and the corresponding
apparent diffusion coefficient (ADC) histogram metrics associated with the masked volume
were extracted (3. Data extraction step). Yellow arrows link the three processing steps.

Concerning prediction of EOT response, the Diffusion Volume (DV) at 40% and 60%
thresholds was found to be significantly higher in PMR patients than in CMR patients,
with an AUC of 96%, and a sensitivity, specificity, and overall accuracy of 100%, 93%, and
96%, respectively. The obtained results supported the hypothesis that Diffusion Volume
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and its related histogram-based Apparent Diffusion Coefficient statistics could be useful in
prediction and assessments of HL response to therapy. However, this method is still far
away from being adopted in clinical practice, due to a lack of standardization.

8. Discussion

Despite the determinant progress in evaluating response to treatment and interpre-
tation of post-chemotherapy RM in HL patients with functional imaging with PET, this
approach has some limitations, mainly due to false positive results, which are more evident
especially, but not exclusively, during CPI treatment. One of the well-known pitfalls is
the post-chemotherapy thymus hyperplasia, which occurs in about 5% of patients [57]. In
most cases, the FDG uptake is moderate (SUVmax < 4), and the morphology of residual
uptake is suggestive of the thymus anatomic structure, but in some cases the intensity of
FDG uptake might be higher, probably because of the inefficient immunity of the host
against the tumor [58]. A similar mechanism seems to underpin the persistent hilar and
mediastinal lymph nodes FDG uptake not related to HL. Examples include sarcoidosis
that is often associated with lymphomas and more importantly granulomatosis that can be
induced by treatment especially with immune check point inhibitors [59,60]. Therefore,
persistence of PET-positive residual lymph nodes, especially in mediastinum, is not suffi-
cient to confirm resistant disease especially in symmetric mediastinal-hilar lymph node
uptake. These patients need, rather, a follow-up or biopsy especially in the case of an
atypical uptake. As a matter of fact, only in about half [61] or even less frequently [28],
of the FDG-avid lymph nodes persisting in the mediastinum after treatment for HL are
due to a histologically-proven persisting HL. The issue of selectively imaging the neo-
plastic tissue while “subtracting” the inflammatory tissue from the background has been
explored in the past by the so-called “dual-point PET imaging”, consisting of two different
scans performed 60 and 120 min after the same FDG dose injection in a patient showing
a post-chemotherapy RM. Briefly, this technique was underpinned by the observation
that neoplastic tissue has a much higher FDG “trapping” due to the lack of glucose (and
FDG-glucose)-6-phosphate phosphatase in neoplastic cells, leading to a FDG accumulation
inside the cytoplasm of these cells increasing overtime, in contrast with the inflammatory
tissue, in which a certain degree of FDG spontaneous elution from the cell is observed,
also increasing after FDG injection as the time goes by [62]. This technique has allowed to
reclassify some persisting FDG uptake in HL post-chemotherapy RM as “non neoplastic”
but not in all the patients [63] (Figure 3).

Finally, in the future, a combination of imaging studies with new imaging techniques
such as radiomics [36], or with a biomarker such as tumor-associated cell-free DNA, could
further decrease or completely abrogate the margin of underdetermined interpretation of
residual mass after chemotherapy in Hodgkin lymphoma [64].
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9. Conclusions

End-of therapy PET scan is now considered the optimal tool for HL restaging after
first-line chemotherapy both in early and advanced stage disease, with or without evidence
of a residual mass (RM), with a very high negative predictive value and a variable positive
predictive value. In the few cases (5–10%) with a PET-positive RM, end-of therapy PET
proved the best tool to guide consolidation radiotherapy, thus allowing to spare toxicity
in a large number of patients. In this clinical context, PET/MRI or Diffusion Weighted
Nuclear Magnetic Resonance did not show any advantage over PET/CT. On the contrary,
End-of-Therapy PET scan proved to be a sub-optimal tool to assess treatment response
with immune checkpoint inhibitors. In future, the association of PET/CT with specific
biomarkers of tumor burden such as cell-free tumor DNA assay could increase the overall
accuracy of the response evaluation on this new class of drugs.
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