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Advances in Diagnostic and Treatment Modalities for Intracranial
Tumors

P.J. Dickinson

Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application

of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel

translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine

patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and

areas of novel treatment currently in development.
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Intracranial neoplasia represents a major cause of
morbidity and mortality in companion animals, pre-

dominantly in dogs. Recent advances in diagnosis and
treatment of intracranial neoplasia in veterinary medi-
cine have been driven by a combination of improved
access to advanced imaging and neurosurgical equip-
ment together with the recognition of brain tumors in
dogs as a viable and potentially valuable model for
translational and basic research.1–3 Collaborative ther-
apeutic research embracing the “one medicine”
approach has demanded both basic molecular genetic
characterization of these tumors in dogs to validate
the next generation of targeted therapies, and advances
in the diagnostic and surgical techniques necessary to
apply these approaches in a clinical setting. Accurate
data for true incidence of brain tumors in dogs are
limited to a study in the 1960s and 1970s in Northern
California4,5; however, the reported 14.5 cases per
100,000 dogs included all nervous system tumors, and
numbers were small. These results are similar to data
in humans where an incidence of 20.59 primary CNS
tumors per 100,000 human patients in the United
States has been reported.6 A more accurate compari-
son may be based on necropsy data where intracra-
nial/nervous system neoplasia has been reported in
approximately 2–4.5% of dogs7–9 compared to approx-
imately 2% of human patients.10 Given the practical
limitations of veterinary care, it is likely that true

incidence of brain tumors in dogs has been underesti-
mated. Although individual studies vary, meningiomas
compromise approximately 50% of primary tumors in
dogs with gliomas representing 40–70% and choroid
plexus tumors being the next most common
tumor.7,9,11,12 Secondary neoplasia accounts for
approximately 50% of all intracranial tumors in dogs,
with the most common tumor types being hemangio-
sarcoma, pituitary tumors, lymphoma, metastatic car-
cinoma, extension of nasal neoplasms, and histiocytic
sarcoma.13 The majority of primary and secondary
intracranial tumors occur in older adult dogs with the
majority over 5 years of age.11–16 Median age for dogs
with meningiomas, gliomas, and choroid plexus tumors
is reported as 10–11 years, 8 years, and 5–6 years,
respectively.9,12,15,16 Primary tumors (particularly glio-
mas) occasionally may be seen in younger dogs.9,17 No
sex predisposition has been reported; however it has
been suggested that brain tumors generally are over-
represented in larger breeds and meningiomas are
overrepresented in Golden Retrievers, Boxers, and
Miniature Schnauzers. Astrocytiomas and oligoden-
drogliomas are highly overrepresented in specific
brachycephalic breeds (Boxers, Boston Terriers, and
Bulldogs), and choroid plexus tumors are overrepre-
sented in Golden Retrievers.7,9,12,15,16,18 Intracranial
neoplasia generally is accepted to be less common in
cats, although a necropsy study of approximately
4,000 cats suggested a frequency of just under 2%.19

The majority of intracranial tumors in cats are pri-
mary, with meningiomas being the predominant type.
Lymphoma and pituitary tumors are the most com-
mon secondary tumors with other primary and second-
ary tumors, such as gliomas, occurring at relatively
low frequencies compared to dogs.19–21

Advances in the treatment of intracranial tumors in
dogs to date have largely been because of improve-
ments in diagnosis, and optimization of standard ther-
apeutic modalities such as surgical cytoreduction,
radiation therapy and, to a lesser extent, chemother-

From the Department of Surgical and Radiological Sciences,
School of Veterinary Medicine, University of California Davis,
Davis, CA (Dickinson).

Corresponding author: P.J. Dickinson, Department of Surgical
and Radiological Sciences, School of Veterinary Medicine, Univer-
sity of California Davis, Davis, CA 95616; e-mail: pjdickin-
son@ucdavis.edu.

Submitted January 27, 2014; Revised February 24, 2014;
Accepted March 25, 2014.

Copyright © 2014 by the American College of Veterinary Internal
Medicine

DOI: 10.1111/jvim.12370

Invited Review
J Vet Intern Med 2014;28:1165–1185



apy. The marked breed association of specific tumors
such as gliomas with brachycephalic breeds7,9,12,18 may
provide an opportunity to decrease incidence by selec-
tive breeding once provisionally defined genetic associ-
ations22,23 are further characterized. Most of the recent
major advances in human oncology have been made
by elimination of environmental factors such as
smoking, improved screening, and use of targeted ther-
apies in cancers such as chronic myelogenous leukemia
and breast cancer.24,25 For neurooncology specifically,
only 2 new drugs have been approved by the FDA for
treatment of high-grade gliomas in humans in the last
30 years, the chemotherapeutic temozolamide,a which
increases overall median survival in humans with grade
IV astrocytomas/glioblastoma multiforme by approxi-
mately 12 weeks,26 and bevacizumab,b which was given
fast track approval, but has recently been shown to
have limited if any survival benefit in a large prospec-
tive phase III clinical trial.27 It is hoped that transla-
tional studies in dogs with intracranial tumors may
improve this situation for both species.

Diagnosis of Intracranial Tumors

Diagnosis of intracranial disease involves practical
and economic considerations that are somewhat
unique to the anatomic location. Advanced imaging
such as magnetic resonance imaging (MRI) or com-
puted tomography (CT) often is required for tentative
diagnosis, and acquisition of diseased tissue for defini-
tive histopathologic diagnosis requires either special-
ized biopsy equipment or invasive surgical procedures.
Cerebrospinal fluid (CSF) analysis is rarely diagnostic,
but its value often is overlooked. Monitoring lesions
to determine biological behavior (with or without med-
ical treatment) may provide valuable information, par-
ticularly when invasive or expensive therapeutic
options are contemplated. This approach, however,
may be practically limited by the expense of repeated
advanced imaging techniques. The 2 major conse-
quences of these issues are (1) much effort has been
expended trying to define biomarkers of disease to aid
in diagnosis, often involving advanced imaging and
CSF analysis; and (2) a large amount of published
information relating to treatment has been based on
presumptive diagnoses, and is of limited value because
many nonneoplastic lesions may have been included in
therapeutic outcome data.

Histopathologic Diagnosis

Definitive diagnosis of intracranial tumors is based
on histopathologic assessment using the World Health
Organization (WHO) classification system. This is a
continuously evolving system in human medicine with
amendment of classification and tumor grade based on
analysis of clinical outcomes and survival relative to
specific pathologic criteria. Because there is little infor-
mation relating to the natural biology of intracranial
tumors in dogs, or their response to treatment, veteri-
nary classification systems largely have been based on

their tumor counterparts in humans. The only veteri-
nary WHO classification was published in 1999,28

based on the 1993 WHO classification for humans.
Since that time the system in humans has been revised
3 times and, although there are limitations, it generally
is accepted that intracranial tumors in dogs should be
classified using the current WHO classification system
used in humans29 until specific data relating to biologic
behavior are available in dogs. Molecular genetic
analysis of tumors has become commonplace in human
neurooncology and grading and prognostication is
becoming a composite of both histopathologic and
molecular criteria (discussed below).29,30

CSF and Blood Biomarkers

As a generalization, CSF usually is not diagnostic
for a specific neoplastic condition. Neoplastic cells
anecdotally may be seen in CSF with almost any
tumor type, but presence of neoplastic cells may occur
more commonly with specific tumors such as choroid
plexus tumors,16,31 lymphoma,12,32,33 glioma,33 and his-
tiocytic sarcoma.34,35 Based on larger case series, mod-
erate increases in total nucleated cell counts (TNCC;
5–50 cells/lL, predominantly mononuclear cells) and
total protein (TP) are typical with most intracranial
neoplasia, although some tumors may have normal
CSF findings, and some may result in marked
increases in TNCC and TP.12,16,33,36–40 Common find-
ings have been reported in some tumor types. For
example, increased TP is seen in most choroid plexus
tumors,16,37,40 and this may be more pronounced in
choroid plexus carcinomas compared to papillomas.16

Most meningiomas have TNCC < 5 cells/lL, but
increased cell counts, often with a neutrophilic compo-
nent may be associated with meningiomas arising in
the caudal cranial fossa.39

Defining biomarkers (in CSF or blood) for assess-
ment of tumor burden and therapeutic response is a
priority in human neurooncology.41 Classes of tumor
markers include circulating tumor DNA or microRNA
(miRNA) and circulating proteins such as glial fibril-
lary acidic protein, vascular endothelial growth factor
(VEGF), matrix metalloproteinase-9 (MMP-9), and
miRNA-21, but ideal markers have yet to be
defined.41,42 A limited number of biomarkers (beyond
tumor cells specifically) have been evaluated in CSF
from dogs with intracranial tumors, including MMP-2
and -9,43,44 uric acid,45 and fibrinolytic activity (D-
dimers),46 as well as VEGF in plasma, but findings to
date are similar to those in humans with regard to lim-
itations of sensitivity and specificity.

Imaging

Although many investigators have attempted to uti-
lize a variety of imaging techniques to diagnose, and
even grade, intracranial lesions in dogs, specificity, sen-
sitivity, or both have been shown to be consistently
suboptimal in numerous studies,12,15,16,36,47–56 particu-
larly when applied to clinically relevant prospective
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random populations of patients. A majority of intra-
cranial tumors in both dogs and cats are hypo- to iso-
intense on T1-weighted imaging, and hyperintense on
T2-weighted imaging. The majority are also contrast
enhancing after administration of gadolinium-based
contrast agents.12,15,16,21,54,55 A variety of tumor “spe-
cific” findings relating to MRI have been reported
variably in several studies, some of which are listed
below. Peritumoral hyperintensity (edema) on T2-
weighted images is a relatively common finding and
has been suggested to be more common in astrocyto-
mas as compared to oligodendrogliomas and in rostro-
tentorial as compared to infratentorial
meningiomas.15,52 Edema also has been reported to be
particularly severe in relatively rare intracranial granu-
lar cell tumors.57 Contrast enhancement is generally
more common in high-grade gliomas compared to
lower grade tumors, consistent with the microvascular
proliferation inherent to high grade tumors.49,52 The
imaging characteristics of the most commonly occur-
ring extra-axial tumor, meningioma, can be indistin-
guishable from those of other tumors such as
histiocytic sarcoma, lymphoma, and granular cell
tumors.15,57,58 Granular cell tumors are reported to
commonly have hyperintensity on precontrast T1-
weighted images, but these findings also may be pres-
ent in approximately 20% of meningiomas. Large cys-
tic structures may be associated with many tumor
types, but they occur most commonly with meningio-
mas where their frequency is approximately 25%.15

Presence of “dural tails” and ring enhancement pat-

terns on postcontrast T1-weighted images has been
associated with meningiomas and gliomas, respectively,
but studies suggest that these patterns may be seen in
a wide variety of intracranial diseases.53,56,59 Realisti-
cally, many therapeutic decisions are made based on
presumptive imaging-based data, but the limitations of
these data and the consequences in individual animals
should not be overlooked.

Future advances in the use of imaging in brain tumors
of dogs likely will be based on treatment planning and
assessment of therapeutic response, as definitive biopsy-
based diagnoses become more commonplace. The use
of metabolic and physiologic imaging techniques has
become routine in human neurooncology to define
parameters such as tumor cellularity, hypoxia, vascular
density, and permeability.60

Diffusion-weighted imaging (DWI), which evaluates
decreased movement of water molecules, allows for
assessment of changes in tissue characteristics resulting
from a variety of diseases. Although definitive diagno-
ses are not possible in humans61 or dogs,62 DWI may
aid in the differentiation of neoplasia from conditions
such as bacterial abscessation or infarction, in which
diffusion is typically severely restricted (Fig 1).63 DWI
has been shown to be a sensitive technique to define
injury to normal canine brain following irradiation,64

and may help to differentiate tumor recurrence from
the effects of treatment. In addition, diffusion tensor
imaging (which measures diffusion in specific direc-
tions) may be used to define white matter tracts critical
for surgical and radiation treatment planning.65

A B C D

E F G H

Fig 1. Diffusion-weighted imaging (DWI) may aid in better defining mass lesions. (A, E) T1-weighted postcontrast images of 2 ring-

enhancing cerebral lesions. Marked restricted diffusion, typical of abscess (E–H), but not glioblastoma multiforme (A–D) is seen as

bright signal on DWI images (C, G). Apparent diffusion coefficient maps (D, H) allow background hyperintense signal because of T2

relaxation (“T2 shine through” B, F) to be differentiated from true restricted diffusion. Restricted diffusion appears hypointense on

apparent diffusion coefficient (ADC) maps (D, H).
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Assessment of the vascular properties of tumors
may be valuable for surgical planning and also for
determining response to treatment, particularly with
the recent availability of antiangiogenic therapies such
as bevacizumab and the multitargeted tyrosine kinase
inhibitor toceranib.c,60 Both MRI- and CT-based
dynamic contrast-enhanced techniques have been
described in canine tumors to assess blood volume,
perfusion, and permeability (Fig 2).66,67 As with other
imaging techniques, assessment of vascular parameters
in veterinary patients has limitations for diagnosis66,67;
however, utility in monitoring vascular response to
therapies including radiation has been reported.68 Ana-

tomic definition of vascular structures associated with
intracranial tumors either by magnetic resonance angi-
ography (MRA) or contrast-enhanced CT provides
information to improve both surgical planning and to
allow interventional techniques such as tumor emboli-
zation, local delivery of therapeutic agents, or both
(Fig 2).69 Chemoembolization of an intracranially
extended nasal tumor has been reported in a cat,70 and
treatment of nasal tumors is in progress in dogs, but
the more challenging goal of brain tumor embolization
has not been reported in dogs. Normal canine intracra-
nial vasculature has been defined using both contrast-
enhanced and time-of-flight (TOF) MRA71–73 and

Fig 2. A variety of vascular imaging techniques may aid in the definition of vascular supply to, and management of, intracranial

tumors. (A, B) Transverse T1-weighted pre- (A) and post- (B) contrast magnetic resonance (MR) images of a dog with 2 tumors; a meta-

static melanoma (hyperintence precontrast administration/image A) and a highly vascular choroid plexus tumor (contrast enhancing/

image B). Dynamic contrast computed tomography (CT) imaging allows definition of higher blood volume (C) and perfusion (D) in the

choroid plexus tumor (arrows). (E) Sagittal T1-weighted postcontrast MRI of a cerebello-medullary meningioma. Surgical access

involves transection of the transverse sinus. Time-of-flight (F) and phase contrast (G) MR angiography techniques show that the tumor

(arrow) has already caused substantial ablation of the transverse sinus on the side of the tumor, compared to the opposite side (*),
allowing for informed surgical planning. (H–J) Contrast-enhanced CT imaging with reconstruction of intracranial vessels. Major vessels

that may be associated with intracranial tumors and interventional procedures such as tumor embolization are identified along the floor

of the cranial vault (I, J) (basilar artery-red, arterial circle-yellow, internal carotid artery-gray, middle cerebral artery-green, caudal cere-

bral artery-magenta, rostral cerebellar artery-blue) (C, D, H–J courtesy of R. Pollard, M. Steffey UC Davis).
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feasibility of imaging tumor vascularity has been dem-
onstrated.73

Magnetic resonance metabolic imaging of brain
tumors by using proton magnetic resonance spectros-
copy (1H MRS) allows determination of the chemical
composition of tumor tissue, and it is a commonly
used complementary technique in human neurooncolo-
gy.60 MRS techniques have been described in normal
canine brain,72,74 and experimentally in canine models
of nonneoplastic brain disease.75–77

Positron emission tomography (PET) and single
photon emission computed tomography are functional
imaging techniques that allow for qualitative and
quantitative measurement of tissue metabolism
together with anatomic localization after image fusion
with CT or MR images. The most commonly used tra-
cer is 2-deoxy-2[18F]fluoro-D-glucose (FDG), which
reflects increased glucose metabolism in brain tissue or
tumors. High background activity in metabolically
active brain can be a major confounding issue, and
alternative tracers such as 18F-fluoroethythyrosine also
are used in humans. Major uses for the technique
include defining metabolically active areas for biopsy
and definition of tumor recurrence or increasing malig-
nancy. PET imaging has been evaluated in dogs,78,79

and specifically in those with intracranial disease,
although as with spectroscopy, clinical use is not yet
routine.80,81

Development and utilization of these metabolic and
physiologic imaging techniques is very much in the
developmental stage in veterinary neurooncology.
Similar to human medicine, it is likely that combined
use of these techniques together with standard imaging

will provide the optimal information for therapeutic
planning, tumor stratification, and assessment of thera-
peutic response, particularly when used in a linear
manner.60,82,83

Brain Biopsy

Definitive diagnosis of intracranial lesions is based
on histopathologic examination, culture, and occasion-
ally additional analysis of tissue obtained from the
lesion. In cases where surgical resection is not consid-
ered the optimal approach to treatment and diagnosis,
minimally invasive biopsy techniques are considered
the most appropriate way to obtain diagnostic data
permitting a maximally informed approach to treat-
ment. Free-hand, image-guided, and endoscope-
assisted brain biopsy has been described for dogs84–86;
however, stereotactic-guided procedures have many
advantages. Both CT- and MRI-based stereotactic sys-
tems were developed for dogs in the 1980s in the
experimental setting,87,88 and a variety of stereotactic
approaches to clinical brain biopsy have been
described in dogs and cats, the majority of which have
involved CT-based systems.89–95 Only 1 commercially
available MRI-based system has been reported,96 that
is likely to become a mainstay of stereotactic biopsy in
the future. Both CT- and MRI-based systems have
inherent advantages and disadvantages. MR-based sys-
tems allow for better resolution of parenchymal
lesions, whereas CT allows for better spatial resolution
and more rapid imaging (eg, for real-time imaging of
biopsy needle placement, and postbiopsy hemorrhage
assessment). Combining MR and CT images by using

Fig 3. Stereotactic computed tomography (CT)-guided brain biopsy: (A) Dog head fixed in stereotactic frame. A center of arc system

allows for numerous possible biopsy trajectories. (B, C) Fusion of CT and magnetic resonance images maximizes both resolution of the

lesion and spatial resolution. (D, E) Rapid CT imaging allows for real-time imaging of biopsy needle position before biopsy. The biopsy

port (approximately 8 mm length) can be seen within and at the edge of the tumor (E). (F) Insertion of biopsy needle; needle depth is

determined and fixed by an adjustable collar. (G) Intraoperative rapid biopsy smears are ideally done to confirm collection of pathologic

material, in this case an oligodendroglioma, before postbiopsy hemorrhage evaluation imaging and recovery.
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image fusion software (Fig 3) may maximize the ben-
efits of both modalities. Repeated imaging is often
necessary if initial diagnostic procedures are com-
pleted more than a few days before biopsy, to allow
appropriate targeting of evolving lesions or to iden-
tify resolving lesions where biopsy may not be indi-
cated. Diagnostic yield is generally >90% for
neoplastic lesions, but may be considerably lower
with inflammatory or infectious diseases. Morbidity
and mortality associated with brain biopsy vary with
the equipment used, experience of the clinician, loca-
tion of the lesion, and neurologic status of the
patient. Early published data described morbidity and
mortality rates of 12–27% and 7–9%, respec-
tively.89,91 At the author’s institution, complications
generally occur currently in less than 5% of cases
with experienced operators, and mortality associated
with the procedure is rare. Although there is substan-
tial expense associated with the procedure, increased
utilization hopefully will result in more informed
therapeutic planning based on accurate diagnoses, as
well as providing the potential to monitor therapeutic
response and biomarkers after specific therapeutic
interventions.

Molecular Diagnostics

Molecular genetic characterization of neoplasia is
becoming a mainstay of human neuropathology
and neurooncology for both tumor classification
and prognostic evaluation as well as for the appropri-
ate application of molecular-targeted therapies. Charac-
terization allows for:

1) Defining specific subgroups of tumors that are
either within histologic subtypes, or across histo-
logic grades, relative to therapeutic outcome and
prognosis.

2) Defining specific molecular pathways for which
targeted therapeutics may be indicated to either
restore or inhibit aberrant pathways, and

3) Defining tumor cell-specific markers allowing
tumor-specific targeting, typically of suicide gene,
or toxic therapies.

There are many examples for which molecular classifi-
cation has redefined or extended previous histopatho-
logic grading systems. Meningiomas in humans have
been shown to have a molecular phenotype that pre-
dicts proliferative behavior more specifically than clas-
sical histologic subtyping,97 and extensive genomic
analysis of human high-grade astrocytomas has
defined key commonly disrupted signaling pathways
related to receptor tyrosine kinase (RTK)/Ras/PI3K,
p53, and Rb signaling.98,99 Similarly, the cancer gen-
ome atlas and other studies have used genome-wide
expression, copy number, epigenetic, and proteomic
profiling to define 3 major molecular subclasses (pro-
neural, mesenchymal, classical) that may form the
basis for future therapeutic and prognostic stratifica-
tion.98,100–102 Despite these classifications, optimal tar-
geted treatment still may require individualized
characterization of specific markers in individual
tumors (Fig 4).103–106

Advances in sequencing technology and availability
of canine-specific platforms have opened the door for
parallel characterization of canine and human brain
tumors. An ever-expanding repertoire of targeted ther-
apies is becoming available for cancer treatment,104

but appropriate characterization of canine tumors is
critical, because although many similarities are likely,
regardless of species or tumor type,107 specific differ-
ences have already been documented. Similar to
human brain tumors, overexpression of cellular prolif-
eration and apoptosis-associated markers such as
EGFR, PDGFRa, VEGFR1,2, c-Met, IGFBP2,108–111

Fig 4. Molecular genetic characterization. Common oncogenic pathways in human glioma are shown on the left. The potential for indi-

vidualized treatment targeted at specific molecular abnormalities is demonstrated in a single canine glioblastoma multiforme tumor. Wes-

tern blot defines increased (green) or decreased (red) expression of key pathway proteins relative to normal brain. Chromosomal copy

number alterations and transcriptionally upregulated genes for the same tumor are shown in the table on the right. Defined pathway

abnormalities for this tumor are indicated by an *. Potential surface markers for targeting are underlined.
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c-erbB2, pERK, pAkt, Bcl-2, Bcl-xL,111 and the
angiogenic factor VEGF112–116 has been reported in
both canine gliomas and meningiomas. Decreased pro-
gesterone receptor expression has been reported in
canine meningiomas associated with higher prolifera-
tive indices and poorer prognosis,117,118 and these fea-
tures also are associated with increased VEGF
expression.114

The cellular immortality-related gene telomerase
reverse transcriptase has been shown to be expressed
in a variety of canine and feline brain tumors, and
similar to human tumors has been associated with
tumor grade.119–121 Similarly, overexpression of MMP-
2 and -9, E-cadherin, claudin-1, IL-6, and cyclooxy-
genase-2 has been documented in canine and feline
meningiomas,121–126 and MMP-2/9 has been identified
in canine gliomas and choroid plexus tumors.125 Over-
expression of surface markers previously defined in
human tumors, suitable for tumor targeting strategies,
has been demonstrated for IL-13RA2, EphA2, and
alpha3-beta1 integrin in a variety of canine brain
tumors (Fig 4).127–130 To date, global expression
studies have utilized relatively limited microarray
platforms and have shown some similarities to differ-
entially expressed genes found in human tumors.131 At
the epigenetic level, preliminary studies profiling gen-
ome-wide methylation status of canine glioma suggest
that hypermethylation patterns in developmentally
regulated genes may be similar to those in human
gliomas.132

At the chromosomal level, there are limited data
defining copy number variations in canine brain
tumors, and reported resolution to date has been
approximately 1–3 Mb. As might be expected based
on data in humans, there is decreased genomic insta-
bility in canine meningiomas compared to generally
more aggressive gliomas. Potential similarities to
human tumors have been documented including loss
of canine chromosome (CFA) 17 and 27 (CFA 17, 27),
syntenic to human chromosome (HSA) 1p and 12p;
HSA 1, 12 in meningiomas.133,134

Key hallmarks of human gliomas and meningiomas
such as loss of HSA 22 (NF2 gene) in meningiomas
and HSA 1p/19q in gliomas, however, have not yet
been found, nor have classical glioma gene mutations
such as those involving IDH1 and TP53.133–137 More
detailed analysis of canine tumors using whole genome
sequencing and single nucleotide polymorphism arrays
is likely to identify additional similarities and likely
novel findings, and it is probable that common key
pathways in human and canine tumors will be affected
by different modifications.107 Preliminary data suggest
that some classical deletions in human gliomas includ-
ing the INK4a/b locus and the NF-1 gene may be
present in smaller deletions,132 but, documented differ-
ences to date highlight the necessity for preclinical
characterization of canine tumors before use of specific
targeted approaches.

Overall, ongoing identification of aberrant gene
expression as described above is likely to become
increasingly important for appropriate targeting of

novel therapeutic strategies. Prognostic value and
therefore relevance to tumor grading in canine tumors
is limited by a lack of information relating to long-
term outcome for untreated and treated tumors
matched to archived tumor tissue, and establishment
of these databases should be a priority for the field.

Treatment

Conclusions from most veterinary neurooncology
therapeutic studies are generally limited by small case
numbers, retrospective study design, and most criti-
cally, a lack of specific histologic evaluation including
tumor typing and grading. The latter issues become
especially critical when small case numbers are
involved. Lack of easily monitored objective criteria
for therapeutic response is an additional problem
because repeated advanced imaging is often cost pro-
hibitive, and many animals present with clinical signs
such as seizures and clinical response may be more
reflective of adjunctive antiepileptic treatment than
specific tumor response. This is confounded by highly
variable criteria for time of presentation and time of
euthanasia. Large-scale, multicenter therapeutic trials
will be difficult to complete, and it is likely that a large
amount of data addressing more focused questions in
the future will be obtained from translational clinical
trials that are becoming more common as the use of
canine intracranial tumor models becomes more wide-
spread. Continued collection of data relating to the
natural biology and clinical course of specific tumor
types and grades is critical for assessment of therapies,
as is insistence on a minimum of histologic diagnosis
for publication. Advances in diagnostic classification
described above are likely to become more critical as
molecular based therapies are developed.106

Palliative Care

Corticosteroids targeting peritumoral edema together
with antiepileptic drugs to control seizures (one of the
most common presenting sign for intracranial
tumors)11–13,138 form the mainstay of palliative care for
intracranial neoplasia. Response to corticosteroids often
can be predicted based on the degree of suspected perit-
umoral vasogenic edema as defined by white matter
associated hyperintensity on T2-weighted or fluid atten-
uated inversion recovery (FLAIR) MR images (Fig 5).
When secondary obstruction of CSF drainage occurs,
intraventricular shunting may provide resolution of clin-
ical signs temporarily as a palliative measure, or as with
corticosteroids, to provide time and decreased morbidity
for biopsy or more definitive treatment (Fig 6). Mean-
ingful statements regarding the natural biology of
canine intracranial tumors and survival after palliative
care are difficult to make based on available data for the
reasons described above. There are no meaningful data
relating to specific tumor types or grades. Published
data suggest that for all masses combined, median sur-
vival is between approximately 1 and 10 weeks,139–142

with supratentorial tumors having a better prognosis
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(median survival approximately 25 weeks).143 However,
anecdotally many clinicians recognize that survival
times for some individual patients, even those with in-
traaxial tumors, can be considerably longer.

Surgical Treatment

More than most other therapeutic modalities, effi-
cacy of surgical cytoreduction of intracranial tumors is
highly operator and equipment dependent. Most pub-
lished information with meaningful case numbers is
related to more easily accessible canine and feline men-
ingiomas, with only anecdotal data for other tumor
types such as gliomas and choroid plexus tumors. Cur-
rently available studies highlight the large variation in
outcome, and the potential impact of applied technol-
ogy. In dogs with confirmed meningiomas, standard
surgical cytoreduction alone generally has been
reported to result in median survival times of approxi-

mately 4.5–7 months,144–146 with an improvement in
median survival to 16.5–30 months with adjunctive
radiation therapy.118,145 However, use of cortical resec-
tion, ultrasonic aspiration, or endoscope-assisted tech-
niques has been reported to result in median survival
times of 16, 41, and 70 months, respectively, for ro-
strotentorial meningiomas.146–148 Given the large varia-
tion in outcome for different surgical techniques in
individual studies, it is difficult to make general recom-
mendations for surgical treatment other than the
observations that cytoreduction (particularly for ro-
strotentorial tumors) may be “curative” for many
older animals with some surgeons and techniques and
that adjunctive radiation therapy has an apparent ben-
eficial effect (Fig 7).

Meningiomas are the most common primary intra-
cranial tumor in cats. Median survival time for cats
with surgical cytoreduction of meningiomas is
reported to be between 23 and 28 months.149–151

Fig 5. Palliative treatment with corticosteroids. T2-weighted transverse images documenting the therapeutic potential of corticosteroids

in a biopsy and necropsy-confirmed anaplastic oligodendroglioma (grade III): Upper row = pretreatment, bottom row, 4 weeks after

0.5 mg/kg prednisone q24h. Even with 4 weeks of potential tumor growth, there is an overall decrease in tumor mass, with decreased

presumed peritumoral vasogenic edema in surrounding white matter (arrow heads), and decreased mass effect, initially visualized as devi-

ation of the falx cerebri (arrow).

Fig 6. Intraventricular shunt placement provides palliative treatment of hydrocephalus secondary to obstruction of drainage from the

lateral ventricles in a dog with a choroid plexus papilloma. (A) Dorsal plane reconstructed computed tomography (CT) image showing

the contrast-enhanced mass and enlarged lateral ventricle. (B) 3D-reconstructed CT image showing the shunt tip passing intracranially

through a small burr hole in the skull. (C) Postoperatively, the hyperattenuating catheter tip is seen in the now nondistended ventricle.

Ventricular shunting was done to alleviate clinical signs while stereotactic radiosurgery of the tumor was undertaken.
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Feline meningiomas are generally less aggressive and
locally invasive biologically than their canine counter-
parts, making gross total resection more likely. Infor-
mation for other treatment modalities is anecdotal for
both meningiomas and other sporadic tumor types in
cats.

No meaningful conclusions can be made from pub-
lished data relating to surgery for intraaxial tumors in
dogs other than that anecdotally it can be beneficial
with some animals surviving many months to over
a year with surgery with or without adjunctive
treatments.140,152–154 Microsurgical transsphenoidal
hypophysectomy has become a successful neurosurgi-
cal technique for the management of intracranial pitui-
tary tumors with survival times similar to those
obtained with medical management, although tumor
size is a limiting factor,155 and survival times are likely
to improve with application of neuronavigational
devices and operator experience. Most pituitary ma-
crotumors are best managed by radiation-based proto-

cols.156,157 Application of stereotactic radiotherapy
protocols, potentially using 1–3 applied doses may
provide similar outcomes to hypophysectomy and are
currently under investigation.

Intraoperative neuronavigation techniques using ste-
reotactic coordinates based on either CT or MR
images are standard practice in human neurooncology.
Availability of veterinary MR-based stereotactic equip-
mentd and custom-made devices is likely to advance
surgical treatment, particularly of intraaxial tumors,
substantially in the near future (Fig 8). Several experi-
mental and translational surgical procedures have been
described in both experimental and clinical canine
patients, including use of lasers,158–160 automated tis-
sue excision systems,93 irreversible electroporation
(Fig 9),161,162 ultrasound hyperthermia,163 and robotic
neurosurgery.164 Some of these techniques have shown
promise and may progress to mainstream treatment.
Combined with recent advances in imaging of both
tumors and their vascular supply (above), as well as

Fig 7. Advances in imaging and availability of neurosurgical equipment such as intraoperative stereotaxy, endoscopy, and ultrasonic

aspiration has made extensive surgical resection of both extra-axial and intraaxial tumors more commonplace. Presurgery transverse T1-

weighted postcontrast images of an intraaxial glioblastoma multiforme (A–C), sagittal (D). Postsurgery transverse (E–G), sagittal (H)

TI-weighted postcontrast images. Presurgery T1-weighted postcontrast images of a caudal fossa extra-axial grade II meningioma pre- (I)

and post- (J) surgical resection. Gross total resection of tumor has been achieved in both cases. (K) Ultrasonic aspirators utilizing a vari-

ety of soft tissue and bone tips (inset) allow for safer and more complete resection of tumors (images courtesy of B Sturges UC Davis).

Brain Tumors 1173



the potential use of fluorescent markers to aid in intra-
operative tumor identification,165 continued advances
in outcome are likely with surgical cytoreduction of
canine and feline intracranial tumors.

Chemotherapy

There is little meaningful information available relat-
ing to the efficacy of chemotherapeutic agents for canine
intracranial neoplasia. Most data relate to the use of ni-
trosurea-based alkylating agents such as lomustine and
carmustine, or the ribunucleotide reductase inhibitor
hydroxyurea. Almost all studies lack histologic diagno-
ses for most cases, and thus have limited value. A large
retrospective study suggested no benefit for CT-defined
brain masses from lomustine (CCNU) chemotherapy
compared to palliative care (93 days versus 60 days),
but none of the 71 animals had a histologic diagnosis.142

Anecdotal histologically confirmed cases from published
data show apparent survival benefits and occasional
responses with survival of many months in some cases,
but overall, chemotherapy alone appears to have limited
value for intracranial tumors.147,154,166–169 Temozola-
mide, a novel oral alkylating agent, has become the stan-
dard-of-care for adjuvant and monotherapy of high-
grade gliomas and other tumors in humans, although its
use not been reported in dogs with clinical brain tumors.
Canine glioma cell lines appear to have responses similar
to human glioma cell lines with commonly used chemo-
therapeutic agents such as CCNU, CPT-11, and temozo-
lamide,170 and it is likely that the moderate advantages
of adjuvant chemotherapy seen in human patients26,171

are likely to be present for their canine tumor counter-
parts. Tumor resistance against alkylating agents is well
documented in human brain tumors, and has been
attributed to a variety of factors including DNA repair
mechanisms, prevention of drug uptake, and inactiva-
tion and elimination of agents. Multidrug resistance
proteins have been described in human brain tumors
and preliminary data suggest they may play a role in
drug resistance in dogs, particularly in meningiomas.172

Epigenetic silencing of the DNA repair enzyme O6-
methylguanine-DNA-methyltransferase by promoter
hypermethylation has been associated with better
responses to alkylating agents and better prognosis in
human patients with gliomas,173 and is becoming a stan-
dard biomarker for therapeutic planning. Epigenetic
alterations in canine brain tumors have been docu-
mented in a small number of cases,174 but their value has
yet to be determined in clinical canine patients. The
value of additional novel chemotherapeutic agents,
either alone or in combination, combined with other
therapeutic modalities or delivered in a more targeted
manner remains to be evaluated. Local delivery of drug-
impregnated wafers (eg, carmustine wafers) into resec-
tion cavities has shown some small benefits in human
patients with gliomas,175 but has not been evaluated in
canine patients. Intratumoral delivery of a liposomal
formulation of CPT-11 has been shown to have efficacy
in selected canine glioma cases, with some survival times
approaching 2 years for monotherapy (Fig 10).176

Fig 8. Stereotactic neuronavigation allows the surgeon to iden-

tify tumor boundaries in real-time based on magnetic resonance

(MR) or computed tomography (CT) images. This approach is

particularly valuable for intraaxial tumors such as gliomas that

must be approached through normal brain parenchyma. (A) 3D-

CT image showing position of titanium screws (red) used as fidu-

cials for stereotactic referencing. (B) BrainLab VectorVision sys-

tem.j Fiducial screws are referenced on the MR images, and then

in the surgery suite to the surgical pointer (arrow/green dots) and

markers on the head frame (arrowhead/red dots). (C) In real-

time, the pointer is placed at the ventral edge of the craniectomy

and the green line (representing the pointer) shows that the expo-

sure is adequate to reach the ventral tumor margin.
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Fig 9. Stereotactic ablation of an anaplastic oligodendroglioma in a Boston Terrier with irreversible electroporation (IRE). (A) A

threaded nylon 6-6 probe guide pedestal (PGP- arrows in A–C) is implanted into the skull using titanium, self-tapping screws, and dental

acrylic to facilitate tumor biopsy (A, inset and E) and IRE electrode insertion. Pretreatment MR (B and F) and CT (C and G) images

are used to plan the electrode approach trajectories and pulse delivery parameters using imaging-based tissue segmentation (D), volumet-

ric meshing with thermal and electrical field (H; in V/cm) threshold distributions, and finite element modeling. Posttreatment tumor

biopsy and diagnostic imaging demonstrating target ablation as indicated by the necrotic tumor phenotype (I) and decrease in the con-

trast-enhancing tumor burden (J, K). L-Fused pretreatment MRI and intraoperative CT of electrode insertion into the target, with the

PGP highlighted in blue (images courtesy of J Rossmeisl University of Virginia).

Fig 10. Convection-enhanced delivery of liposomal CPT-11 (a topoisomerase inhibitor) intratumorally by using real-time MR imaging

to optimize delivery. (A, B) Schematic representation of fused silica cannulae being guided into the tumor based on stereotactically

placed guide pedestals. (C, D) Transverse T1-weighted images at different levels showing infusate (white) of liposomal CPT-11 and gad-

oteridol contrast agent within the tumor. Different cannulae can be seen highlighted against the infusate after passing down the guide

pedestal (arrow). (E, F) Tumor volume (hypointense) pre- and posttreatment is decreased by 90% (arrowhead) after CPT-11 infusion.

(G–N) Time-lapse imaging over approximately 2 hours infusion. Three initial cannulae result in partial tumor coverage. Real-time imag-

ing allows monitoring of infusion, and placement of additional cannulae (*) resulting in optimal volume of coverage.
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Radiation Therapy

Radiation therapy has become a mainstay of treat-
ment for intracranial neoplasia in both human and
veterinary patients, either as a primary or adjunctive
treatment. Interpretation of published data can be
problematic when considering specific tumor types
because of a lack of histologic diagnoses for many
masses treated, and variability in radiation type and
dosing schedule. Radiation therapy has been reported
specifically to be beneficial when compared to surgical
resection alone for treatment of meningiomas.145 In
general, reported median survival times for radiation
treatment alone for all masses, inraaxial masses, and
extra-axial masses are approximately 33–99 weeks,
approximately 40 weeks, approximately 40–49 weeks,
respectively.140,141,145,152,153,177–180 Although specific
data are limited in most studies, surgery combined
with radiation is reported to have improved outcomes
compared to radiation alone.145,152 Extra-axial masses
(presumptive meningioma) tend to have a better prog-
nosis than intraaxial masses.140,152 Standard megavolt-
age external beam radiation therapy has been extended
by use of intensity-modulated radiation therapy in
which use of multileaf collimators that move during
treatment allow for more precise, conformal delivery
of radiation. Dose to tumor is increased with minimi-
zation of dose to adjacent normal structures, although

extensive “inverse planning” defining tumor and nor-
mal tissues on the basis of individual CT slices is nec-
essary. Local delivery of radiation therapy (ie,
brachytherapy) has been investigated as a potential
modality in experimental dogs,93,181,182 but overall suc-
cess in humans with a variety of intracranial tumors
has been limited.183,184

More recent advances in veterinary radiation oncol-
ogy for brain tumors have been driven by the avail-
ability of stereotactic radiotherapy (SRT) equipment
and procedures, in which radiation is delivered to
sterotactically defined tumor volumes. Radiation may
be delivered by multiple cobalt sources,e or linear
accelerators delivering extremely precise, high dose/
gradient plans. These may involve multiple static
beams using a 6 MV linear accelerator on a robotic
arm with 6 degrees of freedom,f or standard linear
accelerators fitted with stereotactic cones or micromul-
tileaf collimators using multiple arcs planned around
isocenters. SRT uses image-guided (MRI or CT), for-
ward-based planning, and requires stringent quality
assurance (Fig 11). SRT has become widely used for
the treatment of nonresectable intracranial masses,
either intraaxial or involving the skull base. Experience
with skull base meningiomas and gliomas in humans
suggests responses may approach those seen with sur-
gically resected tumors.185,186 One of the major advan-
tages of SRT techniques is the ability to deliver the

Fig 11. (A, B) T1-weighted postcontrast and T2-weighted transverse images of a 4th ventricle choroid plexus tumor. (C) Dog posi-

tioned in stereotactic thermoplastic head restraint. The VARIAN trueBEAM linear acceleratork is equipped with a 2.5-mm leaf multileaf

collimator, a couch with 0.1-mm incremental movement, and on-board Kv, MV and cone beam CT to allow precise stereotactic delivery

of radiation. (D) BrainLab planning systemj showing the planned treatment trajectories to the tumor (magenta) sparing defined vital

structures (eyes-red/green, inner ears-yellow/blue). (E) Transverse CT image with isodose planning superimposed (images courtesy of M.

Kent, UC Davis).
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therapeutic dose of radiation in 2–5 fractions (single
dose treatments are referred to as stereotactic radiosur-
gery [SRS]) compared to 16–20 fractions for standard
radiation protocols. This is particularly relevant in vet-
erinary patients, where general anesthesia is required
for each treatment. There are limitations to the size of
masses that can be treated with SRT (several cms),
and it is generally not suitable for treating microscopic
residual disease (eg, after surgical resection). Availabil-
ity of treatment centers is limited, and only linear
accelerator-based systems have been used in dogs and
cats, but preliminary data suggest that efficacy is com-
parable to standard radiation protocols with poten-
tially fewer short-term adverse effects.187–191 Final
evaluation of SRT will be dependent on long-term
assessment of histologically confirmed cases. Boron
neutron capture treatment is a localized radiation ther-
apy depending on preferential local delivery of 10B to
tumor tissue followed by delivery of thermal neutrons.
Resultant 7Li nuclei and 4He (a-particles) produce
high-dose radiotherapy with potential for selective kill-
ing of 10B-loaded cells. Preliminary translational stud-
ies in dogs with a variety of intracranial tumors
demonstrated the feasibility of the approach and anec-
dotal therapeutic successes with and without surgical
cytoreduction.192,193 Although availability of equip-
ment is limiting, recent advances in more tumor-selec-
tive boron delivery drugs may improve the limited
clinical efficacy and toxicity (eg, radiation necrosis) in
the future.194

Novel Therapies

Recognition of small animal diseases as clinically
relevant translational models for human disease has
opened up numerous collaborative opportunities for
veterinarians, most notably in the field of oncology.
Canine brain tumor patients are increasingly being
enrolled in a variety of clinical trials. Ongoing areas of
research involving veterinary centers can be broadly
divided into:

1) Novel delivery approaches to circumvent drug
delivery limitations because of the blood–brain
barrier;

2) therapies targeting aberrant molecular pathways;
3) toxin or suicide gene therapies targeted to tumor

cell-specific markers; and
4) immunotherapies.

Targeting of brain tumors at the gross level has been
advanced by techniques such as convection-enhanced
delivery (CED), in which infusion of therapeutic
agents directly into tumor tissue results in the potential
for extremely high intratumoral drug concentrations
with minimal to no systemic toxicity. The technique
involves delivery of macromolecules by bulk flow using
low pressures and specifically designed catheters, and
allows clinically relevant volumes of therapeutic agents
to be delivered, usually over several hours to days.195

Recent advances in the technique have allowed for
real-time imaging of infusions allowing for both accu-
rate planning and meaningful assessment of therapeu-
tic outcome (Fig 10). A variety of imaging agents have
been used including gadolinium, iron oxide nanoparti-
cles, and PET tracers.176,196–198 Specifically in canine
brain tumors, CED of liposomal CPT-11, and EG-
FRvIII-antibody bioconjugated magnetic iron oxide
nanoparticles have been shown to have efficacy in
canine gliomas, even as monotherapies, with minimal
adverse effects (Figs 10, 12).176,199 CED approaches
are often limited by an inability to distribute therapeu-
tic agents to the entire tumor volume. Advances in
catheter designs, predictive imaging software, and ther-
apeutic agent strategies are helping to improve vol-
umes of distribution throughout heterogenous tumors,
and include the use of arborizing fiberoptic catheters
and local hyperthermia.175,200 CED infusion of replica-
tion competent retroviral vectors capable of tumor
spread beyond the borders of the CED distribution is
an alternative strategy to maximize tumor coverage,
and has been utilized in both human and canine clini-
cal trials to deliver suicide gene therapy vectors,
although efficacy has not yet been shown.201,202

Many experimental gene therapies have been devel-
oped for trials in humans utilizing a variety of viral vec-
tors (often nonreplicating or conditionally replicative),
most commonly adenovirus, adeno-associated virus,
herpes simplex virus, and retrovirus. Common therapeu-
tic strategies include suicide gene therapy, oncolytic

Fig 12. Intratumoral delivery of iron oxide nanoparticles. (A) Pretreatment T2-weighted transverse image showing a large intraaxial oli-

godendroglioma. (B) Seven days after surgical resection, cetuximabl-conjugated iron oxide nanoparticles targeting to EGFR were infused

into the residual tumor. Susceptibility artifact generated by the iron particles allows the infusion to be determined as an area of hypoin-

tensity within the residual tumor mass. (C) Nanoparticles are still apparent 4 weeks postinfusion and tumor mass effect is substantially

decreased. The dog is alive 2 years posttreatment (images courtesy of S. Platt University of Georgia).
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treatment, immunomodultion, gene replacement, proa-
poptotic treatment, and antiangiogenesis.175,203 Success-
ful delivery or efficacy of gene therapy approaches using
viral vectors and plasmid DNA has been shown experi-
mentally in canine brain tumor cells and brain using
adenoviral,204–209 retroviral201,202,210 herpes,211 and
adeno-associated viral212–214 delivery. Few viral thera-
pies have progressed to phase III clinical trials, and none
have been shown to have significant efficacy in high-
grade brain tumors in phase III trials to date.175

Targeting of defined aberrant pathways in oncology
has resulted in some of the most dramatic improve-
ments in survival times for several human cancers,
most notably trastuzumabg antibody targeting of
Her2/Neu overexpressing breast cancers24 and small
molecule inhibitor imatinibh targeting of BCR-ABL
positive chronic myelogenous leukemia.25 A majority
of targeted therapies involve either antibodies or small
molecule inhibitors, and many have been investigated
in human brain tumors with minimal activity demon-
strated to date.104 This may be a reflection of many
factors including insufficient characterization of both
tumors and patients, as well as the potential need for
multiple target strategies. Two small molecule inhibi-
tors have been approved for use in veterinary medi-
cine, toceranib phosphatec which blocks a variety of
RTKs including VEGFR2, PDGFRalpha/beta, KIT,
and FLt3, and masitinibi which inhibits PDGFRalpha/
beta and KIT. Veterinary trials with toceranib and
masitinib have shown benefit in several cancers but
have not been reported for brain tumors. Documented
overexpression of VEGF, VEGF receptors, and
PDGFR alpha in some canine brain tumors108–116 may
justify trials with these or similar small molecules in
defined patients.

A growing body of evidence has implicated tumor
cells with stem cell-like properties as a potential source
of both tumor initiation and tumor recurrence or resis-
tance to treatment.215–217 Although this is still a con-
troversial area of research, many investigators have
defined populations of tumor cells that have genetic
and epigenetic phenotypes similar to primitive precur-
sor cells with molecular profiles more typical of cells
during brain neuro- and gliogenesis and develop-
ment.218 Targeting either stem cell surface markers or
dysregulated “developmental” pathways in tumors is
an attractive and ongoing area of research. Stem-like
cells expressing putative developmental markers such
as CD133, Olig2, and nestin have been described by
several authors in canine gliomas (Fig 4), and preli-
minary data suggest that epigenetic alterations in
canine glioma may parallel the developmental profile
seen in human tumors.219–223 An alternative utilization
of stem cells in neurooncology is the exploitation of
the inherent tumor-tropic properties of normal or
modified stem cells. The ability to target distant, inva-
sive tumor cells and deliver a variety of therapeutic
agents is a developing and promising field.203

Targeting of aberrantly expressed surface markers
on tumor cells has been exploited as a strategy for
delivering imaging or therapeutic agents specifically to

tumors. Ideal markers are expressed in all tumor cells,
ideally in all tumors, and have minimal to no expres-
sion in either local (eg, brain) or systemic tissues, if
systemic delivery strategies are to be used. Several
markers such as IL-13 receptor alpha 2, EGFR, and
transferring receptor, either alone or in combination,
have been targeted in human neurooncology to deliver
toxin based or suicide gene therapies.175 Similar to
human gliomas, most canine gliomas overexpress both
IL-13 alpha 2 receptor and EphA2 receptor.128,129 Tri-
als in humans using Pseudomonas-derived IL-13 toxin
conjugates have shown some efficacy, and trials in
dogs utilizing similar canine optimized toxins127–129 are
planned. Similarly, targeting of canine tumors overex-
pressing EGFR using antibodies conjugated to iron
nanoparticles is in progress.199

Small peptides have major advantages over antibod-
ies for tumor targeting in that they are less immuno-
genic, have longer tissue half-lives, and have the
potential to be readily modified and conjugated for a
variety of therapeutic or imaging options. Random
screening of peptide libraries is an efficient method to
define tumor-specific peptides,224 and has been done
for several canine cancers including lymphoma, mela-
noma, and glioma.130,225,226 Tumor-specific targeting
of glioma using peptides recognizing alpha 3 beta 1 in-
tegrin has been demonstrated in human cancers.227

Similar findings in canine glioma as well as in vivo
demonstration of the feasibility of peptide targeting in
dogs228,229 opens the possibility of future peptide-con-
jugated therapies for canine glioma (Fig 13).

Immunotherapy

Augmentation of the patient’s T cell-mediated
immune response against neoplastic cells, normally
limited by the brain’s immuno-privileged niche, is a
developing field in humans for both gliomas and on a
smaller scale meningiomas.203,230–232 Several
approaches are being explored including gene therapy
delivery of immunostimulatory genes such as IL-2, 4,
12, TNF alpha, interferon alpha, beta, and gamma
and dendritic cell growth factors such as Flt3L. Sev-
eral “vaccine”-based approaches have been developed
including vaccination with patient dendritic cells
“primed” with tumor antigen, tumor peptides, heat
shock proteins, and autologous and allogenic tumor
cell preparations.203,230–233 Limited information is
available defining immune cell activity in canine brain
tumors, but preliminary studies defining immune cell
infiltration in canine meningiomas,234 and the ability
of Flt3L to stimulate canine dendritic cells,235 suggest
that there will be many similarities to human tumors.
Translational studies in dogs with glioma using tumor
cell lysate/CpG vaccines, combined with postsurgical
intracavitary delivery of IFNg via an adenoviral vec-
tor, have demonstrated the feasibility of immunother-
apy in dogs, with tumor-reactive IgG and CD8+ T
cells being documented in 1 reported case.206,236 Simi-
lar studies using autologous tumor lysate vaccines
combined with toll-like receptor ligands (CpG, imiqui-
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mod) after resection of meningiomas in dogs also have
been reported.237 Treatment resulted in the production
of polyclonal antibody responses in all dogs, with infil-
tration of plasma cells into surrounding brain tissue.
Additional studies investigating combinations of local
adenoviral gene therapy delivery of HSV-tk suicide
genes and Flt3L dendritic growth factor postresection
and tumor lysate vaccines derived under varying oxy-
gen tensions are in progress.236 Although efficacy of
immune-based therapies has yet to be shown in phase
III trials in humans or veterinary patients, preliminary
results are encouraging and show the feasibility of
these approaches.

Future

Veterinary neurooncology still has a large amount
of benefit to be obtained from application of currently
available techniques and advancements in standard
surgical, chemotherapeutic, and radiation-based thera-
pies, but expense, species-specific factors, and availabil-
ity may be limiting in some areas.

Rapid advances in global analysis of cancer molecu-
lar phenotypes together with industrial scale develop-
ment of targeted small molecule therapeutics are likely
to provide the greatest opportunity for advances in
outcome in both human and veterinary neurooncolo-
gy. Realistically, companion animal neurooncology
will rely on use or modification of therapeutics devel-
oped for human patients, and although it appears that
most cancers follow similar developmental pathways,
subtle differences may be critical for appropriate appli-
cation. Continued in-depth evaluation of both the
molecular genetics and natural biology of companion
animal intracranial tumors will be critical for optimal
future outcomes for patients with these tumors.
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