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Background: Ankylosing spondylitis (AS) is a chronic inflammatory disorder of

unknown etiology that is hard to diagnose early. Therefore, it is imperative to

explore novel biomarkers that may contribute to the easy and early diagnosis

of AS.

Methods: Common differentially expressed genes between normal people and

AS patients in GSE73754 and GSE25101 were screened by machine learning

algorithms. A diagnostic model was established by the hub genes that were

screened. Then, the model was validated in several data sets.

Results: IL2RB and ZDHHC18 were screened using machine learning

algorithms and established as a diagnostic model. Nomograms suggested

that the higher the expression of ZDHHC18, the higher was the risk of AS,

while the reversewas true for IL2RB in vivo. C-indexes of themodel were no less

than 0.84 in the validation sets. Calibration analyses suggested high prediction

accuracy of the model in training and validation cohorts. The area under the

curve (AUC) values of the model in GSE73754, GSE25101, GSE18781, and

GSE11886 were 0.86, 0.84, 0.85, and 0.89, respectively. The decision curve

analyses suggested a high net benefit offered by themodel. Functional analyses

of the differentially expressed genes indicated that theyweremainly clustered in

immune response–related processes. Immune microenvironment analyses

revealed that the neutrophils were expanded and activated in AS while some

T cells were decreased.

Conclusion: IL2RB and ZDHHC18 are potential blood biomarkers of AS, which

might be used for the early diagnosis of AS and serve as a supplement to the

existing diagnostic methods. Our study deepens the insight into the

pathogenesis of AS.
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Introduction

Ankylosing spondylitis (AS), also known as radiographic

axial spondyloarthritis, is one of the two types of axial

spondyloarthritides (Sieper et al., 2015; Taurog et al., 2016;

Sieper and Poddubnyy, 2017; Navarro-Compán et al., 2021).

It is a chronic inflammatory disorder mainly affecting the axial

joints and entheses and is usually characterized by typical

features such as inflammatory back pain, limitation of the

motion of the lumbar spine, restricted chest expansion, and

advanced sacroiliitis on plain radiographs. Some patients with

AS also experience peripheral spondyloarthritis symptoms such

as dactylitis and Achilles tendinitis and extra-articular

manifestations such as uveitis, psoriasis, inflammatory bowel

disease, and many others, either simultaneously or at some point

during the course of the disease. The diagnosis of AS is based on

the Modified New York criteria: advanced sacroiliitis on plain

radiographs with any one of the three typical aforementioned

features (van der Linden et al., 1984). Patients usually do not

meet the criterion of advanced sacroiliitis on plain radiographs;

however, those with sacroiliitis on MRI or HLA-B27 positivity

plus the clinical criteria are classified into non-radiographic axial

spondyloarthritis (Rudwaleit et al., 2009; Rudwaleit et al., 2011).

The prevalence of AS, which reportedly varies with

geography, ranges from 0.02–0.35%, while that of axial

spondyloarthritis is estimated to be 0.20–1.61%, which is

much higher than the prevalence of AS, indicating a high

ratio of non-radiographic axial spondyloarthritis patients

(Dean et al., 2014; Stolwijk et al., 2016; Ward et al., 2019).

Especially, with the development of diagnostic tools and

further understanding of axial spondyloarthritis, patients

without advanced sacroiliitis on plain radiographs raise more

attention, and more non-radiographic axial spondyloarthritides

are detected together with updates in its definition (Taurog et al.,

2016; Ritchlin and Adamopoulos, 2021). However, even with

modern diagnostic methods, the diagnostic sensitivity and

specificity for axial spondyloarthritis are not higher than

approximately 80% (Sieper and Poddubnyy, 2017). This

means that a significant number of patients are still excluded

from the current diagnostic criteria, and there is still a lot of room

for improvement in our diagnostic methods. More importantly,

it has been reported that approximately 10–20% of patients with

non-radiographic axial spondyloarthritis will progress to AS

within 1 year after the initial diagnosis while 20.3% of them

will do so in 2–6 years (Sieper and Poddubnyy, 2017). Therefore,

it is necessary to identify pre-AS patients, for identifying them

could save more time for clinical interventions.

At present, our measures to identify axial spondyloarthritis

are still limited beyond clinical features. Imaging (radiography,

CT, and MRI), HLA-B27, and C-reactive protein (CRP) features

are the main indices for the clinical diagnosis of axial

spondyloarthritis (Zochling et al., 2005; Sieper and

Poddubnyy, 2017; Ritchlin and Adamopoulos, 2021). More

methods with high sensitivity and specificity are eagerly

expected. Although with the rapid development of genomics

technology, many serum biomarkers for the diagnosis of AS such

as miR-214 (Kook et al., 2019), deoxyribonuclease 1-like 3 (Sun

et al., 2020), anti-SIRT1 autoantibody (Hu et al., 2018), sclerostin

(Perrotta et al., 2018), endoplasmic reticulum aminopeptidase 1

(Danve and O’Dell, 2015), and others have been identified, there

is still a paucity of reliable indices for clinical practice besides

HLA-B27 and CRP (Sieper and Poddubnyy, 2017; Danve and

O’Dell, 2015). Therefore, the exploration of gene biomarkers of

AS in peripheral blood is not only of real need and great practical

value but could also deepen our knowledge of the

pathophysiology of AS and even help us understand its etiology.

Thereby, in this study, we aimed to screen potential gene

biomarkers in the peripheral blood by machine learning

algorithms and build a diagnostic model and also

preliminarily explore the immune microenvironment of AS to

find some differences in immune cell proportions and potential

explanations for our hub genes. To date, this work has not been

done and reported; thus, it is imperative to bridge the knowledge

gap in this area.

Materials and methods

Data collection

We searched the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) for data sets containing

whole-blood RNA expression data of normal people and AS

patients with at least 15 samples in each group. Only GSE73754,

GSE25101, and GSE18781 were qualified, and their expression

and phenotype data were downloaded for subsequent studies.

GSE73754 and GSE18781 contained whole-blood RNA

expression data of 20 normal and 52 AS patients and

25 normal and 18 AS patients, respectively, together with

their corresponding basic information such as sex and age.

The expression data of GSE73754 were detected by the

Illumina HumanHT-12 V4.0 expression BeadChip, University

of Toronto, Canada, submitted on 06 Oct 2015. The expression

data of GSE18781 were detected by the Affymetrix Human

Genome U133 Plus 2.0 Array, Oregon Health & Science

University, United States, submitted on 28 Oct 2009.

GSE25101 contained whole-blood RNA expression data of

16 normal and 16 AS patients, which were detected by the
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Illumina HumanHT-12 V3.0 expression BeadChip, University of

Queensland Diamantina Institute, Australia, submitted on

03 Nov 2010. However, the basic information of the subjects

from GSE25101 was unavailable; so, it is only used as one of the

validation sets. GSE11886 referred to the RNA expression data of

in vitro cultured macrophages, which were obtained from the

peripheral blood of nine normal people and eight AS patients.

They were detected by the Affymetrix Human Genome

U133 Plus 2.0 Array, Cincinnati Children’s Hospital Medical

Center, United States, submitted on 25 Jun 2008. Although the

RNA expression data of each set were normalized data, while in

the quality control process, we found that samples of

GSE18781 came from two batches; so, we used the

“removebatcheffect” function of the “limma” package to

recalculate the expression data (Ritchie et al., 2015).

Identify common differentially expressed
genes

Differentially expressed genes (DEGs) in GSE73754 and

GSE25101 between normal people and AS patients were

identified by the “limma” package (Ritchie et al., 2015)

(cutoff value: the absolute value of log2foldchange >0.3 and

p-value < 0.05). Then, common DEGs in GSE73754 and

GSE25101 were selected as candidates for subsequent

screening.

Screening genes for diagnostic model by
machine learning algorithms

GSE73754 served as the training set. Common DEGs were

first screened by univariate logistic regression in the training set.

Genes with a p-value < 0.05 were retained. Then, three machine

learning algorithms: the least absolute shrinkage and selection

operator (LASSO) logistic regression (Simon et al., 2011), a

support vector machine recursive feature elimination (SVM-

RFE) (Sanz et al., 2018), and random forest (RF) (Strobl et al.

2007) were adopted to screen hub genes. The common hub genes

were selected as the final genes for the diagnostic model.

Establishment of diagnostic model and its
evaluation in training set and related
validation set

A diagnostic model was established by the common hub

genes and visualized by nomograms. Then, the prediction

accuracy and discriminatory capacity were first assessed in

GSE73754 and GSE25101 by the C-index, calibration analysis,

receiver operating characteristic (ROC) curves, and decision

curve analysis (DCA).

Validation of model in validation sets

GSE18781 was set as an in vivo external validation set, while

GSE11886 was set as an in vitro external validation set. The

prediction accuracy and discriminatory capacity of the model

were also assessed in the two aforementioned sets by the C-index,

calibration analysis, ROC analysis, and DCA.

Functional analysis of differentially
expressed genes between normal and
ankylosing spondylitis groups

GO and KEGG clustering and gene set enrichment analyses

(GSEA) were used to explore the potential functions of the DEGs,

which might indicate the causes of the difference between normal

people and AS patients. With the same consideration, the

protein–protein interaction (PPI) network analysis was also

adopted to investigate the interaction between the proteins

encoded by the DEGs (interaction score ≥0.4).

Immune microenvironment analysis

The “CIBERSORT” package was employed to investigate the

immune microenvironment (IME) of the samples. Meanwhile,

the correlations between the different types of immune cells and

the hub genes were also explored.

Statistical analyses

In this study, the R software v3.63 was used to process data and

generate charts. PPI network analyses were explored on the STRING

website (https://cn.string-db.org/) (interaction score ≥0.4) and

visualized by the Cytoscape software v3.7.1. Flexible statistical

methods were adopted for the statistical analyses.

Results

Clinical characteristics of enrolled
ankylosing spondylitis patients

The basic information of the samples from GSE73754 and

GSE18781 is shown in Table 1. The clinical characteristics such as

age and sex of the two sets were similar (p-value < 0.05).

Identification of hub genes

In total, 64 downregulated and 132 upregulated DEGs were

identified by “limma” in GSE73754 (Figure 1A). Also,
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278 downregulated and 345 upregulated DEGs were identified in

GSE25101 (Figure 1B). Then, the common upregulated and

downregulated genes were selected: three common

downregulated genes, namely, IL2RB, GZMM, and CXXC5

(Figure 1C), and four common upregulated genes, namely,

S100A12, ANXA3, PROS1, and ZDHHC18 (Figure 1D).

Taking GSE73754 as the training set, the p-values of the

seven genes in the univariate logistic regression were all lower

than 0.05, meaning that all seven genes were qualified for the next

screening. Then, they were screened by three different machine

learning algorithms. IL2RB, GZMM, S100A12, and ZDHHC18

were screened as hub genes by LASSO (λ = lambda.min) (Figures

1E,F). IL2RB and ZDHHC18 were screened as hub genes by

SVM-RFE (Figure 1G). ZDHHC18, CXXC5, PROS1, and IL2RB

were screened as hub genes by RF with

MeanDecreaseAccuracy >3 and MeanDecreaseGini >2
(mtry = 3, ntree = 200) (Figures 1H,I). Obviously, IL2RB and

ZDHHC18 were the common hub genes screened by the three

algorithms, and they were selected as the final hub genes for a

diagnostic model in AS.

Evaluation of diagnostic model in training
set (GSE73754) and GSE25101

A diagnostic model was established by IL2RB and ZDHHC18

and then visualized by a nomogram in GSE73754 (Figure 2A)

and GSE25101 (Figure 2B), respectively. The nomograms

suggested that the higher the expression level of ZDHHC18

was, the higher was the risk of AS, while the reverse was true

for IL2RB. The C-index of the diagnostic model in GSE73754 was

0.86 (95% CI: 0.76–0.96) and 0.84 (95% CI: 0.71–0.97) in

GSE25101. The calibration analyses showed that the predicted

probability was in high agreement with the observed probability,

suggesting a high accuracy of the model both in the training set

and an external validation set (Figures 2C,D).

The ROC analysis in GSE73754 showed that the areas under

the curves (AUCs) for the nomogram, IL2RB, and ZDHHC18

were 0.86, 0.83, and 0.83, respectively (Figure 2E). The optimal

truncation value of Y was 0.713, and the corresponding

specificity and sensitivity were 0.85 and 0.827, respectively

(formula: y = 2.9111*EXPZDHHC18 − 2.3256*EXPIL2RB −

2.2376, where EXPZDHHC18 refers to the expression value of

ZDHHC18 and EXPIL2RB refers to the expression value of

IL2RB). In this model, the value of Y ≥ 0.713, predicted to be

AS, was otherwise normal. The actual prediction accuracy of the

model in GSE73754 was 0.82. While in GSE25101, the AUCs for

the nomogram, IL2RB, and ZDHHC18 were 0.84, 0.79, and 0.76,

respectively (formula: y = 2.320,052*EXPZDHHC18 −

1.728,388*EXPIL2RB − 6.902,309) (Figure 2F). There were three

optimal truncation values for Y: 0.589 with a corresponding

specificity of 0.875 and sensitivity of 0.688, 0.521 with a

corresponding specificity of 0.75 and sensitivity of 0.812, and

0.452 with a corresponding specificity of 0.688 and sensitivity of

0.875. The actual prediction accuracy of the model in

GSE25101 was 0.72. The DCA for the nomogram and models

involved only one of these genes, which indicated that the net

benefit of the nomogram was higher than that of the other

models (Figures 2G,H).

Validation of model in independent cohort
and in vitro

The model was validated in an independent cohort,

GSE18781, and in vitro cohort, GSE11886. The nomogram

for GSE18781 supported the conclusion reached in the

training set that AS patients had a higher expression of

ZDHHC18 and lower expression of IL2RB (Figure 3A). The

function of IL2RB in GSE11886 was in accordance with that in

the other sets; however, the function of ZDHHC18 in vitro was

opposite to that in vivo, and this might have been due to the lack

of the in vivo microenvironment (Figure 3B). According to the

coverage of points in the nomogram, IL2RB showed higher

weight in the validation sets and the alteration between the

nomograms also indicated that it is a more robust indicator

than ZDHHC18. The C-index of the diagnostic model in

GSE18781 was 0.85 (95% CI: 0.73–0.96) and 0.89 (95% CI:

0.73–1.05) in GSE11886. The calibration analyses revealed that

the prediction accuracy of the model was lower than that in

GSE73754 and GSE25101; however, it still had acceptable

accuracy (Figures 3C,D).

TABLE 1 Clinical characteristics in training and validation sets.

Characteristics Level GSE18781 GSE73754 p-value Test

Sample size (n) 43 72

Sex Female 25 (58.1) 35 (48.6) 0.342 Fisher test

Male 18 (41.9) 37 (51.4)

Age, median (interquartile range) 45.0 [32.5, 58.5] 41.5 [28.8, 51.2] 0.324 Kruskal test

Group Normal 25 (58.1) 20 (27.8)

AS 18 (41.9) 52 (72.2)
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FIGURE 1
Screening for hub genes from DEGs between normal people and AS patients. The volcano plot for DEGs in GSE73754 (A) and GSE25101 (B):
x-axis represents log2 (fold change) of gene expressions in AS patients comparedwith normal controls, while the y-axis represents −log10 (p-value) of
gene expression between AS patients and normal controls. (C) Venn plot for downregulated DEGs in GSE73754 and GSE25101. (D) Venn plot for
upregulated DEGs in GSE73754 and GSE25101. (E) LASSO coefficient profiles for the seven common DEGs in the ten-fold cross-validations. (F)
Partial likelihood deviance with changing of log(λ) plotted by LASSO regression in ten-fold cross-validations. (G) Filtering characteristic genes using
the SVM-RFE algorithm: accuracy for models with different numbers of variables: the x-axis represents the number of variables involved in the
models and the y-axis represents the corresponding accuracy of cross-validation of the models. (H) Relationship between the number of decision
trees and the error rate of the model in RF. (I) Selecting hub genes by variable importance measures for RF.
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FIGURE 2
Evaluating the diagnostic model in the training set and a related validation set. Nomograms for the diagnostic model in GSE73754 (A) and
GSE25101 (B). Calibration plots for the diagnostic model in GSE73754 (C) and GSE25101 (D): x-axis represents the predicted probability of AS by the
model, while the y-axis represents the observed probability of AS, the diagonal (dashed line) represents the ideal status that the predicted probability
equaled the observed probability, and the solid and dotted lines represent the apparent and bias-corrected statuses of the predicted and
observed probabilities, respectively. ROC plots for the diagnostic model in GSE73754 (E) and GSE25101 (F): the x-axis represents 1-specificity of the
model, while the y-axis represents the sensitivity of the model. DCA in GSE73754 (G) and GSE25101 (H): the x-axis represents the threshold
probability for the treatment or intervention, while the y-axis represents the net benefit.
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FIGURE 3
Validating the diagnostic model in validation sets. Nomograms for the diagnostic model in GSE18781 (A) and GSE11886 (B). Calibration plots for
the diagnostic model in GSE18781 (C) and GSE11886 (D): the x-axis represents the predicted probability of AS by the model, while the y-axis
represents the observed probability of AS. The diagonal (dashed line) represents the ideal status that the predicted probability equaled the observed
probability, and the solid and dotted lines represent the apparent and bias-corrected statuses of the predicted and observed probabilities,
respectively. ROC plots for the diagnostic model in GSE18781 (E) and GSE11886 (F): the x-axis represents 1-specificity of the model, while the y-axis
represents the sensitivity of the model. DCA in GSE18781 (G) and GSE11886 (H): the x-axis represents the threshold probability of the treatment or
intervention, while the y-axis represents the net benefit.

Frontiers in Genetics frontiersin.org07

Wen et al. 10.3389/fgene.2022.1032010

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1032010


FIGURE 4
Functional analysis of the DEGs between normal people and AS patients. Dot plots for GO (A) and KEGG (B) analyses of DEGs. (C) Circle plot for
BP clustering of the DEGs. (D) GSEA analysis for the DEGs. (E) Chord plot for the top seven clustered GO terms. (F) Chord plot for the top seven
clustered KEGG pathways. (G) PPI network analysis for DEGs.
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The ROC analysis in GSE18781 revealed that the areas under

the curves (AUCs) for the nomogram, IL2RB, and ZDHHC18

were 0.85, 0.79, and 0.67, respectively (Figure 3E). The optimal

truncation value of Y was 0.305, and the corresponding

specificity and sensitivity were 0.72 and 0.994, respectively

(formula: y = 1.29499*EXPZDHHC18 − 2.582,298*EXPIL2RB +

20.055204). The actual prediction accuracy of the model in

GSE18781 was 0.72. While in GSE11886, the AUCs for

nomogram, IL2RB, and ZDHHC18 were 0.89, 0.89, and 0.65,

respectively (formula: y = −6.49159*EXPZDHHC18 −

6.13506*EXPIL2RB − 0.01334) (Figure 3F). The optimal

truncation value of Y was 0.395, and the corresponding

specificity and sensitivity were 0.778 and 1, respectively. The

actual prediction accuracy of the model in GSE11886 was 0.76.

The DCA showed that patients could get a high net benefit from

the nomogram (Figures 3G,H). Besides, a high net benefit could

also be obtained from the model established by IL2RB only in

this set.

Results of functional analysis of
differentially expressed genes between
normal and ankylosing spondylitis groups

There was a total of 196 DEGs between normal people and

AS patients in GSE73754. Biological process (BP) clustering of

the DEGs showed that they were mainly clustered in

neutrophil activation, degranulation, immune response, and

migration (Figure 4A). Myeloid cell differentiation, leukocyte

migration, and granulocyte migration were also clustered BPs.

Gene clustering of cellular components (CC) was mostly in the

area of membranes, such as endocytic vesicles, secretory

granule membranes, membrane microdomains, and

cytoplasmic vesicle lumens (Figure 4A). Molecular

functions (MFs) of the DEGs were mostly clustered in

serine-type peptidase activity, serine hydrolase activity,

serine-type endopeptidase activity, and MHC protein

complex binding (Figure 4A). In the KEGG clustering of

the DEGs, the hematopoietic cell lineage, human T-cell

leukemia virus 1 infection, Th1 and Th2 cell

differentiation, and Th17 cell differentiation were the top

clustered pathways (Figure 4B). The circle plot for BP

clustering showed that neutrophil activation, degranulation,

immune response, and migration were upregulated in AS

(Figure 4C). By GSEA, antigen processing and presentation,

natural killer cell–mediated cytotoxicity, graft-versus-host

disease, Epstein–Barr virus infection, and rheumatoid

arthritis were the top enriched gene sets, which were all

downregulated in AS patients (Figure 4D). The top three

upregulated pathways enriched with core enrichment genes

were neutrophil extracellular trap formation, complement and

coagulation cascades, and the rap1 signaling pathway. The GO

chord plot showed thatDYSF,DMTN, ITGA2B,MAGT1, SPI1,

CXCL8, ID2, CD81, IKZF1, and many others were involved in

the top seven GO terms (Figure 4E). The KEGG chord plot

showed that ITGA2B, SPI1, ANPEP, BCL2L1, STAT5B, IL2RB,

GZMB, HLA-DQA2, CXCL8, and many more were involved in

the top seven KEGG terms (Figure 4F).

The PPI network of the proteins encoded by DEGs showed

that MMP1, ID2, MBD4, GNLY, EOMES, PUF60, and

APOBEC3G were seed proteins in the network by the

MCODE application in Cytoscape (Figure 4G). The cyan

nodes were also pivotal nodes in the net, such as IL2RB,

GZMA, SPI1, and many others. Then, GZMA, IL2RB,

CD247, KLRB1, GZMH, GZMB, GZMK, KLRD1, NKG7,

and GNLY were the top 10 hub proteins screened by

cytoHubba.

Results of immune microenvironment
analyses

IME analyses were performed in GSE73754, GSE25101, and

GSE18781 by CIBERSORT. The proportions of the 22 immune

cells for samples are shown in Figures 5A–C. In all three sets, the

neutrophils and monocytes accounted for the top two highest

proportions and together made up the majority of the immune

cells, while the other immune cells such as granulocytes, B cells,

dendritic cells, and macrophages each made up only a small

proportion of the total immune cell population. The relative

quantities of different immune cells in normal people and AS

patients are shown in Figures 5D–F. In GSE73754, when

compared with the normal subjects, there were more

neutrophils and naive CD4 T cells detected in the blood of AS

patients, while there were fewer resting NK, CD8+ T, and

gamma-delta T cells (Figure 5D). In GSE25101, monocytes

were found to be more in the blood of AS patients, while

regulatory T cells (Tregs) were fewer. In this set, the relative

number of neutrophils was more in the AS group; however, the

difference was not statistically significant (Figure 5E). The result

in GSE18781 was similar to that in GSE73754; the relative

number of neutrophils was increased, while that of CD8+ and

gamma-delta T cells was decreased in patients with AS

(Figure 5F).

The correlation between our hub genes (IL2RB and

ZDHHC18) and immune cells was also explored. In

GSE73754, the expression of IL2RB was positively correlated

with the relative numbers of resting NK, CD8+ T, and gamma-

delta cells (Figures 6A–C) and negatively correlated with the

relative numbers of neutrophils, naive CD4 T cells, and

monocytes (Figures 6D,E). Meanwhile, the expression of

ZDHHC18 was positively correlated with the relative number

of neutrophils (Figure 6F) but negatively correlated with the

relative numbers of CD8+ T cells and resting NK cells (Figures

6G,H). In GSE25101, the expression of IL2RB was positively

correlated with the relative numbers of resting NK and activated
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CD4+ memory T cells (Figures 6I,J) and negatively correlated

with the relative number of monocytes (Figure 6K). Besides, the

expression of ZDHHC18 was positively correlated with the

relative number of neutrophils (Figure 6L) but negatively

correlated with the relative number of activated NK cells

(Figure 6M). There was no significant correlation between

Tregs and the hub genes. Lastly, in GSE18781, the expression

of IL2RB was positively correlated with the relative numbers of

resting NK and CD8+ T cells (Figures 6N,O) and negatively

correlated with the relative number of neutrophils (Figure 6P).

Moreover, the expression of ZDHHC18 was positively correlated

with the relative number of neutrophils (Figure 6Q) but

negatively correlated with the relative quantities of CD8+,

gamma-delta, and activated CD4+ memory T cells

(Figures 6R–T).

Discussion

It is known that AS is an inflammatory disease mainly

involving the axial skeleton’s joints and entheses. The essential

change in AS is the dysregulation of inflammation by innate and

adaptive immune responses (Mauro et al., 2021). Although AS is

primarily associated with the axial skeleton, recent research

indicates that it may be initiated in the gut (Yang et al.,

2016a). Besides, the peripheral and extra-articular

manifestations of AS also suggest that it is a systemic

disorder. Therefore, DEGs in the peripheral blood of AS

patients can also reflect some features of AS. As for RNAs

extracted from the peripheral blood, they are mostly from the

nucleated cells in the blood, similar to leukocytes and immature

red blood cells; so, it is rational to explore the immune

FIGURE 5
The IME analysis of the sets by CIBERSORT. The proportion of the 22 immune cells for samples in GSE73754 (A), GSE25101 (B), and
GSE18781 (C). Boxplots for the 22 immune cells between normal people and AS patients in GSE73754 (D), GSE25101 (E), and GSE18781 (F) (p
significance level: no significance (ns), p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.).
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FIGURE 6
Correlation between hub genes and IME cells. The correlation between the expression of IL2RB and the estimated proportion of resting NK cells
(A), CD8+ T cells (B), gamma-delta T cells (C), neutrophils (D), and native CD4 T cells (E) by CIBERSORT in GSE73754. The correlation between the
expression of ZDHHC18 and the estimated proportions of neutrophils (F), CD8+ T cells (G), and resting NK cells (H) by CIBERSORT in GSE73754. The
correlation between the expression of IL2RB and the estimated proportions of resting NK cells (I), activated CD4+ memory T cells (J), and
monocytes (K) by CIBERSORT in GSE25101. The correlation between the expression of ZDHHC18 and the estimated proportions of neutrophils (L)
and activated NK cells (M) by CIBERSORT in GSE25101. The correlation between the expression of IL2RB and the estimated proportions of resting NK
cells (N), CD8+ T cells (O), and neutrophils (P) by CIBERSORT in GSE18781. The correlation between the expression of ZDHHC18 and the estimated
proportions of neutrophils (Q), CD8+ T cells (R), gamma-delta T cells (S), and activated CD4+ memory T cells (T) by CIBERSORT in GSE18781.
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microenvironment of the blood of AS patients. More

importantly, compared with the focal tissue, the peripheral

blood is easier to obtain and a more commonly used clinical

detection material, which is also conducive to the transition from

experimental results to applications.

To date, HLA-B27 is still considered the most important

factor in the pathogenesis of AS (Colbert et al., 2010; Bowness,

2015; Pedersen and Maksymowych, 2019; Sharip and Kunz,

2020; Voruganti and Bowness, 2020). First, many shreds of

evidence supported the hypothesis that the alternation of the

amino acid sequence in the antigenic peptide-binding groove of

HLA-B27 might induce changes in the binding specificity of

peptides and result in CD8+ T cell–mediated immune cross-

reactivity in the AS focus (Mear et al., 1999; Guiliano et al., 2017).

Second, endoplasmic reticulum stress was induced by the

accumulation of misfolded HLA-B27, which led to an

unfolded protein response (UPR) and autophagy (Yu et al.,

2017). Third, the HLA-B27 homodimer hypothesis suggests

that the HLA-B27 homodimer could activate CD8+ T cells

and NK cells by the specific receptors on their surfaces,

activating the IL-23/IL-17 axis (Bowness et al., 2011).

Certainly, there were also many other hypotheses, such as the

non-MHC hypothesis. However, the point of intersection is that

all the hypotheses are focused on the antigen-presenting process,

and its failure or dysfunction would mostly result in the

activation of the TNF signaling pathway and the IL23/

IL17 axis and eventually lead to the AS phenotype. However,

the sensitivity and specificity of HLA-B27 alone were

relatively low.

Here, to enhance the reliability and stability of the results,

only common genes screened by the three machine learning

algorithms were selected as hub genes for a diagnostic model. The

three methods used in our study are the most popular and widely

used ones in bioinformatics analyses. Currently, deep learning

methods are also popular in bioinformatics analyses, and some of

them can even generate different methods based on machine

learning techniques such as BioSeq-BLM and ilearn. However,

they are limited by the quantity and quality of the training data

and are more suitable for large data processing (Choi et al., 2020).

The data used in our study are small; so, the three machine

learning methods could be more suitable. Meanwhile, deep

learning methods are more complex, time-consuming, have

high requirements for computer hardware, and have results

that are more difficult to interpret (Choi et al., 2020). Besides,

we validated the model in three different data sets: one related

data set, one independent data set, and one data set of in vitro

samples to further assess the predictive reliability and stability of

the model. The C-index, calibration analysis, ROC analysis, and

DCA in the training and validation sets suggested that it is an

excellent diagnostic model with good applicability.

Functional analyses of DEGs and IME analyses indicated that

neutrophil activation, migration, and degranulation were

activated in AS patients. Also, the relative number or

proportion of neutrophils was significantly higher in AS

patients. Our result is also confirmed by other researchers

who have also suggested that the neutrophil-to-lymphocyte

ratio be used as an indicator of AS activity (Mercan et al.,

2016; Xu et al., 2020; Gökmen et al., 2015). Meanwhile,

neutrophil extracellular trap formation and the complement

and coagulation cascades were also upregulated in AS, which

might induce an autoimmune response, and this is in agreement

with the IME analysis result and our current understanding of AS

(Gonnet-Gracia et al., 2008; Yang et al., 2016b). A potential

explanation for the aforementioned finding is that the increased

number of neutrophils might release excessive IL-17A, the key

cytokine in the pathogenesis of AS. Although mature neutrophils

lack the transcriptional machinery to produce IL-17A, they could

produce and store IL-17A before they mature and accumulate it

from the extracellular environment (Lin et al., 2011; Tamassia

et al., 2018). Besides, in GSE25101, monocytes were also found to

be more numerous in AS patients with DEGs clustered in

myeloid cell differentiation and leukocyte migration in GO

clustering. It is known that monocytes share some similar

functions with neutrophils in immune response, and there

have also been reports that the monocyte-to-lymphocyte ratio

was increased in AS patients (Huang et al., 2018; Wang et al.,

2021; Liang et al., 2021). Whether or not the increments in the

number of lymphocytes and monocytes are two different

subtypes of AS remains unknown.

Lastly, IL2RB is a hub gene both inGO/KEGG clustering and the

PPI network analysis. Its expressionwas positively correlatedwith the

relative quantities/proportions of resting NK cells and negatively

correlated with the relative quantities/proportions of neutrophils and

monocytes in our study, which is in line with the data from the

Human Protein Atlas (HPA) website (Karlsson et al., 2021)

(Figure 7A: available from v21.1.proteinatlas.org, https://www.

proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type).

While ZDHHC18 was observed to be positively correlated with the

relative quantities/proportions of neutrophils in all three sets, it did

not seem to be highly expressed in granulocytes based on the data

from the HPA website (Karlsson et al., 2021) (Figure 7B: available

from v21.1.proteinatlas.org, https://www.proteinatlas.org/

ENSG00000100385-IL2RB/single+cell+type). Above all, our results

suggests that IL2RBmight be correlated with AS via the suppression

of the function of resting NK cells, and ZDHHC18 might be

correlated with AS through the function of neutrophils; however,

the detailed underlying mechanism still needs to be studied further.

In this study, IL2RB and ZDHHC18 were the two finally

screened hub genes. The former had already been identified by

other researchers as one of the hub genes in AS (Zhu et al., 2013;

Zheng et al., 2021), while to the best of our knowledge, the latter

was first reported here by us. IL2RB, interleukin 2 receptor

subunit beta, encoded the beta subunit of a heterodimer or

heterotrimer receptor involved in T cell–mediated immune

responses and is probably involved in the stimulation of

neutrophil phagocytosis by IL15 (Ratthé and Girard, 2004;
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Zhang et al., 2019). This protein is a type-I membrane protein

primarily expressed in NK cells, T cells, and dendritic cells.

According to the KEGG database (https://www.kegg.jp/),

IL2RB was involved in many pathways, which include

endocytosis, the PI3K-Akt signaling pathway, the JAK-STAT

signaling pathway, Th1 and Th2 cell differentiation, Th17 cell

differentiation, and many more. Obviously, Th1 and Th2 cell

differentiation and Th17 cell differentiation seemed to be most

related to AS, such that IL2 signaling can inhibit the

differentiation of Th17 via the inhibition of the transcription

factor RORγt (Waldmann, 2006; Soper et al., 2007; Liao et al.,

2011; Allard-Chamard et al., 2020; Pol et al., 2020). Therefore,

with the downregulation of IL2RB in this study, Th17 was

anticipated to be expanded. However, Th1 and Th2 cell

differentiation and Th17 cell differentiation were observed to

be downregulated in GSEA (Figure 6D), which is contradictory to

our knowledge of AS; therefore, something should be noticed. On

the one hand, the pathogeneses of changes in AS are mainly

involved in the focus of AS, not in the circulatory system, and our

knowledge was largely based on that; so, it might be common for

samples from the two sites to have some differences. On the other

hand, the role of IL2 signaling in the differentiation of Th17 has

still not been fully clarified (Campbell and Bryceson, 2019). The

question is what was the minimum IL2 signal required to

maintain the Treg numbers. Isabel Z Fernandez et al. reported

a hypomorphic mutation of IL2RB in two infant siblings that

resulted in an anticipated reduction in Tregs and an expansion of

immature NK cells (Fernandez et al., 2019). Here, in two of the

three sets, the relative numbers of CD8+ and gamma-delta T cells

were decreased, while that of Tregs was not significantly reduced,

which might indicate that the reduced IL2 signal was still

adequate for the proliferation of Tregs and the suppression of

effector T-cell expansion (Figures 5D,F). Besides, via the

blockade of IL-2 in vitro and in vivo, Kenjiro Fujimura et al.

found that the number of Th17 cells did not significantly increase

but the proportion of Th17 cells did, which suggests that it might

increase the proportion of Th17 by suppressing the total number

of immune cells (Fujimura et al., 2013). In this study, the

numbers of certain kinds of T cells, such as CD8+ T cells

gamma-delta T cells, and Tregs, were observed to have

FIGURE 7
Expression of hub genes in different single-cell types of normal subjects from the HPA website (Karlsson et al., 2021). (A) Expression of IL2RB in
different single-cell types (available from v21.1. proteinatlas.org: https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). (B)
Expression of ZDHHC18 in different single-cell types (available from v21.1. proteinatlas.org: https://www.proteinatlas.org/ENSG00000204160-
ZDHHC18/single+cell+type).
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decreased in AS patients, and this might overwhelm the effect of

the downregulation of Th17 cell differentiation. However, to see

which type of immune cells became fewer and if this would affect

the synthesis of IL17 by Th17 cells in AS patients requires further

research. In the end, although the potential function of IL2RB in

AS remains unclear, it might contribute to AS by reducing the

number of Treg cells and relatively increasing the proportion of

Th17 cells, thereby activating the IL17 signaling to form AS

phenotypes.

ZDHHC18, zinc finger DHHC-type palmitoyltransferase 18,

encoded a palmitoyltransferase, which was involved in peptidyl-

L-cysteine S-palmitoylation (Ohno et al., 2012). Studies on

ZDHHC18 are rare and insufficient. Currently, it is reported

to be associated with innate immunity (Shi et al., 2022), glioma

(Chen et al., 2019), ovarian cancer (Pei et al., 2022), and

schizophrenia (Zhao et al., 2018). The common palmitoylation

substrates of ZDHHC18 are HRAS and LCK (Baumgart et al.,

2010; Akimzhanov and Boehning, 2015; Adachi et al., 2016).

Palmitoylated HRAS could be translocated and stably anchored

to the plasma membrane (Yang et al., 2020), while

palmitoylation-defective HRAS was trapped in the Golgi

apparatus and was unable to traverse to the plasma

membrane. Meanwhile, ZDHHC18 could activate the

rap1 signaling pathway by the palmitoylation of Ras and

promote the proliferation of cells, which was consistent with

our GSEA result. Besides, Rac1, which was also involved in the

rap1 signaling pathway mainly by regulating cell adhesion,

migration, and polarity, could also be palmitoylated by the

ZDHHC family (Yang et al., 2020). Though we currently do

not know the exact role of ZDHHC18 in AS, it is essential for

neutrophil motility as well as directional sensing during

migration, which was clustered by GO clustering in our study.

In addition, the palmitoylation of LCK could promote T-cell

receptor signaling to activate T cells, although this was not seen in

our study, which meant that it is not important in the

pathogenesis of AS. Furthermore, ZDHHC18 could negatively

regulate CGAS-STING signaling–mediated antiviral innate

immunity via the palmitoylation of cGAS, which means that

the antiviral immunity in AS patients might be impaired by the

high expression of ZDHHC18 (Shi et al., 2022). In our study,

KEGG and GSEA also indicated dysregulation in some antiviral

immune pathways.

In general, our study indicated that IL2RB might be

involved in the pathogenesis of AS through the IL2

signaling pathway and ZDHHC18 through the

rap1 signaling pathway. Both of these could be used as

potential biomarkers in AS. Meanwhile, it should also be

noted that although we explored some changes in RNA

expression in the peripheral blood of AS patients, it is only

just the tip of the iceberg. Therefore, more validations of the

two genes in AS patients are required, and the mechanisms of

these two genes in the pathogenesis of AS also require further

research. These are the two main directions of our subsequent

research.

Conclusion

IL2RB and ZDHHC18 were identified as potential blood

biomarkers of AS, which might be used for the early diagnosis

of AS and serve as supplements to the existing diagnostic

methods. Our study helps deepen the understanding of the

pathogenesis of AS.
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