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1  | INTRODUC TION

Color signals play an important role in visual signaling and commu‐
nication throughout the animal kingdom. The wide variety of bright 
and conspicuous colors observed in birds make avian systems ideal 
for studying the signaling functions of color. There is abundant ev‐
idence for overall coloration and color patches acting as signals in 

important behavioral interactions such as mate choice (Hill, 2006), 
intrasexual competition (Senar, 2006), and parental provisioning 
(Kilner, 2006). Color signals convey information regarding the physi‐
cal state of individuals such as growth rate (Doucet & Montgomerie, 
2003), parasite loads (Mougeot, Redpath, & Leckie, 2005), immune 
response (Griggio, Hoi, & Pilastro, 2010; Jourdie, Moureau, Bennett, 
& Heeb, 2004; Peters, Denk, Delhey, & Kempenears, 2004), and 
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Abstract
Color‐based visual signals are important aspects of communication throughout the 
animal kingdom. Individuals evaluate color to obtain information about age and con‐
dition and to behave accordingly. Birds display a variety of striking, conspicuous 
colors and make ideal subjects for the study of color signaling. While most studies of 
avian color focus on plumage, bare unfeathered body parts also display a wide range 
of color signals. Mate choice and intrasexual competitive interactions are easily ob‐
served in lekking grouse, which also signal with prominent unfeathered color patches. 
Most male grouse have one pair of colorful bare part ornaments (combs), and males 
of several species also have inflatable air sacs in their throat. Previous studies have 
mostly focused on comb color and size, but little is known about the signaling role of 
air sac color. We measured comb size and the color properties of combs and air sacs 
in the Lesser and Greater Prairie‐Chickens (Tympanuchus pallidicinctus and T. cupido, 
respectively), and investigated whether these properties varied with age and mass. 
We found that mass predicted color properties of air sacs and that age predicted 
comb size in the Greater Prairie‐Chicken, suggesting that these ornaments indicate 
condition dependence. No conclusive relationships between color and age or size 
were detected in the Lesser Prairie‐Chicken. Color properties of both ornaments dif‐
fered between the two species. Further research is needed to determine mechanisms 
that link condition to color and whether the information advertised by color signals 
from these ornaments is intended for males, females, or both.
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testosterone levels (Peters, Delhey, Goymann, & Kempenears, 2006; 
Roberts, Ras, & Peters, 2009). Color expression predicts outcomes 
with critical fitness implications, such as probability of survival 
(Sheldon,	Andersson,	Griffith,	Örnborg,	&	Sendecka,	1999),	latency	
to establish a territory (Siefferman & Hill, 2005; Siitari & Huhta, 
2002), likelihood of experiencing cuckoldry (Delhey, Johnsen, Peters, 
Andersson,	 &	 Kempenaers,	 2003),	 and	 ability	 to	 secure	 extrapair	
mating (Freeman‐Gallant et al., 2010; Sirkiä & Laaksonen, 2010).

Models of honest advertisement predict that overall coloration 
and ornamental size and color can act as reliable signals of male con‐
dition. These models are most often applied to sexual selection and 
lead to the hypothesis that females prefer to mate with maximally 
ornamented males in order to procure “good genes” for their off‐
spring (Hamilton & Zuk, 1982; Kodric‐Brown & Brown, 1984; Zahavi, 
1975). Honest advertisement models also apply to signals used in 
male–male competition, as signal interpretation can influence de‐
cisions to escalate agonistic encounters or adjust display intensity 
(Grafen, 1990). Theoretical support for honest advertisement mod‐
els is based on the assumption that the expression of ornaments is 
condition‐dependent (Borgia, 1979, Pomiankowski & Møller, 1995, 
Rowe	&	Houle,	1996,	 reviewed	 in	Kotiaho	&	Puurtinen,	2007).	As	
expected, abundant empirical evidence has shown that color signals 
reliably advertise condition in a variety of avian families (Dobson et 
al., 2008; Doucet, 2002; Griggio, Hoi, & Pilastro, 2010; Keyser & Hill, 
1999; Zirpoli, Black, & Gabriel, 2013).

Color can also convey age, and the perception of age influences 
many social decisions in birds and other taxa. Females prefer to mate 
with older males (Beck & Powell, 2000; Manning, 1985), so the eval‐
uation and comparison of color‐based signals can therefore allow 
females to identify males that are older and therefore preferred 
(Brooks & Kemp, 2001; Kokko, 1988; Proulx, Day, & Rowe, 2002). 
Older male birds often display larger or more colorful patches to 
advertise their dominance (Rohwer, 1977), while younger birds may 
benefit from honest advertisement of their youth through color sig‐
naling by experiencing reduced aggression from more experienced 
rivals (Senar, 2006).

Although	the	signaling	function	of	avian	color	has	been	widely	
studied, most published studies have focused on the signaling 
characteristics of plumage (Hawkins, Hill, & Mercadante, 2012; 
Hill, 2006; LaFountain, Prum, & Frank, 2015; McGraw, 2006); 
the role of color arising from bare parts such as bills, legs, and 
skin has received considerably less attention (Iverson & Karubian, 
2017). The Lesser Prairie‐Chicken (Tympanuchus pallidicinctus) 
and Greater Prairie‐Chicken (T. cupido) are promiscuous grouse 
which copulate and engage in aggressive intrasexual interactions 
on aggregated leks. Males of these species exhibit two pairs of 
brightly colored fleshy ornaments which are featured prominently 
in mating displays—supraorbital combs and esophageal inflatable 
apteria (hereafter “air sacs”). These color ornaments contrast 
strongly against their otherwise cryptic plumage which helps to 
camouflage prairie‐chickens in their grassland habitat. It is there‐
fore likely that these color patches fulfill an important signaling 
role. Copulation events and intrasexual dominance encounters are 

easily observed on aggregated leks, and thus, these species are 
well suited for studying the relationship between color expression, 
individual characteristics, and behavior.

Age	predicts	mating	success	in	lekking	grouse	(Alatalo,	Höglund,	
Lundberg, & Sutherland, 1992) including the Lesser Prairie‐Chicken 
(Behney, Grisham, Boal, Whitlaw, & Haukos, 2012), possibly because 
yearlings may lower their reproductive effort and subsequently 
benefit from higher survival (Hagen, Pitman, Sandercock, Robel, 
&	Applegate,	 2005).	 Comb	 size	 and	 condition	 predict	mating	 suc‐
cess in several grouse species (Hannon & Eason, 1995; Holder & 
Montgomerie, 1993; Rintamäki et al., 2000) including the Greater 
Prairie‐Chicken	(Augustine,	Millspaugh,	&	Sandercock,	2011;	Nooker	
& Sandercock, 2008). The size of grouse combs also correlates with 
hormonal status (Moss et al., 1979; Stokkan, 1979a), decreased 
endoparasite	 loads	 (Vergara,	 Mougeot,	 Martíınez‐Padilla,	 Leckie,	
& Redpath, 2012), mating success (Hannon & Wingfield, 1990), 
social rank (Gjesdal, 1977; Holder & Montgomerie, 1993; Myhre, 
1980; Stokkan, 1979b), and the ability to hold territories (MacColl, 
Piertney, Moss, & Lambin, 2000). Fewer studies have examined pos‐
sible effects of comb color properties, and most of these focused 
on the relationship between color and parasites (Mougeot, Redpath, 
& Leckie, 2005, Martínez‐Padilla, Mougeot, Pérez‐ Rodríguez, 
& Bortolotti, 2007, Martínez‐Padilla, Mougeot, Webster, Pérez‐ 
Rodríguez, & Piertney, 2010, Mougeot, Martínez‐Padilla, Bortolotti, 
Webster, & Piertney, 2010, but see Yang, Wang, Fang, & Sun, 2013, 
Harris, 2016).

The role of the visual properties of air sacs in intraspecific com‐
munication has only been examined in the Greater Sage‐Grouse 
(Centrocercus urophasianus). In this species, females avoided males 
whose air sacs had hematomas which were possibly caused by louse 
infestation (Johnson & Boyce, 1990), and females also avoided 
males with artificially applied hematomas in laboratory mate choice 
trials (Spurrier, Boyce, & Manly, 1991). The three species in the 
Tympanuchus genus display esophageal air sacs, but there has been 
no study of the relationship between the color properties of these 
fleshy structures and age or physical characteristics such as body 
mass or size in these species. More generally, the color signaling 
functions of bare parts in birds are much less studied relative to 
plumage‐based color signaling, and this study attempts to address 
this gap through quantitative assessment of bare part color signals.

Here, we investigated whether comb size, comb color, and air 
sac color are predicted by age or mass in the Lesser and Greater 
Prairie‐Chickens. We tested if color signals correlate with mass and 
age differentially between the two species. Because age and condi‐
tion are expected to be assessed by conspecifics in both intra‐ and 
intersexual contexts, we expected age and condition to predict the 
color properties of prominently displayed ornaments. If so, these 
ornaments may act as reliable signals for evaluation. Due to the im‐
portance of age in grouse mating systems, we predicted that older 
males would have larger combs and that their ornaments would be 
brighter and have increased saturation. We also expected that males 
in better condition (i.e., heavier) would have greater ability to allo‐
cate resources to ornamental structures and therefore we predict 
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that heavier males would have larger, brighter, and more color‐satu‐
rated combs. Finally, we expected that comb characteristics would 
vary with age and size in both species.

2  | METHODS

2.1 | Study species

The Lesser and Greater Prairie‐Chickens are obligate grassland 
grouse (Subfamily Tetraonidae). Males of both species perform mat‐
ing displays on aggregated leks during the breeding season (Wiley, 
1974). Stereotyped displays are characterized by rapid foot stomp‐
ing, extension of pinnae feathers above the head, and postures 
featuring tail fanning and wing spreading. Intrasexual agonistic 
interactions occur in both sexes although they are more common 
and more intense in males (Hjorth, 1970; Sharpe, 1968). Males of 
both species have two pairs of unfeathered secondary ornaments. 
Supraorbital combs are raised as a result of increased blood flow to 
the tissues (Hollett, Thomas, & MacDonald, 1984) and are usually 
visible	when	males	are	in	attendance	at	leks.	Air	sacs	are	inflated	to	
produce vocalizations through the contraction of specialized mus‐
cles in a broadened portion of the esophagus (Potapov & Sale, 2013).

There are several differences in appearance between the two 
species. Greater Prairie‐Chickens are larger and have darker plum‐
age overall, and bars on belly feathers are wider and extend further 
toward the tail (Short, 1967). Greater Prairie‐Chickens have larger 
air sacs which appear orange, while the smaller air sacs of Lesser 
Prairie‐Chickens have a reddish appearance (Jones, 1964; Sharpe, 
1968; Figure 1). Display vocalizations produced by inflation of the air 
sacs are easily distinguished with Greater Prairie‐Chickens sound‐
ing long low frequency notes, while Lesser Prairie‐Chickens produce 
higher frequency short bursts often referred to as “gobbling” (Jones, 
1964).

2.2 | Field methods

We measured comb and air sac color of live male Lesser (N = 100) 
and Greater Prairie‐Chickens (N = 24) captured on leks during the 
breeding season in the spring of 2012–2013 and 2016–2018. Males 
were trapped opportunistically using mechanical drop nets on leks in 

Trego,	Gove,	and	Riley	Counties	in	Kansas,	USA.	Each	bird	was	aged	
as a yearling (first breeding season, Lesser Prairie‐Chicken N = 41; 
Greater Prairie‐Chicken N = 8) or an adult (subsequent breeding 
seasons, Lesser Prairie‐Chicken N = 59, Greater Prairie‐Chicken 
N = 16) using the shape and coloration of the outermost wing feather 
(Copelin, 1963). We recorded the mass of each bird (±1 g) with a digi‐
tal scale (Ohaus) and used digital calipers to measure the length and 
height of combs (±0.01 mm).

We	 used	 a	 portable	 JAZ	 Ocean	 Optics	 spectrometer	 with	 a	
pulsed xenon light source to obtain reflectance spectra spanning 
the visible and UV portions of the electromagnetic spectrum (300–
700 nanometers), which corresponds to the UV sensitivity of birds in 
the order Galliformes (Bowmaker, Heath, Wilkie, & Hunt, 1997; Hart, 
Partridge, & Cuthill, 1999; Wortel, Rugenbrink, & Nuboer, 1987). The 
probe was connected to the processing unit with a fiber optic cable 
and was mounted within a holder to ensure that all readings were 
taken at a 45 degree angle, 10 mm from the skin being measured. 
All	measurements	were	taken	relative	to	a	>98%	white	reflectance	
standard (PTFE optical diffuser). We obtained at least three spec‐
tra from 1 mm diameter areas from one comb and air sac for each 
male, repositioning the probe for each reading resulting in a total of 
at	least	six	readings	for	each	individual.	All	experimental	procedures	
were conducted under the approval and guidance of The Ohio State 
University's	 Institutional	Animal	Care	 and	Use	Committee	 (IACUC	
Protocol	#	2011A00000023	and	2013A00000013)	and	under	per‐
mits issued by the Kansas Department of Wildlife, Parks and Tourism 
(Permit # SC‐016‐2012, SC‐029‐2013, SC‐048‐2016, SC‐038‐2017, 
and SC‐060‐2018).

2.3 | Quantification of color within avian 
(tetrahedral) color space

Although	color	stimuli	are	often	quantified	based	on	the	shape	and	
position of spectra obtained from color patches (colorimetric vari‐
ables), color stimuli can also be described using visual modeling tech‐
niques which quantify the stimuli as they would be perceived by the 
visual	 system	of	 the	 focal	 species.	Analyses	 of	 this	 type	 are	 pref‐
erable for studies which aim to link behavioral responses to color 
stimuli, as they provide a better approximation of how the receiv‐
ers perceive these stimuli. Burkhardt (1989) and Goldsmith (1990) 

F I G U R E  1   Color ornaments above 
the eye (comb) and in the throat (air sac) 
in the Greater (left) and Lesser (right) 
Prairie‐Chickens Geoffrey M. Gould took 
the photos
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described a tetrahedral color space for the avian visual system in 
which any source of light, such as a spectrum or average of several 
spectra, can be plotted as a point within a tetrahedron (Figure 2). 
Each corner of the tetrahedron corresponds to one of the four types 
of color receptors (ultraviolet/violet, short wave, medium wave, and 
long wave), and the distance from the point representing the light 
source to each vertex of the tetrahedron is based on the expected 
absorption of each of the four types of receptors, which is a func‐
tion of wavelength (Vorobyev & Osoroio, 1998). In addition, color 
perception is affected by factors extrinsic to the stimulus and visual 
system such as ambient light conditions (Endler & Mielke, 2005).

The pavo package in R (Maia, Eliason, Bitton, Doucet, & Shawkey, 
2013) provides a computational framework which allows for the ex‐
traction of traditional color variables such as hue, brightness, and 
saturation from input full spectrum data, in addition to modeling 
color within a variety of color spaces such as the avian tetrahedral 
color space. In our analysis of the relationship between color and 
condition or age, we chose variables based on the tetrahedral color 
space to account for bimodal spectra such as those arising from 
prairie‐chicken ornaments (Figures 3 and 4). The three chromatic 
variables we used describe the length and angle of the vector that 
connects the point representing the color stimulus in tetrahedral 
space to the origin of the tetrahedron. Hue is described by two vari‐
ables: φ (UV hue) describes the vertical angle of the vector relative 
to the plane formed by the X‐ and Y‐axes of the tetrahedron, and θ 
(non‐UV or RGB hue) describes the horizontal angle of the vector 
relative to the positive X‐axis (spectra with higher θ values are lo‐
cated further from the X‐axis in the direction of the line connecting 
the medium and short wave vertices in Figure 2). Chroma or satura‐
tion is described by r‐achieved which is the ratio of the length of the 
vector to its maximum possible length for the given hue (Stoddard 
& Prum, 2008). Brightness (described by the “luminance” variable in 

pavo) is the achromatic component of a color signal and is a function 
of the intensity of a color signal's reflectance over the entire range 
of wavelengths under consideration (300–700 nm in our analysis). 
We obtained four measurements (UV hue(φ), non‐UV or RGB hue(θ), 
chroma or saturation (r‐achieved), and brightness (luminance)) for 
comb and air sac separately to obtain eight color variables for each 
individual bird.

While the precise spectral sensitivity of retinal cones has not 
been empirically determined for prairie‐chickens, avian color visual 
systems are often grouped into two broad categories: the passerine 
and	galliform	eye	(Cuthill	et	al.,	2000).	As	an	approximation	for	the	
prairie‐chicken visual system, we therefore used the relative cone 
abundances for the peafowl (Pavo cristatus) and domestic chicken 
(Gallus gallus domesticus) provided by the pavo package for chromatic 
and achromatic visual perception properties, respectively. We used 
the D65 setting to model the background light environment as stan‐
dard daylight.

Due to the imbalance in sample sizes between the two spe‐
cies in our data set, we compared color variability of both orna‐
ments for the Lesser and Greater Prairie‐Chickens in pavo.	Among	

F I G U R E  2  Average	spectra	of	all	air	sacs	from	Greater	Prairie‐
Chickens (Point 1) and Lesser Prairie‐Chickens (Point 2) plotted in 
tetrahedral color space. The vertex labels correspond to the four 
types of retinal cones in galliform species (s = short, m = medium, 
and l = long wave, and v = violet). The origin is offset for visual 
clarity

F I G U R E  3  Average	of	all	Lesser	Prairie‐Chicken	(blue,	N = 380) 
and Greater Prairie‐Chicken (orange line, N = 96) spectra taken 
from air sacs used in this study

F I G U R E  4  Average	of	all	Lesser	Prairie‐Chicken	(blue,	N = 377) 
and Greater Prairie‐Chicken (orange, N = 96) spectra taken from 
combs used in this study
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TA B L E  1   Results of linear mixed models describing variation in comb and air sac color variables and comb area in relation to age, mass, 
species, and interactions of age*species and mass*species in Lesser (N = 100) and Greater (N = 24) Prairie‐Chickens

Ornament Variable Predictor Coefficient ± SE T p Corrected full model p‐value

Comb θ (RGB hue) Mass 0.2924 ± 0.31 0.93 .35 .01

Age 1.77 ± 1.41 1.26 .21

Species 1.62 ± 0.65 2.504 .014

Mass*Species −0.24	±	0.37 −0.62 .53

Age*Species −1.77	±	1.43 −1.24 .22

φ (UV hue) Mass −0.32	±	0.35 −0.93 .35 .13

Age −1.57	±	1.59 −0.99 .32

Species −1.61	±	0.73 −2.322 .028

Mass*Species −0.04	±	0.42 −0.10 .92

Age*Species 1.82 ± 1.61 1.13 .26

R‐achieved 
(saturation)

Mass −0.41	±	0.76 1.24 .22 .58

Age −0.30	±	1.68 −0.18 .86

Species −0.96	±	0.76 −1.27 .21

Mass*Species −0.07	±	0.44 −0.17 .87

Age*Species 0.51 ± 1.70 0.30 .77

Luminance Mass −0.05	±	0.37 −0.14 .89 .58

Age −0.42	±	1.65 −0.26 .80

Species −0.18	±	0.75 −0.24 .81

Mass*Species 0.54 ± 0.44 1.24 .22

Age*Species 0.21 ± 1.66 0.13 .90

Comb area Mass −0.79	±	0.32 −2.44 .02 .14

Age −3.14	±	1.44 −2.18 .03

Species −1.15	±	0.67 −1.72 .09

Mass*Species 0.75 ± 0.39 −1.92 .06

Age*Species 2.99 ± 1.47 −2.04 .04

Air	sac θ (RGB hue) Mass 0.78 ± 0.31 2.54 .0125 <.0001

Age 1.02 ± 1.39 0.74 .46

Species −0.27	±	0.63 −0.42 .68

Mass*Species −0.97	±	0.37 −2.65 .0091

Age*Species −1.15	±	1.42 −0.81 .42

φ (UV hue) Mass −0.72	±	0.31 −2.36 .02 .0041

Age −1.60	±	1.38 −1.16 .25

Species −2.29	±	0.63 −3.64 .0004

Mass*Species 0.96 ± 0.36 2.628 .0097

Age*Species 1.93 ± 1.40 1.38 .17

R‐achieved 
(saturation)

Mass −0.51	±	0.19 −2.64 .0095 <.0001

Age −1.00	±	0.86 −1.17 .24

Species −2.91	±	0.40 −7.34 <.0001

Mass*Species 0.47 ± 0.23 2.03 .0451

Age*Species 1.08 ± 0.87 1.24 .22

Luminance Mass 0.11 ± 0.24 0.47 .64 <.0001

Age −1.76	±	1.05 −1.67 .10

Species −1.31	±	0.48 −2.72 .0077

Mass*Species −0.19	±	0.28 −0.69 .49

Age*Species 1.70 ± 1.07 1.59 .11

Note: A	separate	analysis	was	performed	for	each	color	variable,	and	year	and	lek	of	capture	were	included	as	random	factors.	p‐values <.05 shown 
in bold for individual terms and full models corrected for multiple comparisons. The reference categories for age and species are yearling and Lesser 
Prairie‐Chicken, respectively.
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the summary statistics available after situating multiple spectra in 
tetrahedral color space is the volume of the minimum convex poly‐
gon that contains all input spectra, with greater volume indicating 
greater variability.

2.4 | Visual models for color distinguishability

In order for a stimulus to act as an intraspecific signal, there must 
be variation in its expression and this variation must be distinguish‐
able in the perceptual system of the species. To test if color expres‐
sion in the Lesser and Greater Prairie‐Chickens is distinguishable to 
conspecifics, we used the coldist function within pavo to calculate 
color distances with the receptor noise visual model of Vorobyev 
and Osoroio (1998) which is based on the relative densities of the 
different types of retinal cones that process color stimuli. The dis‐
tances generated by this function correspond to distances between 
points in tetrahedral space. To test distinguishability under avian 
visual models, we performed a series of pairwise contrasts of the 
chromatic and achromatic features of full spectra for individuals 
exhibiting the highest and lowest values of saturation and bright‐
ness for both of our study species. Contrasts are reported as ΔS 
for chromatic differences and ΔL for achromatic differences using 
units	of	just‐noticeable	differences	(JND).	Values	>1.0	JND	indicate	
distinguishability	under	the	modeled	visual	system	with	values	>2.0	
representing easily distinguishable contrasts (Jones & Siefferman, 
2014; Jones et al., 2017).

2.5 | Statistical analysis

We used body mass as our explanatory variable to test the relation‐
ship between condition (body mass) and the color expression and 
size of combs and air sacs. Body condition indices such as ratio in‐
dices (Sijbranda, Campbell, Gartrell, & Howe, 2016; Ware, McClure, 
Carlisle, & Barber, 2015), residuals of mass‐structural measure 
regressions (Dobson et al., 2008; McGraw, Massaro, Rivers, & 
Mattern,	2009;	Mougeot	&	Arroyo,	2006;	Schulte‐Hostedde,	Zinner,	
Millar,	 &	 Hickling,	 2005),	 and	 scaled	mass	 indices	 (David,	 Auclair,	
Dall, & Cézilly, 2013; Galbraith, Stanley, Jones, & Beggs, 2017; Peig 
& Green, 2009) are often used as proxies for overall condition, but 
the relationship of these indices to protein and lipid profiles varies 
between and among species and populations. Therefore, in the ab‐
sence of validation experiments relating proxy condition indices to 
fitness‐relevant physical characteristics, body mass alone can serve 
as a reliable proxy for condition (Labocha & Hayes, 2012; McGuire 
et al., 2018).

We used linear regressions to examine the relationship be‐
tween comb area and comb color variables and between comb area 
and body mass. Comb area was estimated as comb length * height 
(Mougeot, Martínez‐Padilla, Pérez‐Rodriguez, & Bortolotti, 2007). 
For each ornament, we averaged the spectra generated from all 
color readings. To investigate whether mass or age predicted the 
expression of color variables, we used linear mixed models (LMM) 
with six fixed effects: species, mass, age, the interaction between 

mass and age, the interaction between mass and species, and the 
interaction between age and species. Year and lek of capture were 
random effects. Response variables were comb size or the expres‐
sion of four color variables each for the comb or the air sac, lead‐
ing to a total of nine LMM's. To account for multiple models, we 
applied	the	sequential	Bonferroni–Holm	method	(Wright,	1992).	A	
p‐value for each model was generated by comparing the full model 
to an intercept‐only model (without fixed effects), and we con‐
sidered terms to retain significance only if the full model p‐value 
remained below .05 after applying the Bonferroni–Holm correc‐
tion. To test each term, we used likelihood ratio tests of the full 
model with the effect in question against the model without the 
effect in question. To interpret a significant interaction between 
species	and	another	effect,	we	plotted	the	bootstrapped	95%	con‐
fidence intervals for the standardized model coefficients for each 
species (boot package in R, 1,000 iterations). Residual plots did not 
reveal any obvious deviations from homoscedasticity or normality. 
Analyses	were	performed	in	R	(R	Core	Team,	2016)	using	the	lme4 
package.

3  | RESULTS

3.1 | Color comparison of Lesser and Greater 
Prairie‐Chickens

Lesser and Greater Prairie‐Chickens differed in the color of their 
bare part ornaments. The air sacs differed by saturation, luminance, 
and UV hue (Table 1). The combs differed by UV hue and RGB hue 
(Table 1).

The Lesser Prairie‐Chicken had a larger color volume (variabil‐
ity) for both ornaments despite having a larger sample size within 
our dataset (air sac: Lesser Prairie‐Chicken volume = 2.84 × 10−4, 
Greater Prairie‐Chicken volume = 2.81 × 10−5, Figure 5a; comb: 
Lesser Prairie‐Chicken volume = 8.26 × 10−5, Greater Prairie‐Chicken 
volume = 2.03 × 10−5, Figure 5b).

We calculated the coefficient of variation (standard deviation/
mean) for the achromatic portion of the color stimuli (brightness). 
For	air	 sac	brightness,	 the	coefficient	of	variation	was	32.04%	for	
Lesser	 Prairie‐Chickens	 and	 30.77%	 for	 Greater	 Prairie‐Chickens.	
For	 comb	 brightness,	 the	 coefficient	 of	 variation	 was	 25.10%	 for	
Lesser	Prairie‐Chickens	and	32.51%	for	Greater	Prairie‐Chickens.

3.2 | Effect of age and mass on ornament color

We found that the relationship between mass and RGB hue (θ) differed 
by species (Table 1), with post hoc tests showing that mass predicted 
air sac RGB hue in Greater Prairie‐Chickens, but not Lesser Prairie‐
Chickens. We did not detect an interaction between mass and air sac 
RGB hue (θ) in the Lesser Prairie‐Chicken (R2 < .01, p = .46, F = 0.57, 
N = 100; Figure 6a), but the effect was evident in the Greater Prairie‐
Chicken and air sac RGB hue increased with mass (R2 = .27, p = .013, 
F = 7.46, N	=	24;	Figure	6b).	The	95%	confidence	intervals	of	the	ef‐
fects for the two species overlapped each other, and they overlapped 
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zero, but Greater Prairie‐Chickens generally had a positive coefficient, 
whereas Lesser Prairie‐Chickens had a negative coefficient (Figure 6c). 
We also detected interactions between mass and species for air sac 
UV hue (φ)	and	air	sac	saturation	(Table	1).	Again,	post	hoc	linear	re‐
gressions of these variables on mass showed no relationship between 
color and mass in Lesser Prairie‐Chickens (UV hue: R2 = .02 p = .12, 
F = 2.47, Figure 7a; saturation: R2 < .01, p = .86, F = 0.03, Figure 8a), 
but a weak negative trend for the Greater Prairie‐Chicken (UV Hue: 
R2 = .16, p = .06, F = 3.90, Figure 7b; saturation: R2 = .14, p = .09, 
F = 3.13, Figure 8b). The relationships between the two species for 
the	bootstrapped	95%	confidence	intervals	for	UV	hue	and	saturation	
were similar in that the coefficients for Greater Prairie‐Chickens were 
negative and showed less overlap with zero than for Lesser Prairie‐
Chickens (Figures 7c and 8c).

We also found evidence that the effect of age on comb area 
differed by species (Table 1); however, this interaction term did not 
retain	 significance	 when	 accounting	 for	 multiple	 comparisons.	 A	
post hoc t test comparing adult to yearling Greater Prairie‐Chickens 
showed that adult birds might have larger combs ( |t| = 2.18, p = .041; 
Figure 9a) while we detected no difference in comb area between 
adult and yearling Lesser Prairie‐Chickens (|t| = 0.27, p = .79; 
Figure	 9a).	 Again,	 the	 95%	 confidence	 intervals	 of	 the	 effects	 for	
the two species overlapped, and the effect was not detected in the 
Lesser Prairie‐Chicken (Figure 9b).

3.3 | Correlations between ornament color and 
comb size

We did not detect correlations between comb size and any color var‐
iables for the Lesser or Greater Prairie‐Chicken. For Lesser Prairie‐
Chickens (N = 99), comb size did not differ with mass (F = 1.79, 
p = .18) or comb color (UV hue F = 0.83, p = .36; RGB hue F = 0.20, 
p = .65; saturation F = 0.26, p = .61; luminance F = 0.00, p = 1.00). 
For Greater Prairie‐Chickens (N= 24), comb size did not differ with 
mass (F = 0.28, p = .60) or comb color (UV hue F = 0.03, p = .86; RGB 
hue F = 0.88, p = .36; saturation F = 0.01, p = .91; luminance F = 0.53, 
p = .48).

3.4 | Visual modeling of color distinguishability

Full spectra comparison of individuals with the highest and low‐
est values of saturation showed that ornament color is highly 

distinguishable in chromatic variation for both species (Lesser Prairie‐
Chicken:	 air	 sac	∆S	=	18.59	 JND,	 comb	∆S	=	18.58	 JND;	Greater	
Prairie‐Chicken	 air	 sac	 ∆S	 =	 20.08	 JND,	 comb	 ∆S	 =	 17.67	 JND).	
Air	 sacs	 and	 combs	 for	 individuals	 with	 the	most	 extreme	 values	
for brightness for both species were shown to be highly distin‐
guishable in achromatic properties (Lesser Prairie‐Chicken: air sac 
∆L	=	18.93	JND,	comb	∆L	=	3.97	JND;	Greater	Prairie‐Chicken:	air	
sac	∆L	=	15.14	JND,	comb	∆L	=	9.00	JND).

4  | DISCUSSION

We examined whether age and body mass predict the color prop‐
erties and size of bare part ornaments in the Lesser and Greater 
Prairie‐Chickens and if color signals convey different information 
between the two species. The results of our models of avian vi‐
sion showed that differences between individuals are distinguish‐
able under the visual system of both species of prairie‐chickens. We 
found evidence that mass predicts air sac color characteristics and 
age predicts comb area in the Greater Prairie‐Chicken with heavier 
birds having higher RGB hue (θ) values, lower UV hue (φ) values, and 
lower saturation values and older birds having larger combs. We 
could not detect similar relationships in the Lesser Prairie‐Chicken.

In three cases (RGB hue, UV hue, and saturation), we found ev‐
idence for an effect of mass on air sac color in only one species, 
but we lacked the statistical power to conclusively show that the 
effects were different or the same between the two species. Our 
results were consistent with several possible scenarios. First, an ef‐
fect might exist in only one species. Second, there could be effects 
in both species that differ in effect size, and we only detected the 
larger effect. Third, there might be the same effect in both species, 
and we lacked the power to detect it in one of the species. Fourth, 
there could be no effect in either species and we detected a false 
positive in one species.

In the species comparison of age and comb area, we suspect 
that our results are best explained by the second scenario (a larger 
effect in one species). While the confidence interval for the effect 
in the Lesser Prairie‐Chicken does contain zero, it is biased in the 
same direction as for the Greater Prairie‐Chicken (Figure 9b). The 
conspicuous appearance of combs during the lekking behavior of the 
Lesser Prairie‐Chicken, the ubiquitous presence of combs in grouse 
worldwide, and the large body of evidence supporting a signaling 

F I G U R E  5   Representation of color 
volume in tetrahedral space for Lesser 
(blue polygons) and Greater (orange 
polygons) Prairie‐Chickens for air sacs 
(Panel a) and combs (Panel b). The shaded 
area represents the area of overlap for the 
combs
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role for combs (Harris, 2016; Martínez‐Padilla, Mougeot, Pérez‐
Rodríguez, & Bortolotti, 2007 Martínez‐Padilla, Mougeot, Webster, 
Pérez‐Rodríguez, & Piertney, 2010; Moss et al., 1979; Mougeot et 
al., 2010, 2005; Stokkan, 1979a; Vergara et al., 2012; Yang et al., 
2013) suggest that the comb likely fulfills a signaling function in the 
Lesser Prairie‐Chicken albeit to a lesser degree than in the Greater 
Prairie‐Chicken.

In the case of mass and air sac UV hue (φ) and saturation, we 
believe that our results are best explained by the first scenario (an 
effect in only one species). We base this interpretation on the effect 

size, and the clear species differences in size, color (Figure 1), and 
sound produced by the air sacs, which support the interpretation 
of	the	air	sac	acting	as	a	divergent	signal.	Additionally,	because	air	
sacs are displayed much less frequently than combs, they are less 
likely to serve as visual signals in all of the grouse species which 
display them.

In the case of mass and air sac RGB hue (θ), an effect may have 
existed in only one species or opposite effects might exist in each 
species and we lacked the statistical power to detect both of them 
(Figure 6). The lack of a strong correlation between air sac RGB 

F I G U R E  6   Comparison of mass and air sac non‐UV (RGB) hue (θ)	in	Lesser	and	Greater	Prairie‐Chickens.	(a)	Air	sac	RGB	hue	does	not	
correlate	with	mass	in	Lesser	Prairie‐Chickens.	(b)	Air	sacs	of	heavier	Greater	Prairie‐Chickens	have	higher	RGB	hue	values.	(c)	Bootstrapped	
95%	confidence	intervals	of	the	standardized	slope	estimates	for	the	effect	of	mass	on	air	sac	RGB	hue	using	1,000	permutations	of	the	
linear mixed model
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F I G U R E  7   Comparison of mass and air sac UV hue (φ)	in	Lesser	and	Greater	Prairie‐Chickens.	(a)	Air	sac	UV	hue	does	not	correlate	with	
mass	in	Lesser	Prairie‐Chickens.	(b)	Air	sac	RGB	hue	approaches	significance,	but	does	not	correlate	with	mass	in	Greater	Prairie‐Chickens.	
(c)	Bootstrapped	95%	confidence	intervals	of	the	standardized	slope	estimates	for	the	effect	of	mass	on	air	sac	UV	hue	using	1,000	
permutations of the linear mixed model
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hue and mass (R2 < .01) in the Lesser Prairie‐Chicken provides ev‐
idence against air sac color fulfilling a signaling function in this 
species.

One potential explanation for the presence of bright coloration 
in tissues not used as visual signals relates to the biological functions 
of carotenoid compounds, which likely contribute to the colorful 

appearance of air sacs in prairie‐chickens. Both carotenoids them‐
selves	 and	 vitamin	 A,	 for	 which	 carotenoids	 serve	 as	 precursors	
(Simpson, 1983), have been linked with wound healing properties 
in the epidermal tissue of a variety of vertebrates (Meephasnan, 
Rungjang, Yingmema, Deenonpoe, & Ponnikorn, 2017; Polcz & 
Barbul,	2019).	Although	it	is	difficult	to	determine	if	prairie‐chickens	

F I G U R E  8  Comparison	of	mass	and	air	sac	saturation	(r‐achieved)	in	Lesser	and	Greater	Prairie‐Chickens.	(a)	Air	sac	saturation	does	
not	correlate	with	mass	in	Lesser	Prairie‐Chickens.	(b)	Air	sac	saturation	does	not	correlate	with	mass	in	Greater	Prairie‐Chickens.	(c)	
Bootstrapped	95%	confidence	intervals	of	the	standardized	slope	estimates	for	the	effect	of	mass	on	air	sac	saturation	using	1,000	
permutations of the linear mixed model
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F I G U R E  9   Comparison of comb area and age in Greater and Lesser Prairie‐Chickens. (a) Older Greater Prairie‐Chickens have larger 
combs	than	yearlings;	Lesser	Prairie‐Chicken	comb	size	does	not	vary	with	age.	(b)	Bootstrapped	95%	confidence	intervals	of	the	
standardized slope estimates for the effect of age on comb area using 1,000 permutations of the linear mixed model
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specifically target combs and air sacs during aggressive encounters, 
we have observed injuries to combs and air sacs.

The finding that air sac color indicates the condition of one of 
our focal species suggests that air sacs may have a signaling func‐
tion independent of sound production. To our knowledge, the color 
characteristics of air sacs in male grouse have not been shown to be 
related to any aspect of health or age in previous studies. In addition 
to our two focal species, male Sharp‐tailed Grouse (T. phasianellus) 
and Blue Grouse (Dendragapus spp.) have esophageal air sacs while 
Sage‐Grouse (Centrocercus spp.) have pectoral air sacs. In all of these 
species, these brightly colored patches of bare skin are inflated fre‐
quently during breeding displays, both in the presence and absence 
of females. While the role of air sac appearance in intrasexual com‐
petition has not been examined, there is evidence that females vi‐
sually inspect air sacs and that visual properties of these ornaments 
influence mate choice (Johnson & Boyce, 1990; Spurrier et al., 1991). 
Our results suggest the potential for visual signaling functions of 
these structures and that relationships between air sac coloration 
and individual characteristics such as health, age, and condition 
merit further study.

Body mass is a common target of sexual selection, and mass often 
determines the outcome of male–male agonistic dominance encoun‐
ters in avian species including grouse (Kervinen, Lebigre, & Soulsbury, 
2016;	Nooker	&	Sandercock,	2008;	Rintamäki,	Höglund,	Alatalo,	&	
Lundberg, 2001), and conspecific behavioral decisions are likely in‐
fluenced by mass due to its connection with condition. Our finding 
that condition was signaled by RGB hue was unexpected, as bright‐
ness and saturation represent the quality of a color, whereas hue rep‐
resents the color's shade. However, there is abundant evidence that 
hue in the visible portion of the spectrum reflects aspects of individ‐
ual quality such as age (Marini, McKellar, Ratcliffe, Marra, & Reudnik, 
2015), parasite loads (Brawner, Hill, & Sundermann, 2000), response 
to immune challenge (Nolan, Dobson, Dresp, & Jouventin, 2006), 
white blood cell levels (Figuerola, Muñoz, Gutiérrez, & Ferrer, 1999), 
and levels of environmental toxins (García‐Heras et al., 2017). The 
studies cited here used methods other than modeling within tetrahe‐
dral color space such as digital photography analysis and colorimetric 
variables to determine hue. Whether a higher or lower hue value indi‐
cates the quality of an individual depends on the species in question. 
With colorimetric variables, a higher hue value corresponds to a shift 
toward red, but the results of color space models do not correspond 
directly to perceptual experience as hue variables correspond to the 
stimulation of photoreceptors as opposed to the direct visual experi‐
ence of a color's shade (Stoddard & Stevens, 2011). Regardless of how 
the signal may be perceived in terms of actual color perception, our 
findings provide evidence that higher hue values in the air sac may 
indicate better condition in the Greater Prairie‐Chicken.

Bare part ornaments may be especially reliable indicators of an 
individual's current condition because they can respond rapidly to 
environmental changes (Biard, Hardy, Motreuil, & Moreau, 2009; 
Sternalski	et	al.,	2010;	Vergara,	Fargallo,	&	Martíınez‐Padilla,	2015).	
Previous studies have shown that carotenoid levels and color prop‐
erties of bare part ornaments change in response to manipulations 

of testosterone (Blas, Pérez‐Rodríguez, Bortolotti, Vinuela, & 
Marchant, 2006) and parasite loads (Martínez‐Padilla et al., 2007, 
2010). Mass is expected to fluctuate over the course of a breeding 
season due to the energetically demanding nature of breeding dis‐
plays	on	grouse	leks	(Lebigre,	Alatalo,	&	Siitari,	2013;	Siitari,	Alatlalo,	
Halme, Buchanan, & Kilpimaa, 2007; Vehrencamp, Bradbury, & 
Gibson, 1989); however, individuals in our study area are typically 
captured once each season so the degree to which mass fluctuates 
remains unknown. Differences in capture date could affect color 
expression due to the energetic demands of breeding displays, and 
capture date may therefore act as a confounding factor. However, 
we did not detect any strong correlations between capture date 
and color variables or comb area in either species (linear regression, 
all R2 < .19). Despite the ability of bare part ornaments to respond 
rapidly to changing conditions, we are not aware of any evidence 
for changes occurring on the scale of minutes or due to changes in 
blood	flow.	As	the	average	processing	time	for	an	individual	is	about	
15 min, we do not expect that changes in color expression would 
result from the capture process. Experimental manipulations relating 
to color expression have not been performed on our focal species; 
therefore, the other qualities that may affect color, besides mass, 
have not been tested and are a potential area for further study.

Further research is needed to examine the relationship between 
color and behavior in our focal population. Conspicuous color patches 
play a prominent role in mediating intrasexual male encounters in 
birds (Senar, 2006), and color patches can act as signals of resource 
holding potential which is used to assess opponents in agonistic in‐
teractions (Balzarini, Tasborsky, Villa, & Frommen, 2016; Dawkins & 
Guilford, 1993; O'Connor, Metcalfe, & Taylor, 1999; Sabol, Hellmann, 
Gray, & Hamilton, 2017; Xu & Fincke, 2015). Male prairie‐chickens 
frequently engage in these types of interactions during which combs 
and air sacs are displayed to conspecifics at close range. Color may 
be correlated with features of behavior which in turn may be af‐
fected by physiological factors such as the action of testosterone or 
parasite loads. There is abundant evidence for a link between comb 
size and testosterone in grouse, and comb size is often described 
as an androgen‐dependent character (Martínez‐Padilla et al., 2010; 
Pérez‐Rodriguez, Martínez‐Padilla, & Mougeot, 2013; Vergara et al., 
2012).	As	a	result,	 larger	combs	are	often	correlated	with	enhanced	
copulatory success, perhaps due to the influence of testosterone on 
increased display rates, success in intrasexual competition, or both 
(Augustine,	Millspaugh,	&	Sandercock,	2011).	Given	our	results	linking	
comb size to age, it is possible that age, hormone levels, and ornament 
size interact in the context of intraspecific signaling although we ac‐
knowledge that the relationship between age and comb size we found 
was weak and did not retain statistical significance after accounting 
for multiple comparisons.

Air	sacs	are	displayed	in	both	a	relaxed	and	inflated	state,	and	it	
is therefore possible that they act as different signals when in these 
differing states, as the appearance of hues spanning a wide range of 
the spectrum can change as a result of stretching of biological tissues 
(Kolle et al., 2013; Teyssier, Saenko, Marel, & Milinkovitch, 2015). We 
recorded color on relaxed air sacs as they are held in this state for a 
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longer duration and because recording color from relaxed air sacs of 
live birds is safer and more easily performed in the field. To artificially 
inflate air sacs for color readings would require forcing air into the tra‐
chea, a procedure which comes with a high risk of injury to the bird, 
and we felt it was necessary to minimize the risk of harming our focal 
species especially given that they are both species of conservation 
concern (BirdLife International, 2016, 2018). Thus, while inflated air 
sacs may act as a different signal from relaxed air sacs, we predict that 
variation between individuals in the appearance of inflated air sacs will 
correlate to the variation in relaxed air sacs.

Color characteristics may be important during species rec‐
ognition given that they differ between the Lesser and Greater 
Prairie‐Chickens for both combs and air sacs. Due to changing 
land‐use practices, Lesser and Greater Prairie‐Chickens have re‐
cently begun to occupy a zone of sympatry (Van Pelt et al., 2013). 
Putative hybrid individuals have been observed in western Kansas 
(Bain & Farley, 2002), and introgression is occurring between the 
two	species	 (Oyler‐McCance	et	al.,	2016).	Although	putative	hy‐
brid male prairie‐chickens have been observed displaying on leks, 
there have been no confirmed reports of these individuals copu‐
lating successfully. If hybrid males do not reproduce, interspecific 
mating would be maladaptive and secondary ornaments would be 
expected to undergo character displacement (Lemmon & Lemmon, 
2010; Pfennig & Pfennig, 2010; Ritchie, 2007; Weissing, Edelaar, 
& Doorn, 2011). Further study incorporating color measurements 
of putative hybrids may inform our understanding of the potential 
adaptive consequences of hybridization. Our finding that comb 
and air sac color differ in our two focal species and that the in‐
formation signaled by ornaments might also differ between them 
is consistent with an episode of past character displacement in 
these	 closely	 related	 species.	 A	 similar	 trajectory	 of	 phenotypic	
displacement is theorized to have occurred with differences in 
display behavior in recently diverged populations of Sage‐Grouse 
(Centrocercus spp., Young, Hupp, Bradbury, & Braun, 1994).

In conclusion, our data show that air sac coloration is predicted 
by mass and that comb size is predicted by age in the Greater 
Prairie‐Chicken and that ornaments encode different information 
about the signaling individual between our two recently diverged 
congeneric focal species. Capturing individuals multiple times in a 
season can allow us to determine how color signals and mass fluc‐
tuate over time and if conspecific receivers adjust their behavior 
in relation to these fluctuations. Future research can determine if 
these color signals are intended to be received by males, females, 
or both, and can also help to establish the causal link between 
condition and color which would allow for these signals to be de‐
scribed in terms of honest advertisement models including good 
genes models of sexual selection.
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