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Here, we present and validate a method that lets us predict the severity of cognitive impairments after stroke,
and the likely course of recovery over time. Our approach employs (a) a database that records the behaviour-
al scores from a large population of patients who have, collectively, incurred a comprehensive range of focal
brain lesions, (b) an automated procedure to convert structural brain scans from those patients into
three-dimensional images of their lesions, and (c) a system to learn the relationship between patients' le-
sions, demographics and behavioural capacities at different times post-stroke. Validation against data collect-
ed from 270 stroke patients suggests that our first set of variables yielded predictions that match or exceed
the predictive power reported in any comparable work in the available literature. Predictions are likely to im-
prove when other determinants of recovery are included in the system. Many behavioural outcomes after
stroke could be predicted using the proposed approach.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Stroke can have long term consequences on cognitive and/or sensory-
motor functions leaving patients keen to learn whether, when, and in
what respects, they might be expected to recover. Most attempts
to answer these questions are focused on recovery during the first
weeks or months after the insult occurred (Konig et al., 2008;
Pedersen et al., 2004; Tilling et al., 2001), the presumption being that
meaningful recovery will happen during that time, or not at all (Kotila
et al., 1984; Moss and Nicholas, 2006). Increasingly however, evidence
has begun to emerge that stroke patients can and do make significant
gains even many years after their insult occurred (Moss and Nicholas,
2006; Smania et al., 2010). With increasing evidence that recovery can
occur in the long term (Berthier et al., 2011), there is an increasing
need for tools and techniques to predict much longer term prognoses
for stroke patients.

In what follows, we propose a practical way to start to make these
predictions, founded on the intuition that the cognitive and behav-
ioural symptoms a patient suffers, and the likely course of recovery
from them, depend on what brain regions were damaged by their
erms of the Creative Commons
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stroke (Price et al., 2010a). Following a tradition that dates back to
the first attempts to make practical use of Bayesian logic to predict
variables of clinical interest (e.g. (Gorry, 1973; Szolovits, 1978)), we
employ Gaussian Process model Regression (GPR) to try to learn the
relevant structure–function-recovery associations from a large sample
of stroke patients, and to use those relationships to predict prognoses
for new patients. The result is a ‘recognition model’ (Friston and
Ashburner, 2004) for cognitive symptoms and recovery throughout
the first decade and more post-stroke, expressed in probabilistic
terms. In what follows, we demonstrate and validate the use of the
GPR technique for predicting behavioural outcome after stroke. Our
outcome of interest was the recovery of speech production over time,
as this behaviour is well characterised in the patient data we already
have available in our PLORAS database (Price et al., 2010a).

The main purpose of this work is to test the predictions made by
an algorithm that uses a combination of lesion and non-lesion factors.
In this case, we are less concerned with where the lesion sites are and
more concerned with the accuracy of the predictions. This approach
differs from that taken by many other types of lesion analysis. Indeed,
our goal was to move beyond previous lesion-analysis approaches by:
(1) making predicted prognoses at the level of individual patients
rather than looking for statistically significant group-level differences
that are traditionally implemented with techniques like Voxel-based
Lesion Symptom Mapping (VLSM) and Voxel Based Morphometry
(VBM); (2) providing continuous predictions over time so that temporal
changes in the lesion-symptommapping can bemodelled; (3) consider-
ing how combinations of lesion factors influence symptom outcome
served.
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rather than treating each voxel independently; (4) testing many
combinations of lesion factors rather than focusing on a priori regions
of interest; (5) employing dimensionality reduction techniques which
manipulate variables independently (i.e. damage to different regions,
time post-stroke, and other demographic variables) rather than using
principle components as in analyses such as Partial Least Squares
(PLS) where the source of the variance is more difficult to interpret;
(6) using non-linear regression to provide greater flexibility and power
to the analysis; and (7) providing probability distributions with each
prediction in contrast to other non-linear learners, such as Support
Vector Machines (SVMs) or Relevance Vector Machines (RVMs), which
make single point predictions.

Overall, our intention was to provide a step towards a system that
would enable clinicians to predict outcome in a way that is meaningful
and relevant to patients, their carers and therapists. This necessitates
an approach that can predict outcome accurately, at the individual
level, in a continuous way over time post-stroke, and with a quantifica-
tion of the precision of the predictions. Our GPR approach has the
required characteristics, though we do not claim that it is the only algo-
rithm with the desired qualities. Adaptations of many other statistical
machine-learning algorithms could potentially perform reasonably well
on the same problem.

2. Method

2.1. The PLORAS database

Our PLORAS database associates stroke patients, tested at a broad
range of times post-stroke (from less than a month to more than
30 years), with demographic data (age when the stroke occurred,
handedness pre-stroke, gender, first language, and so on), behavioural
test scores from the language battery of the Comprehensive Aphasia
Test (CAT; (Swinburn et al., 2004)), and high resolution T1-weighted
MRI brain scans (Price et al., 2010a).

2.2. Patient selection criteria

We included all available patients with stroke irrespective of the site
of the lesion, the presence or absence of aphasia, or any other type of
cognitive impairments (e.g. spatial neglect or short termmemory prob-
lems). Patients were only excluded on the basis of their behaviour if
they were unable to consent themselves for the study, showed a lack
of understanding on why they were participating in the study or were
unable to see or hear the stimuli required to assess their speech produc-
tion abilities. This relatively unconstrained selection approach ensured
that patients differed from one another on a number of dimensions
that might be important for characterising variability in recovery
rates. We only excluded patients if they:

a) were very young (b20 years) or very old (>90 years)
b) were less than 1 month post-stroke at assessment
c) had evidence of other significant neurological conditions (e.g. de-

mentia, multiple sclerosis)
d) did not speak English as a first language
e) showed no visible damage anywhere in the brain, as assessed by a

neurologist (APL), using the patients' raw T1-weighted scans
f) had suffered dispersed rather than focal damage. To make this

judgement, we employed the lesion identification algorithm de-
scribed previously (Seghier et al., 2008) to identify the damaged re-
gions in the patients' brains, and excluded patients whose lesions
occupied less than 100 contiguous voxels (2 mm × 2 mm × 2 mm)
in the brain.

We did not require that the patients we included had speech pro-
duction impairments, or any other type of aphasia, during the acute
stage post-stroke. Self-assessment of speech abilities in the early
weeks after stroke indicated that some patients did and some patients
didn't think that they had difficulties, but this relies on self-report.
Given the nature of stroke and aphasia, it is likely that any patient
aphasic at the time they entered our study will have been aphasic at
the time of their stroke, but note that this is not a necessary condition
for the analysiswhich is cross sectional and contemporaneous, that is, the
behavioural and imaging data were collected at the same time. The
inclusion of patients whose lesions may never have caused impaired
speech was expected to facilitate the learning of which strokes would
and would not cause impaired speech production throughout the
whole range of times post-stroke. This selection process left us with
data from 270 patients, but with repeated assessments for some patients
at different times post-stroke, our dataset included a total of 315 speech
production scores.

2.3. Behavioural data

The CAT defines behavioural T scores for individual patients in
a set of 34 different task dimensions. Many of the dimensions
relate directly to language (such as ‘reading words’, or ‘repeating
non-words’), while others capture more general cognitive capacities
such as semantic memory, which can aid the interpretation of the
language scores, (see (Swinburn et al., 2004), for details). Each
score defines the ability of the patient relative to a distribution of 60
patients with post-stroke aphasia, indicating how well or badly that
patient has performed relative to that distribution (thus aiming to
avoid ceiling and floor effects where possible). The threshold of
impairment in each dimension is then defined relative to a second
population of 27 neurologically normal controls; performance
below the threshold implies that the patient would be in the bottom
5% of that normal population. Within each behavioural dimension,
lower T scores indicate poorer overall performance.

In the current work, the focus of our interestwas speech production,
but none of the CAT's dimensions capture that capacity independently,
so we constructed the measure we actually used as a composite of T
scores (see next section for more details) in relevant CAT dimensions.
Our ‘speech production score’ was constructed by combining scores
fromword and sentence repetition tasks (with heard stimuli), an object
naming task (using visually presented pictures), and a picture descrip-
tion task (using pictures of events, requiring sentential utterances in re-
sponse). After aligning the scores in these 4 dimensions to make their
impairment thresholds equal (adding constants to three of the four se-
ries of scores), the actual speech production score for a given patient
was calculated as the mean of each subject's (i) minimum T score in
the tasks involving visual stimuli and (ii) minimum T score in the
tasks involving aural stimuli— the intention being to track impairments
that cut across the twomodalities. Accuracy for predicting the outcome
of individual tests was expected to be lower than the composite score
because each individual score is determined by many different func-
tions (e.g. picture naming requires good object recognition as well as
speech production, while auditory repetition requires good auditory
word repetition as well as good speech production). The composite
T-scores that we generated were then employed as the target outputs
for an induction procedure (see below).

2.4. Interpretation of the speech production score

The preference for T-scores over raw scores in the CAT flows from
the recognition that its different assessments are not all equally difficult
(Swinburn et al., 2004; page 103) — so a direct comparison of the raw
scores obtained in those assessments (which are, in any case, rarely nor-
mally distributed) would likely be misleading, and a standardised met-
ric is required. The cost of that conversion is a non-linear relationship
between the results attached to each patient in each dimension, and
their behavioural performance on that task. In the word repetition
tasks, for example, each correct answer attracts 2 points, or just 1 if
there is a significant pause or self correction; a T-score change of 3
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points, from ‘52’ to ‘55’, will be observed in a mildly impaired patient
who identifies just 1 more object picture correctly to move from a raw
score of ‘26’ to a score of ‘28’, but a more severely impaired patient
with a T-score of ‘45’ would need at least 11 extra points on the raw
score scale to gain the same improvement on the T-score scale. The
T-scores represent the position that a patient would have relative to a
population of aphasics — they convey ‘abnormality’, rather than strict
behavioural performance itself.

Lower scores in our composite measure, which indicate more se-
vere impairment, are driven by lower T-scores for both auditory and
visual stimuli in either word or sentence production tasks; the speech
production score is designed to track bimodal abnormality — or im-
pairment in speaking tasks irrespective of the sensory modality of
the stimuli that drive those tasks. Nevertheless, the composite score
is still essentially a T-score, with lower values indicating more severe
impairment, and higher values indicating less severe impairment.

2.5. MRI data acquisition

Imaging was always conducted within 2 weeks of the collection of
the associated behavioural data. Scans were acquired either with a Sie-
mens 1.5 T Sonata scanner, orwith a Siemens 3 T Trio scanner (Siemens
Medical Systems, Erlangen, Germany). In each case a T1 weighted 3D
modified driven equilibrium Fourier transform sequence (Deichmann
et al., 2004) was used to acquire 176 contiguous sagittal slices with an
imagematrix of 256 × 224 yielding a final resolution of 1 mm3: repeti-
tion time/echo time/inversion time = 12.24/3.56/530 ms and 7.92/
2.48/910 ms at 1.5 T and 3 T respectively.

2.6. MRI pre-processing

The pre-processing stage for these MRI data is identical to that de-
scribed in Price et al. (2010b). Structural images were pre-processed
with Statistical Parametric Mapping software (Wellcome Trust Centre
for Neuroimaging, 2005). The images were spatially normalised into
standard Montreal Neurological Institute (MNI) space using a unified
segmentation algorithm (Ashburner and Friston, 2005) optimized for
use in patients with focal brain lesions (Seghier et al., 2008). More spe-
cifically, the lesion of each patient was automatically identified using a
modified unified segmentation and an outlier detection algorithm (see
procedure in Seghier et al. (2008)). The output of the process is a lesion
image for each patient, in MNI space with a voxel size of 2 × 2 × 2mm.
Each voxel codes the degree of abnormality of the underlying tissue
(scaled to the range 0 to 1). This lesion image is then thresholded to gen-
erate a binary lesion image, with voxels assigned to the lesion if they
composed a group of at least 100 voxels, all of which had abnormality
degreesmore than 0.3 (see (Seghier et al., 2008)) for amore detailed ex-
planation. These binary lesion images were used to create the lesion
overlap map displayed in Fig. 2 and to provide an estimate of lesion
size in terms of the total number of lesioned voxels.

2.7. Learning

We employed GPR to learn the associations between predictors
(patient demographic and lesion data), and output (speech production
scores), and how these associations vary with time post-stroke. GPR, de-
scribed in detail in Rasmussen andWilliams (2006), has been successful-
ly applied to a large variety of statistical learning problems in the past,
from biomarker discovery (Chu, 2005) and the interpretation of neural
spike train data (Eichhorn et al., 2004), to autonomous flight control
(Ko et al., 2007) and telecommunications network management (Duel,
1995). Many alternatives to GPR might be just effective in this case,
but GPR has two features that make it particularly appropriate to the
problem at hand. First, the regression process fits functions of the form:

y ¼ f xð Þ þ∈ xð Þ
where x are the predictors, y is the target or output variable, and∈(x) is a
Gaussian noise term. By attempting to parameterise the influence of the
noise on the relationship between the underlying lesion-symptom–time
associations, and the behavioural data, the GPR approach should be less
susceptible to over-fitting than many of its counterparts in the machine
learning literature. Several alternative approaches have been proposed
to help minimise over-fitting in the past— such as the attempt, in Sup-
port Vector Machine (SVM) classification, to find the hyperplane which
maximises the margin, or separation, between classes (Vapnik, 1999).
We prefer the approach taken by GPR because it is more transparently
interpretable than are most of its counterparts' approaches, while
being at least as effective.

The second desirable feature of the GPR framework is that it as-
signs predictive weights across the whole of its parameter space —

representing the likelihood of the observed data given the multiple
different parameter values across their range for each regressor
and the full combination of regressors — rather than simply trying
to fit the single ‘best’ value for each parameter (i.e. those which min-
imise prediction error overall). The result is a predictive (Gaussian)
distribution rather than a single-point prediction; if the distribution
has small variance, the implication is that a comparatively small
subset of possible parameters makes the observed data much more
likely than any other set. In cases like this, we can be more confident
that the chosen parameter set is ‘right’ (or close to right) — in other
words, the variance of the predictive distribution provides a reason-
able measure of the confidence with which particular predictions
are made. This association between point-predictions (of continu-
ous variables) and probability distributions seems a natural fit to
many prediction problems of clinical interest.

Our implementation of the process was adapted from the NetLab
library (Nabney, 2001), employing scaled conjugate gradient optimi-
sation, and a rational quadratic covariance function. The outputs of
the process – the predicted prognoses themselves (speech production
ability through time, in our case) – are Gaussian probability distribu-
tions through time, with the peak/mean function representing the
system's mean prediction. When we refer to the variance explained
by predictions of a target variable, we have calculated those measures
from the mean prediction of the system under study.
2.8. Validation

We used leave-one-out cross-validation to assess the learning
system's performance with different sets of predictors, employing
both a ‘cross-sectional’ configuration and a ‘longitudinal configura-
tion’. In both configurations, we divided the dataset into training
and test sets, the goal being to assess how well our Gaussian process
models could predict the scores assigned to the patients in the test set,
after learning from the patients in the training set. In the cross-sectional
configuration, the details from all but one patient are used to predict the
speech production score given the lesion information and time post-
stroke from the excluded patient. No information about the excluded
patient is presented to the learner during training. In the longitudinal
configuration, the challenge is the same, but in this case the patient's
scan, time post-stroke and behaviour score at an earlier time are
presented to the learner during training. The learner then predicts
what the future scores for this patientwould be. In both cases, the learn-
er is asked to usewhat it has learned during training tomake inferences
about new/future data.

In the cross-sectional configuration, we ran 270 of these assess-
ments – one for each patient – in which the training set included all
of the 269 other patients in the dataset, and the goal was to predict,
on the basis of the test patient's lesion and other predictors, the
speech production score actually assigned to them. In the longitudinal
configuration, we trained a Gaussian process learner with all of the
data from the cross-sectional configuration (i.e. 270 records), then
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tried to predict the scores assigned at repeat visits to the 38 patients
who were assessed more than once.

2.9. Experimental design

We conducted a series of linked experiments in which ever-more
detailed information concerning the patients' lesions was progres-
sively introduced to drive predictions concerning the way their speech
production skills might evolve through time. This design was employed
to illustrate (a) how ever-more effective predictions might be made by
systematically exploring the space of potential predictors, and (b) that
lesion site information can drive those effective predictions. We then
consider prediction for the longitudinal data separately. In each case,
we report the results of a linear regression of predicted vs. actual speech
production scores for each of the patients in our data, as a measure of
how well the predictions capture those actual scores. Both learning
and validation steps were carried out with scripts written in Matlab
(The MathWorks, Natick, MA, USA).

3. Results

Our patients' ages varied from 20 to 90 years old (mean = 61.27;
SD = 12.21); see Fig. 1. Our sample included 93 women and 177
men, and 242 of the patients were right handed. The size, location
and hemisphere of the lesions varied widely, but most patients had
damage in the left hemisphere of the brain; just 50 of the 270 patients
had damage restricted to the right hemisphere (as defined by our le-
sion identification algorithm, described previously (Seghier et al.,
2008)). Fig. 2 illustrates the lesion overlap map for the selected pa-
tients, and the sampling of lesions in the left and right hemispheres.

3.1. Learning without lesion information

Our first and simplest experiment evaluated the predictive value
of:

1. the time elapsed since the stroke occurred;
2. their age when the stroke occurred;
3. their handedness before the stroke occurred; and
4. their gender.

This information has previously been claimed to be predictive of
aphasic stroke patients' initial symptoms and eventual prognosis, but
these claims are disputed (Plowman et al., 2011). Our results add to
that doubt, yielding predictions that donot appear to capture any signif-
icant proportion of the variance of those scores (R2 = 0.01, F = 2.22,
p = 0.14). This first and non-significant result provides a useful control
for the subsequent analyses because it allows us to illustrate the benefit
Fig. 1. Histogram of the times post-stroke at which patients were assessed. Patient
frequencies are calculated in bins of 6 months.
that lesion information can bring to the prediction problem after show-
ing what is explained (or not explained) when no lesion information is
used.

3.2. Learning with lesion volume

The poor predictive performance reported so far was expected be-
cause the predictions took no account at all of the patients' lesions. Our
next experiment sought to begin to redress that imbalance by including
lesion volume (expressed as the total number of lesioned voxels) —
information that has been recognised as predictive of aphasics stroke
patients' initial symptoms and eventual prognosis (Plowman et al.,
2011). As expected, access to this kind of information (alongside the de-
mographic predictors used previously) did improve the predictions
(R2 = 0.35, F = 144.73, p b 0.001), and also significantly reduced pre-
diction error relative to learning without any lesion information at all
(Wilcoxon test: Z = 6.64, p b 0.001).

3.3. Learning with lesion site 1: lateralised lesion volume

Our next experiments all sought to add lesion site information to
the predictors. Our first attempt was deliberately minimal, focussing
on lateralised lesion volume — or the number of lesioned voxels in
each of the left and right hemispheres of the brain. Access to this
kind of information, in addition to lesion volume and the non-lesion
data used so far, increased the strength of the statistical relationship
between actual and predicted speech production scores (R2 = 0.47,
F = 239.36, p b 0.001), significantly reducing prediction error relative
to learning with lesion volume and demographics alone (Wilcoxon
test: Z = 4.25, p b 0.001).

3.4. Learning with lesion site 2: atlas-based lesion coding

Next, we sought to measure whether, and to what extent, finer-
grained lesion-location data might improve the predictions still fur-
ther. We derived that information by encoding each patient's lesion
as the proportions of anatomically defined regions of interest that
the lesion appears to destroy. The cortical regions of interest were
extracted from the Anatomy Toolbox (Eickhoff et al., 2005), and the
white matter tracts of interest were extracted from the ICBM-DTI-81
white-matter label atlas (Mori et al., 2006) and the JHU white-matter
tractography atlas (Hua, 2008). There were 232 regions in all, so each
patient was associated with 232 ‘lesion site’ predictors, varying in the
range 0–1. This move to atlas-based lesion coding is effectively a kind
of dimensionality reduction — the benefit being that the resultant pre-
dictors might be more interpretable than those extracted using more
traditional numerical methods. By replacing the 2 lateralised lesion
volume predictors with these 232 new atlas-based predictors, we
improved the predictions again (R2 = 0.52, F = 294.24, p b 0.001), al-
though the reduction in prediction error was not significant (Wilcoxon
test: Z = 1.34, p = 0.18).

3.5. Learning with lesion site 3: atlas-based lesion features

It would be very surprising if every one of those 232 regions was
equally relevant to the implementation or recovery of speech produc-
tion skills. The implication is that many or most of our atlas-based
predictors are irrelevant to the task at hand, and to the extent that
this is true, random correlations between those irrelevant predictors
and the target measure would be expected to hamper effective pre-
dictions (Oomen et al., 2008), masking the benefits of including
higher resolution lesion site information. By throwing those less rele-
vant predictors away, we expected to see at least some improvement
in the overall performance of the system — as well as a significant re-
duction in prediction error relative to learning with lateralised lesion
volume (as in Section 3.4).



Fig. 2. Lesion overlap map showing the frequency of lesions in each hemisphere. The colour in the image indicates the number of patients who had a lesion at each brain voxel. The
lesions were identified, in MNI space, using the procedures described in the Method section. After computing the degree of abnormality at each voxel (scaled to the range 0 to 1), a
binary lesion image was created by thresholding the degree of abnormality at a cut-off threshold of 0.3 (see (Seghier et al., 2008)). The maximum number of patients whose lesions
converged on a single voxel was 152.

Fig. 3. Variance explained by predictor subsets. Variance explained when predictor
subsets are used to make predictions for every patient with a leave-one-out
cross-validation procedure. Starting with the 5 most relevant predictors (where rele-
vance was defined via ARD), each successive subset is constructed by adding the
next most relevant predictor to those already considered (up to a maximum of 65).
As expected, the most effective subsets tend to include fewer predictors, though
predictive performance drops off when fewer than 10 predictors are used. The maxi-
mum point on this graph yields out preferred predictor configuration, but many
other subsets can be used to drive predictions which capture almost as much of the
variance in the speech production scores actually assigned to the patients when they
were assessed.
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To select relevant lesion features, we used Automatic Relevance
Determination (ARD) — a Bayesian filter method driven by an initial
pass of Gaussian process model learning across the whole of the
dataset, in which individual hyperparameters are learned for each
predictor (Mackay, 1992; Neal, 1996). Our implementation of the ap-
proach is adapted from the NetLab software package (Nabney, 2001).
Armed with this reduced set of scores, we re-ran the validation mul-
tiple times with increasingly large subsets of the predictors, focussing
on those judged most relevant by ARD (i.e. growing the predictor
configuration in the order defined by their relative relevance scores).
Fig. 3 displays the variance explained by the subsets containing the
first 5–65 of the predictors selected by ARD. The best subset included
37 relevant predictors (R2 = 0.59, F = 38.38, p b 0.001), including
time post-stroke (the most significant, single predictor), lesion
volume, and encroachment into 35 regions of the brain (listed in
Table 1). Prediction error in this configuration was significantly re-
duced both relative to learning with the full set of (232) atlas-based
predictors (Wilcoxon test: Z = 2.12, p = 0.034), and relative to
learning with lateralised lesion volume alone (Z = 2.96, p = 0.003).

3.6. Summary of cross-validation results

A summary of the validation results is detailed in Table 2 for the
composite measure of speech production and for each speech produc-
tion test individually. As expected, the predictive performance for the
composite speech production measure is better than that for any of
the individual test scores which were used to calculate the composite.
The best feature subset that we found for our speech production score
generates predictions with significantly less error than do the best
feature subsets for any of the 4 components of that speech production
score (see Table 3).

3.7. Predicting longitudinal data

As determined by ARD, our preferred predictor configuration for
speech production skills is a combination of time post-stroke and lesion
damage. To explore the influence of time directly (i.e. within-patient,
rather than across patients), we used the learner to predict what will
happen to particular patients over time. 38 of the 270 patients in our
original dataset were assessed more than once, but only the first of
those assessments was used in the cross-sectional analysis. In this
section on the longitudinal data, we validate our proposed approach
by attempting to predict the speech production scores assigned to
those 38 patients after that initial assessment. After learning from just
the patient data used for the cross-sectional configuration, our learner
can predict the later assessment scores very accurately (R2 = 0.84,
F = 225.00, p b 0.001; see Fig. 5).

3.8. Examples of predicted prognoses

In Fig. 6, we display examples of prognoses predicted for two
different patients, employing our preferred predictor configuration
(as detailed previously). In each case, the predictions were made

image of Fig.�2
image of Fig.�3


Fig. 4. Actual vs. predicted speech production scores. Predicted speech production
scores plotted against the actual scores assigned to the patients in our dataset.
Predicted scores would be equal to actual scores if they fell along the red line.

Table 2
Summary of cross-validation results for the different predictor configurations.

Predictor configurations Variance explained (R2) of behaviour
scores by predictions

Speech
prod.

Rep.
sent.

Obj.
name

Rep.
wd

Pic.
desc.

Demographics only (DEM) 0.01 0.01 0.01 0.04 0.00
DEM + lesion volume (LV) 0.35⁎ 0.24⁎ 0.26⁎ 0.29⁎ 0.33⁎

DEM + LV + lateralised lesion volume 0.47⁎ 0.38⁎ 0.37⁎ 0.29⁎ 0.40⁎

DEM + LV + atlas-based lesion data (ALD) 0.52⁎ 0.42⁎ 0.43⁎ 0.28⁎ 0.42⁎

DEM + LV + ALD features (best) 0.59⁎ 0.49⁎ 0.51⁎ 0.34⁎ 0.50⁎

⁎ p b 0.001.
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after training with data from every other patient in our dataset (but
without reference to the ‘test’ patient's owndata). The prognoses them-
selves are then derived by using our preferred predictor configuration
to predict the test patient's speech production scores at every month
post-stroke.

4. Discussion

Usingminimal demographic data, togetherwith lesion data extracted
from MRI images, we have demonstrated that stroke patients' speech
production skills can be predicted, with reasonable accuracy, throughout
the first decade and more after stroke. The lesions suffered by the
members of our aphasic patient population are very variable, so
their predicted prognoses are very variable too, but our results sug-
gest that, on average, this population might be expected to continue
to recover for many years post-stroke. This is consistent with emerg-
ing evidence that aphasic stroke patients can and do recover over
much longer timescales than previously thought (Maas et al., 2010;
Moss and Nicholas, 2006; Smania et al., 2010).

The comparison between this work and its precedents in the litera-
ture is complicated by several factors. First, the focus of most of those
prior studies of stroke recovery is on the first few days, weeks, or
months post-stroke (Counsell, 2002; Ferro et al., 1999; Konig et al.,
Table 1
Regions employed by our preferred predictor configuration to encode lesions.

Grey matter
(left hemisphere unless specified)

White matter
(left hemisphere unless specified)

• Inferior parietal lobule (PFop,
PFm, PFcm, PFt)

• Hippocampus (cornu ammonis)
• Intraparietal sulcus (IP1)
• Insula (Ig2)
• Parietal operculum (OP1)
• Thalamus (temporal)
• Auditory cortex (TE12)
• Wernicke's area (TE30)
• Somatosensory cortex (1, 2, 3b)
• Premotor area (6)
• Primary motor cortex (4p)
• Cerebellum (IX)— right hemisphere

• Uncinate fasciculus
• Fronto-occipital fasciculus
• Superior longitudinal fasciculus
• Inferior longitudinal fasciculus
• Cingulum of the hippocampus
• Fibres connecting:
o the superior, middle and inferior

frontal gyri
o the corpus callosum
o the precentral and postcentral gyri
o the inferior and middle occipital gyri
o the middle and superior temporal gyri
o the thalamus
o the superior parietal lobule
2008; Laska et al., 2001; Lazar and Antoniello, 2008; Mazzoni et al.,
1992; Tilling et al., 2001), following the presumption that meaningful
recovery occurs quickly, or not at all (Ahlosio et al., 1984; Knopman
et al., 1983; Moss and Nicholas, 2006; Silbeck et al., 1983). To our
knowledge, the current work is the first reported attempt to predict
prognoses over such a long period post-stroke.

Second, many potentially comparable studies employ bespoke
outcome variables (see (Veerbeek, 2011), for a review), reflecting
the particular demands of their proposed clinical context. The over-
whelming emphasis on prognoses during the acute and/or sub-acute
stages post-stroke naturally lends itself to a focus on variables of
particular and immediate clinical interest, such as the risk of death
(Wiberg, 2012), the likelihood that a patient can be discharged
(Jørgensen, 1997), or the patient's short-term ability to perform
basic, daily tasks (Veerbeek, 2011). Our own results illustrate the
sensitivity of predictive methods to the particulars of the outcome
variable employed (see Table 2 and Table 3); it is no surprise that,
given a defined set of predictors, some outcome variables are sim-
ply more ‘predictable’ than others. That variability encourages caution
when comparing methods across different outcome variables.

Finally, and perhaps again encouraged by their clinical context and
preferred outcome variables, most prior studies cast the prognosis-
prediction problem in terms of classification (e.g. into ‘impaired’ and
‘unimpaired’ groups), rather than in terms of the regression of a contin-
uous variable through time (Ahlosio et al., 1984; Allen, 1984; Counsell,
2002; Perdersen et al., 1995). This is often true even when the underly-
ing variable of interest is continuous, thereby necessitating the defini-
tion of a ‘cut-off’ score (Veerbeek, 2011). Our own predictions can be
expressed in these termsby imposing a cut-off score of 60 on the speech
production scores — patients with scores below this threshold being
within the bottom 5% of the range expected of neurologically normal
controls. By varying the decision threshold imposed on the predictions,
we can approximate a Receiver Operating Characteristic curve from our
predictions, with an area under the curve of 0.84 (95% CI: 0.80–0.89) for
the cross-sectional configuration, and 0.96 (95% CI: 0.85–1) for the lon-
gitudinal configuration. But we suggest that this binary treatment of the
problem is inappropriate to the problem at hand, both because the
cut-off is largely arbitrary, and because a binary treatment ignores the
improvement that patients might make within the ‘impaired range’ —
improvement that could have a significant impact on their eventual
quality of life.

While bearing these complicating factors in mind, it should be
noted that the best comparisons we can make with past work appear
to be favourable. Perhaps the most naturally comparable work in the
Table 3
Comparing the predictive power for CAT component scores to that achieved for the ag-
gregate speech production score (using the Wilcoxon test).

Repeating
sentences

Repeating words Naming objects Describing
pictures

Z p Z p Z p Z p

9.11 b0.001 5.85 b0.001 2.46 0.014 2.96 0.003

image of Fig.�4


Fig. 5. Actual vs. predicted speech production scores for longitudinal data.
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stroke prognosis prediction literature is that by Tilling et al. (2001),
who used multi-level growth curve models to predict continuous tra-
jectories, on a 20-point Barthel Index, for patients throughout the first
few weeks and months post-stroke. Unlike the work reported here,
these authors only employed quite coarse-grained lesion data in their
analysis (classifying lesions as ‘ischemic’, ‘hemorrhagic’, or ‘ill defined/
unclassified’). But like us, Tilling and colleagues report two configura-
tions for their inducer: a ‘cross-sectional configuration’, in which pre-
dictions are made without knowledge of the test patients' past
behaviour scores, and a ‘longitudinal configuration’, in which that
past behaviour is known. In each case, their predictions are assessed
by measuring the standard deviation of the error distribution — the
idea being that narrower prediction error distributions imply minimal
prediction error overall (assuming that the mean is close to zero). In
their cross-sectional configuration, the standard deviation of the predic-
tion error distribution is 5.43,while in the longitudinal configuration, it is
3.84; their patients' scores ranged between ‘6’ and ‘20’ on the Barthel
scale, so these standard deviations correspond to 36.2% and 25.6% of
that range respectively. By contrast, our cross-sectional and longitudinal
configurations yielded error distribution standard deviations of 5.43 and
3.58 respectively — or 17.8% and 11.7% respectively of the range for our
speech production score (35.5–60). In other words, while bearing
the preceding caveats in mind, and recognising that Tilling and
Fig. 6. Two examples of predicted prognoses. Two predicted prognoses for different patient
data, and then training with the rest; the prognoses are then constructed by making 240 in
with ‘1’, then with ‘2’, and so on up to ‘250’. In each plot, the actual data measured at asses
stroke occurred). Both predictions are expressed as probability distributions through time
mean prediction (i.e. 95% confidence). (Left) A prognosis which captures the patient's rea
and which predicts, with reasonably high confidence, that the patient will improve throug
the impairment threshold (score = 60); the confidence attached to the prediction is compar
in the variance of the predictive distribution after that time. (Right) A prognosis predicting
data quite accurately, but which is made with comparatively low confidence.
colleagues employed much larger validation sets, our predictions
compare favourably with theirs.

Our results also compare favourably with a recent attempt to use a
method more closely analogous to our own – the Relevance Vector Ma-
chine (Tipping, 2000) – to predict scores on standard behavioural assess-
ments for Alzheimer's disease from subjects' MRI images (Stonnington
et al., 2010). In their favoured configuration, these authors report an R
value (correlation coefficient) of 0.73 for the relationship between pre-
dicted and actual scores. This corresponds to an R2 of 0.53 — roughly
equivalent to the predictive power that we could achieve with the
complete set of 232 atlas-based predictors (i.e. before deploying fea-
ture selection). Gaussian Process regression has yielded much stron-
ger predictions of subjects' ages from their MRI scans in the past
(R2 = 0.92, mean error = 4.98 years; see (Ziegler and Gaser, 2012)),
which is itself relevant to the diagnosis of Alzheimer's, but no attempt
was being made to predict behavioural performance in that case. In
other words, our predictions for behaviour after stroke appear to be
powerful relative to analogous past work.
4.1. Key predictors

Our approach allows us to combine the influence of multiple differ-
ent predictors to provide a more accurate prognosis for recovery. In the
example given, the preferred predictor configuration for our speech pro-
duction measure included time post-stroke, and encroachment of the
patient's lesion into 35 regions of the brain (list in Table 1). The influence
of lesion site information on speech production abilities is consistent
with the conclusions of the recent review by Plowman et al. (2011).
The specific lesion sites identified in Table 1 also appear to be consistent
with previous studies. Alongside Wernicke's area, which was naturally
expected to appear in our preferred predictor configuration, many of
the grey matter regions most emphasised have also been associated
with speechproduction skills in the past: theparietal operculumandpri-
mary auditory cortices in sensory monitoring (Simmonds et al., 2011);
the hippocampus with word retrieval in production tasks (Hocking
et al., 2009; Whitney, 2009); the insula with articulatory coding/motor
programming (Petersen, 1989); the somatosensory cortex with sensory
feedback during speech (Bohland, 2006); the cerebellar regions with
vocalisation and breathing during articulation (Nota, 2004), and with
the rate of articulation (Frings, 2006); the inferior parietal lobule with
s in the database. Each prediction was made after removing the ‘test patient’ from the
dividual predictions for the test patient, by replacing their ‘time post-stroke’ value first
sment is plotted in red (both of these patients were assessed within a year after their
, with the mean prediction in black, and borders at 2 standard deviations from that
l score with reasonable accuracy (i.e. the mean prediction is close to the real score),
hout the first 100 months post-stroke, before reaching a plateau somewhere around
atively high initially, but decreases after about 100 months, as indicated by the increase
comparatively little improvement over time, which captures another patient's actual

image of Fig.�5
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speech repetition (Fridriksson, 2010); and the thalamus with extensive
influence in the speech network (Johnson and Ojemann, 2000).

The presence of somanywhitematter tracts in our preferred config-
uration is consistentwith the increasing emphasis on these tracts in an-
atomical models of language and cognition (e.g. (Bernal and Ardila,
2009)). Following a recent reanalysis of the patients examined by
Broca (Dronkers et al., 2007), for example, the potentially surprising ab-
sence of Broca's area in Table 1 might best be explained as consistent
with the claim that the white matter underlying that area plays a rather
more important role in the speech production network than the grey
matter itself.

But thoughmany of the regions selected appear tomake sense given
the context, the temptation to over-interpret them should be resisted
because their roles as predictors remain unclear. In Fig. 3, we can see
that similar levels of predictive power can be achieved using fewer
than half of the predictors that compose our preferred configuration.
The implication is that many of these predictors encode redundant or
strongly correlated information. In that context, it may be too early to
try to draw very firm conclusions from the atlas regions that compose
our preferred predictor configuration—more datawould seem to be re-
quired before we can expect to use ARD to properly tease apart the in-
fluence of these different regions.

This conclusion is supported by the recognition that, large though it
is, our own dataset is still skewed in some important respects. For ex-
ample, only 50 of the 270 patients had lesion damage restricted to the
right-hemisphere alone; 34 of these had speech scores in the normal
range and the remaining 16 had mildly aphasic scores (the minimum
score in this group was ‘54’) with only one right-hemisphere region
contributing to our list of preferred predictors (see Table 1). Skews
like this should encourage caution when interpreting the regions that
drive our predictions.

4.2. Limitations of the current study

One criticism of the system described here is that it pools scans taken
both soon after stroke (within the first month), and many years later
(30 years or more). Since the size and site of a patient's apparent le-
sion(s) may vary post-stroke, this approach could introduce noise into
the structure–function-recovery relationships that we have attempted
to learn, thus reducing the sensitivity and accuracy of our predictions.
Oneway to reduce that noisewould be to restrict our dataset to patients
either during the acute/sub-acute phase post-stroke (Karnath et al.,
2011), or to patients who are well into the chronic phase (Price et al.,
2010b). But this kind of restriction will also naturally reduce the size of
our dataset, and perhaps as a consequence, we found no evidence that
we could improve our predictions this way.

Another more immediate criticism is that our preferred predictor
configuration systematically under-estimates the severity of the impair-
ments suffered by the most impaired patients in our dataset (i.e. by
predicting speech production scores consistently above those actually
assigned on assessment; see Fig. 4). This may be an artefact of the mea-
sures on which our speech production score was based since, at poorer
levels of performance, small differences in the underlying raw scores
from the repeating and naming tasks yield larger differences in the
T-scores calculated from them. Further analysis will be needed to deter-
mine if different measures of speech production skills can mitigate this
skew.

Another concern is that new patients might exhibit relationships
that have simply never appeared in our data so far. Since the relation-
ships that we learn between lesions, symptoms, and time are learned
solely from the data we have, predictions made for these ‘novel’ types
of patients are more likely be wrong (see (Stonnington et al., 2010),
for a discussion of this). This concern is mitigated by the large sample
of patients employed here, and it will be mitigated further as our
sample of patient data increases — as it will do, dramatically, during
the next few years. This change should also improve the accuracy
and reliability of the predictions that we can make for the current
sample of patients. However, in its current form, our preferred predic-
tor configuration clearly makes rather coarse distinctions between
patients with right-hemisphere damage only (since only 1 of the re-
gions in our preferred configuration is in the right hemisphere of
the brain). As the representation of such patients increases in our
dataset, so too should the representation of right hemisphere regions
in our list of preferred predictors.

Results of this sort will always benefit from further validation with
independent samples of data. In this work, we have selected a preferred
configuration on the basis of its performancewithin and across the data
we have, which raises the spectre of over-fitting in the feature selection
process, and consequent questions concerning its generalisation to in-
dependent data. Studies of this problem have suggested that it may be
comparatively minor in datasets which, like ours, contain more than
250 items (Kohavi, 1997). And in our case, the concern is further miti-
gated by the recognition that the quality of our predictions does not
dramatically decline when we exclude many of the predictors in our
preferred configuration (see Fig. 3), and by the fact that the system per-
forms so well on longitudinal data (see Fig. 5).

Finally, it should be mentioned that statistical machine learning ap-
proaches, like GPR, SVM, RVM, and many others, are all susceptible to
criticism because they lack the kind of transparency that might be
expected of more conventional (typically linear) regression models.
Our experience is that the predictive power reported here simply is
not attainable, in this domain, with these more transparent techniques;
we have sought to maximise that power here, which has encouraged
the use of a more complex machine learning approach. This choice
trades power for transparency, because for most practical purposes,
GPR – like SVM, RVM, and a host of other alternatives – is a ‘black box’
system. If another, more transparent method can be found which
matches or exceeds the performance that we can get from these more
complex methods, it would likely be preferred. However, at present,
we take the view that the gains in predictive power attendant on the
use of GPR or other similar nonlinear techniques justify the cost in
terms of transparency.

4.3. Proposed extensions

The approach reported here could naturally be extended in a variety
of ways, and there is every reason to hope that our predictions could be
further improved by any or all of them. First, the apparent success of our
feature selection approach suggests that further gainsmight bemadeby
exploring other, more rigorous alternatives to it. Though much more
computationally expensive than ‘filter’ feature selection methods like
ARD, ‘wrapper’ feature selection methods such as backward selection
are generally thought to yield better results (Kohavi, 1997). Improved
performance might also flow from the addition of different predictors
conveying information not considered here— like initial stroke severity
and acute behavioural symptoms (Laska et al., 2001; Pedersen et al.,
2004), or type and dose of therapy received.

Other promising extensions of this work involve either adding pre-
dictors calculated from different sources of data, or using prior knowl-
edge of, or results concerning, relevant structure–function associations
to create custom predictors. In recent work, for example, Saur and col-
leagues have illustrated that functional imaging data might be made
to play an analogous role to the structural brain images employed
here (Saur et al., 2010) — driving predictions concerning the patient's
progress in the future. This study only made predictions a few months
ahead, but there is every reason to allow that this kind of approach –

perhaps in concert with that reported here – might work on longer
timescales too. Similarly, Diffusion Tensor Imaging (DTI) studies have
increasingly begun to highlight the role of tracts and tract disruption
in the complex behavioural symptoms associated with focal brain le-
sions (Bernal and Ardila, 2009) — consistent with the emphasis our
own results place on white matter. To the extent that DTI can reveal



432 T.M.H. Hope et al. / NeuroImage: Clinical 2 (2013) 424–433
new information that predicts symptoms and recovery post-stroke,
an approach along the lines described here should be capable of
employing it. Indeed, where we know that damage to particular re-
gions or tracts is relevant to the impairment of interest (Marchina
et al., 2011; Price et al., 2010b), it would likely be desirable to design
custom predictors to reflect that knowledge — building the fruits of
our continuing study of the brain into a tool that can exploit, and
test, that knowledge directly.

Anatomical models of speech and language could also be used to
guide predictions for recovery, and conversely the lesion sites asso-
ciated with speech and language difficulties could be used to modify
and update anatomical models of speech. At present, however, the
interpretation of the current results, in terms of anatomical models
of speech, is difficult — because many different combinations of
our ‘region predictors’ can generate predictions which are only
slightly less good than those which we report. This might mean
that, despite including data from 270 patients, we need more pa-
tients before we can delineate fine grained descriptions of all the le-
sions that cause aphasic speech. This is why, in the current work, we
prefer to interpret the feature selection results simply as an illustra-
tion that better predictions can be made by selecting better, more
relevant lesion features. Future work will hopefully be able to
marry model-drive and data-driven approaches. However, this is
likely to require a larger dataset and/or a very refined set of anatom-
ically defined regions.

Finally, the results reported here indicate that our speech produc-
tion score was more ‘predictable’ than any of its components (see
Table 3). That result naturally encourages a broader search for behav-
ioural measures whichmight be more or less predictable given the in-
formation that we have, or can gather, about a given patient. While
working to improve the predictions made so far, we will also begin
to expand their scope to include many of the other cognitive capaci-
ties that can be impaired by stroke — aiming to provide stroke survi-
vors with prognoses that are as complete and comprehensive as we
can make them.
5. Conclusion

Stroke patients want to know whether, when, and in what re-
spects, they might expect to recover. We have described the practical
basis of a framework that could be used to answer those questions,
and illustrated that reasonably accurate predictions can be made
given knowledge of (a) the time since the patient's stroke occurred,
(b) the volume of the patient's lesion, and (c) detailed information
concerning the brain regions damaged by that lesion. We expect to
be able to improve on these predictions by refining and extending
the data we use to drive them — aiming to build a tool that can even-
tually deliver predicted prognoses to stroke patients and their carers.
For some, the road to recovery may be much longer than they'd
hoped, but for many, the knowledge of what they might recover –

even in the long term – could be invaluable.
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