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Abstract: Two new phragmalin-type limonoids, Carapanosins A and B (1 and 2), and a new
gedunin-type limonoid, Carapansin C (3), together with five known limonoids (4–8) were isolated
from the oil of Carapa guianensis AUBLET (Meliaceae) seeds, a traditional medicine in Brazil and Latin American
countries. Their structures were elucidated on the basis of spectroscopic analyses using 1D and 2D
NMR techniques and HRFABMS. Compounds 1–8 were evaluated for their effects on the production
of NO in LPS-activated mouse peritoneal macrophages. The NO inhibitory assay suggested that
Compounds 3, 6, and 8 may be valuable as potential inhibitors of macrophage activation.
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1. Introduction

Limonoids have mainly been found in Meliaceae and Rutaceae plants, and are modified
triterpenoids that originate from a precursor with 4,4,8-trimethyl-17-furylsteroids that typically
contains four highly oxidized (A, B, C, and D) rings. Meliaceae plants are distributed in tropical
regions throughout the world [1]. Carapa guianensis AUBLET (Meliaceae) is a popular medicinal plant
known as “Andiroba” in Brazil, and is in the same family as mahogany. Andiroba is a tall rainforest
tree that grows up to 40 m in height. It is in the same family as mahogany and has been called Brazilian
mahogany or bastard mahogany due to their similarities. The andiroba tree produces a brown, ligneous,
quadrilateral nut that is approximately 3 to 4 in. in diameter and has the appearance of a chestnut.
The nut from andiroba contains several oil-rich kernels and seeds that are composed of an ~60% pale
yellow oil. The seed oil of andiroba was previously reported to exhibit highly efficient analgesic [2],
anti-bacterial [3], anti-inflammatory [4], anti-cancerous [5], anti-tumor, anti-fungal [6], and anti-allergic
properties [7] and was also found to be effective against wounds, bruises, herpes ulcers, rheumatism,
ear infections, and insect bites as a repellent [8,9]. We previously reported Carapanolides A and B [10],
guianolide A and B [11], Carapanolides C–I [12], Carapanolides J–L [13], Carapanolides M–S [14],
and Carapanolides T–X [15] in the seed oil of andiroba. Our continuing research on the seed oil of
andiroba revealed the structures of two new phragmalin-type limonoids, Carapanosins A (1) and
B (2), a new gedunin-type limonoid, Carapanosin C (3), and five known limonoids (4–8). We herein
describe the isolation and structural elucidation of the new limonoids as well as their inhibitory effects
of NO production.
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2. Results and Discussion

The oil from C. guianensis seeds was subjected to silica gel column chromatography, medium-
pressure liquid chromatography (MPLC), and reverse phase HPLC in order to obtain the new
limonoids 1–3 and known limonoids 4–8. Known compounds were identified as Carapanolide H
(4) [12], Swietephragmin G (5) [16], Swietephragmin D (6) [16], 17-epi-17-hydroxyazadiradione (7) [17],
and 17-β-hydroxyazadiradion (8) [17] by comparisons with spectroscopic data of the literature.

Carapanosin A (1), a colorless crystal, had the molecular formula of C36H42O16 (m/z 731.2551
[M + H]+, calcd. 731.2551) as determined by HRFABMS. The IR absorption bands indicated the
existence of hydroxy group (νmax 3647 cm−1) and several carbonyl groups (1751, 1700 and 1652 cm−1).
The UV spectrum showed a furan ring and an αβ-unsaturated δ-lactone at λmax 208 nm (log ε 3.52)
and 235.5 nm (log ε 3.54). 1H- and 13C-NMR spectra (Table 1) exhibited signals assignable to three
tertiary methyl groups [δH 0.89, 1.34, 1.47 (each s)], two acetyl groups [δH 1.58, 2.05 (each 3 H, s);
δC 20.1, 20.8 (each q), 171.1, 172.3 (each s)], a propanoyl [δH 1.10 (3 H, t), 2.31 (dq), 2.42 (m); δC 8.9 (q),
27.8 (t), 174.0 (s)], a methyl ester [δH 3.78 (3 H, s); δC 52.5 (q), 173.6 (s)], two sp3 methylenes, six sp3

methines including five oxymethines [δH 4.09 (d), 4.57 (s), 4.99 (dd), 5.29 (s), 5.71 (s); δC 68.8, 68.9,
71.4, 78.7, 83.8 (each d)], and seven sp3 quaternary carbons including four oxycarbons [δC 78.4, 83.0,
84.5, 85.2 (each s)], and the last three displacements have already been quoted above for the orthoester.
I suggest seven sp3 quaternary carbons including one with a hydroxyl attached, rather than an oxygen
bridge [δC 78.4], an αβ-unsaturated δ-lactone [δH 6.06 (1 H, s); δC 122.1 (d), 159.6 (s)], and a furan ring
[δH 6.54 (dd), 7.42 (t), 7.55 (brs)]. In the 1H-1H COSY spectrum, cross peaks were observed between
H-5–H-6, H2-11–H-12, H-22–H-23, and H2-2′ ′ ′ ′–H3-3′ ′ ′ ′, as shown in boldface in Figure 1.

In the HMBC spectrum (Figure 1), cross peaks were observed from H-3 [δH 4.57 (s)]/C-2 [δC 78.4
(s)], C-4, C-5, C-1’ [δC 171.1 (s)]; H-6 [δH 4.09 (d)/C-4, C-5, C-7 [δC 173.6 (s)]; H-12 [δH 4.99 (dd)]/C-11,
C-13, C-14 [δC 162.7 (s)], C-17 [δC 78.7 (d)], C-18, C-1′′′ [δC 172.3 (s)]; H-15 [δH 6.06 (s)]/C-8 [δC 83.0 (s)],
C-13, C-14, C-16 [δC 159.6 (s)]; H-17 [δH 5.29 (s)]/C-12 [δC 68.8 (d)], C-13, C-14, C-20 [δC 121.7 (s)],
C-21 [δC 141.7 (d)], C-22 [δC 110.2 (d)]; Me-18 [δH 1.47 (s)]/C-12, C-13, C-14, C-17; Me-19 [δH 1.34
(s)]/C-1 [δC 84.5 (s)], C-5, C-9 [δC 85.2 (s)], C-10; Me-28 [δH 0.89 (s)]/C-3 [δC 83.8 (d)], C-4, C-5, C-29,
H3-1′′ [δH 3.78 (s)]/C-7[δC 173.6 (s)]. The relative structure of 1 was determined on the basis of NOESY
correlations (Figure 1). Intense NOESY correlation between H-3 and Me-28, and H-29pro-S; between
H-5β and H-6, H-12, H-30β, and Me-28; between H-6 and H-30β; between H-12 and H-5β, H-17β, and
H-30β; and between Me-19 and H-6, H-29pro-R, and Me-32 revealed an acetyl group at C-3 in the β
orientation, C-12, a hydroxyl group at C-2, and a 2-methylpropanoyl group at C-30 in the α orientation.
In addition, significant NOEs were observed between H-6 [δH 6.07 (brs)] and H-11β, H-12β and H-17β;
therefore, C-6 was presumed to be in an R-configuration, which was consistent with Carapanolide N14.
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Table 1. 1H-NMR and 13C-NMR Data of Compounds 1 and 2.

Position
1 2

1H a (J, Hz) 13C b 1H a (J, Hz) 13C b HMBC

1 84.5 (s) 84.1 (s)
2 78.4 (s) 83.4 (s)
3 4.57 s 83.8 (d) 5.19 s 85.3 (d) 4, 5
4 43.9 (s) 44.5 (d)
5 2.94 d (10.9) 44.2 (d) 2.47 brd 44.7 (d) 4, 9, 10, 29
6 A 4.09 dd (12.1, 10.9) 71.4 (d) 6.31 brd 71.2 (d) 4, 5, 10

B
7 173.6 (s) 169.2 (s)
8 83.0 (s) 83.5 (s)
9 85.2 (s) 86.1 (s)
10 48.7 (s) 48.8 (s)
11 α 2.02 dd (14.7, 13.5) 31.9 (t) 2.00 t (14.1) 32.4 (t) 9, 10, 12, 13

β 3.21 dd (14.7, 4.2) 2.35 dd (14.1, 4.1) 2, 8, 9, 12
12 α 68.8 (d) 68.5 (d) 17, 18

β 4.99 dd (13.5, 4.2) 4.94 dd (14.1, 4.1)
13 42.1 (s) 42.9 (s)
14 162.7 (s) 152.6 (s)
15 6.06 s 122.1 (d) 6.62 s 124.2 (d) 8, 14, 16,
16 159.6 (s) 163.4 (s)
17 5.29 s 78.7 (d) 5.91 s 78.9 (d) 12, 13, 14, 18, 20, 22, 23
18 1.47 s 14.8 (q) 1.59 s 14.4 (q) 12, 13, 14, 17
19 1.34 s 14.8 (q) 1.31 s 16.4 (q) 1, 5, 9, 10
20 121.7 (s) 121.0 (s
21 7.55 brs 141.7 (d) 7.45 brs 142.1 (d) 20, 22, 23
22 6.54 dd (1.7, 0.6) 110.2 (d) 6.56 dd (2.0, 1.2) 110.2 (d) 21, 23
23 7.42 t (1.7) 143.2 (d) 7.40 t (1.2) 143.0 (d) 20, 21, 22
28 0.89 s 15.7 (q) 0.92 s 15.3 (q) 3, 4, 5, 29
29 pro-S 1.75 d (10.8) 39.9 (t) 1.75 d (11.1) 40.8 (t) 1, 2, 3, 8

pro-R 2.05 d (10.8) 2.23 d (11.1)
30 5.71 s 68.9 (d) 5.35 s 74.1 (d) 1, 2, 8, 9
31 119.7 (s) 119.6 (s)
32 1.68 s 21.0 (q) 1.69 s 16.4 (q) 31
1′ 171.1 (s) 169.0 (s)
2′ 2.05 s 20.8 (q) 2.08 s 21.7 (q) 1′

1′ ′ 3.78 s 52.5 (q) 171.7 (s) 7
2′ ′ 2.20 s 20.9 (q) 7

1′ ′ ′ ′ 172.3 (s) 3.74 53.3 (q)
2′ ′ ′ ′ 1.58 s 20.1 (q) 1′ ′ ′

1′ ′ ′ ′ 174.0 (s) 170.4 (s)
2′ ′ ′ ′ A 2.31 dq (10.5, 7.4) 27.8 (t) 1.55 s 19.8 (q) 1′ ′ ′ ′, 3′ ′ ′ ′

B 2.42 m
3′ ′ ′ ′ 1.10 t (7.4) 8.9 (q) 1′ ′ ′ ′, 2′ ′ ′ ′

1′ ′ ′ ′ ′ 173.9 (s)
2′ ′ ′ ′ ′ 2.43 dq (10.6, 7.3) 28.1 (t) 1′ ′ ′ ′ ′, 3′ ′ ′ ′ ′

2.50 m
3′ ′ ′ ′ ′ 1.16 t (7.3) 8.9 (q) 1′ ′ ′ ′ ′, 2′ ′ ′ ′ ′

1-OH
2-OH 3.65 s

a Measured at 600 MHz in CDCl3. b Measured at 150 MHz in CDCl3.

Carapanosin B (2), a colorless amorphous, had the molecular formula of C38H44O17 (m/z 773.2659
[M + H]+, calcd. 773.2657) as determined by HRFABMS. The IR spectrum showed the presence of
hydroxyl, ester groups, and an αβ-unsaturated δ-lactone at νmax 3566, 1734, and 1663 cm−1; and the
UV spectrum indicated the presence of a furan ring and an αβ-unsaturated δ-lactone at λmax 213
nm (log ε 3.84) and 237.5 nm (log ε 3.62). The 1H- and 13C-NMR spectra (Table 1) displayed signals
due to three tertiary methyls [δH 0.92, 1.31, 1.59 (each 3 H, s)], three acetyl groups [δH 2.08 (3 H, s),
δC 169.0 (s); δH 2.20 (3 H, s), δC 171.7 (s); δH 1.55 (3 H, s), δC 170.4 (s)], a propanoyl group [δH 1.16 (3 H,
t), 2.43 (1 H, dq), 2.50 (1 H, m), δC 173.9 (s)], a methyl ester [δH 3.74 (3 H, s), δC 169.2 (s)], a methylene
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[δH 2.00 (1 H, t), 2.35 (1 H, dd)], five sp3 methines including four oxymethines [δH 4.94 (dd), 5.19 (s),
5.91 (s), 6.31 (brd)], seven sp3 quaternary carbons including five oxycarbons [δC 83.4, 83.5, 84.1, 86.1
(each s)], an α,β-unsaturated δ-lactone [δH 6.62 (1 H, s), δC 124.2 (d), 152.6 (s), 163.4 (s)], and a furan
ring [δH 6.56 (dd), 7.40 (t), 7.45 (brs)]. The 1H and 13C-NMR spectra (Table 1) of 2 were very similar to
those of 1, so 2 is estimated to be phragmalin-1,8,9-orthoacetate, except for the absence of a hydroxy
group and presence of an acetyl group at C-6 [δH 6.31 (brd), δC 71.2 (d)]. In the NOESY spectrum,
significant NOEs were observed between H-6 and H-11α, and Me-19, so the configuration of H-6 was
determined to have the same R as Compound 1 and Carapanolide N [14], and its relative structure
was established, as shown in Figure 2.
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Figure 2. Chemical structures for Compounds 1–8 and nimolicinol (9).

Carapanosin C (3) was obtained as a colorless crystal, m.p. 236–239 ◦C. Its molecular formula
was determined to be C28H34O7 (m/z 483.2388 [M + H]+, calcd. 483.2383). The IR absorption bands
indicated the existence of a hydroxy, an ester, an α,β-unsaturated six-membered ring ketone, and
α,β-unsaturated δ-lactone at νmax 3566, 1734, 1699, 1668 cm−1, and the UV absorption band indicated
a λmax 238.5 nm (log ε 3.74). 1H- and 13C-NMR spectra (Table 2) revealed the presence of five
methyls [δH 1.08, 1.09, 1.16, 1.25, 1.36 (each 3 H, s)], a secondary acetoxy group [δH 1.98 (3 H, s),
5.25 (t); δC 169.6 (s)], αβ-unsaturated six-membered ring ketone [δH 5.87 and 7.06 (each 1 H, d),
δC 203.8 (s)], an αβ-unsaturated δ-lactone [δH 5.64 (1 H, s), δC 111.0 (d), 163.4 (s), 170.3 (s)], an acetal
carbon [δC 104.0 (s)] [16], and a β-substituted furan ring [δH 6.48 (dd), 7.43 (t), 7.58 (brs)], suggesting
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a gedunin-type limonoid. In the HMBC spectrum, the following correlations were observed: Me-18 [δH

1.16 (s)]/C-12, C-13, C-14 [δC 170.3 (s)], and C-17 [δC 104.0 (s)]; Me-19 [δH 1.25 (s)]/C-1 [δC 156.4 (d)],
C-5, C-9, and C-10; Me-30 [δH 1.36 (s)]/C-7 [δC 73.2 (d)], C-8, C-9, and C-14 [δC 170.3 (s)]. The 1H-1H
COSY spectrum (H-1–H-2; H-5–H2-6–H-7; H-9–H2-11–H2-12; H-22–H-23) revealed the positions of
substituents (Figure 3). These results suggested the planer structure of 3 shown in Figure 2. Siddiqui
et al. isolated nimolicinol (9) (m.p. 270–274 ◦C) (17α-hydroxy-14,15-deoxy-17-epi-gedunin) from the
fruits of Azadirachta indica A. Juss (Neem) [18,19]. These findings suggest that the planer structure of
3 was as the same as that of 9. However, major differences were detected in the 1H- and 13C-NMR
spectra between 3 and 9. These differences between 3 and 9 were particularly prominent in C-12
(δC 23.2 in 3; δC 37.2 in 9), C-9 (δC 37.2 in 3; δC 45.5 in 9), and C-22 (δC 125.0 in 3: δC 110.1 in 9), and
slight differences were observed in C-5 (δC 43.5 in 3: δC 40.5 in 9), C-6 (δC 23.0 in 3: δC 25.0 in 9),
C-10 (δC 40.4 in 3: δC 42.1 in 9), and C-13 (δC 42.0 in 3: δC 44.5 in 9). The relative configuration of 3
was mainly established by a NOESY experiment (Figure 3). Cross-peaks were observed Me-30/H-7β
[δH 5.25 (t)], H-15, and Me-19; H-21/H-12α, H-12β, and Me-18; and Me-18/H-9α, H-12α, H-15, H-21,
and H-23. Compound 3 (17β-hydroxy-14,15-deoxy-gedunin) has not yet been isolated.
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Table 2. 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data for Compound 3.

Position
3

Position
3

1H a (J, Hz) 13C b 1H a (J, Hz) 13C b

1 7.06 d (10.3) 156.4 (d) 14 170.3 (s)
2 5.87 d (10.3) 125.8 (d) 15 5.64 s 111.0 (d)
3 203.8 (s) 16 163.4 (s)
4 43.7 (s) 17 104.0 (s)
5 2.16 dd (12.6, 4.1) 45.5 (d) 18 1.16 s 23.3 (q)
6 α 1.97 m 23.0 (t) 19 1.25 s 18.8 (q)

β 1.99 m 20 125.0 (s)
7 5.25 t (2.9) 73.2 (d) 21 7.58 brs 142.9 (d)
8 44.4 (s) 22 6.48 dd (1.8, 0.9) 125.0 (d)
9 2.20 dd (11.4, 8.5) 37.2 (d) 23 7.43 t (1.8) 141.6 (d)
10 40.4 (s) 28 1.08 s 26.8 (q)
11 α 2.00 m 15.1 (t) 29 1.09 s 21.1 (q)

β 1.86 ddd (14.1, 11.4, 1.7) 30 1.36 s 24.1 (q)
12 α 2.30 dt (14.1, 9,9) 23.2 (t) 1′ 169.6 (s)

β 1.60 m 2′ 1.98 s 20.7 (q)
13 42.0 (s)

a Measured at 600 MHz in CDCl3. b Measured at 150 MHz in CDCl3. Assignment are based on HMBC spectrum.
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Macrophages may be a potential therapeutic target for inflammatory diseases [20]. Activated
macrophages release pro-inflammatory mediators, such as NO, reactive oxygen species, interleukin-1
beta, tumor necrosis factor-alpha, and other inflammatory mediators, which play important roles
in biological defense. However, the overexpression of these mediators has been implicated in
diseases such as osteoarthritis, rheumatoid arthritis, and diabetes because the increased production
of pro-inflammatory mediators has been shown to induce severe or chronic inflammation [21].
Eight limonoids, and L-NMMA, an inducible nitric oxide synthase (iNOS) inhibitor, were evaluated for
their inhibitory effects on NO production (Figure 4). All tested compounds did not exhibit cytotoxicity
(Cell viability 92.7%–100.4% at 30 µM). Of these, Compounds 3, 6, and 8 exhibited stronger inhibitory
activity on NO production (IC50 3: 13.7 µM; 6: 4.9 µM; 8: 10.8) than L-NMMA (IC50 23.9 µM). On the
other hand, Compounds 4 and 7 showed moderate activity on NO production (IC50 4: 25.5 µM;
7: 28.9 µM).
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3. Experimental

3.1. General Experimental Procedures

Melting points were determined on a Yanagimoto micro-melting point apparatus and were
uncorrected. Optical rotations were measured with a JASCO DIP-1000 digital polarimeter. IR spectra
were recorded on a PerkineElmer 1720X FTIR spectrophotometer (Perkin-Elmer Inc., Wellesley, MA,
USA). UV spectra were measured on a HITACHI U-2000 spectrometer using EtOH as a solvent.
1H- and 13C-NMR spectra were obtained on an Agilent vnmrs 600 spectrometer (Agilent Technologies,
Santa Clara, CA, USA) with standard pulse sequences, operating at 600 and 150 MHz, respectively.
CDCl3 was used as the solvent and TMS as the internal standard.

FABMS were recorded on a JEOL JMS-7000 mass spectrometer (JEOL, Tokyo, Japan). Column
chromatography was performed over silica gel (70–230 mesh; Merck, Darmstadt, Germany), while
medium pressure liquid chromatography (MPLC) was conducted with silica gel (230–400 mesh, Merck).
HPLC was carried out using an ODS column [Cosmosil 5C18-MS column (Nacalai Tesque, Inc., Kyoto,
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Japan) (25 cm × 20 mm i.d.)] and a UV detector (220 nm) with 70% MeOH (isocratic) at a flow rate
4.0 mL/min. Injector fitted with a 100 µL loop. Fractions obtained from column chromatography were
monitored by TLC (silica gel 60 F254; Merck).

3.2. Isolation of Compounds 1–3

Preliminary silica gel column chromatography was performed to separate the seed oil (1.1 kg) of
Carapa guianensis AUBLET into 8 fractions: Fraction A (Fractions 1–76, 900 g) was eluted with CHCl3,
B (Fractions 77–110, 12.0 g) with CHCl3, C (Fractions 111–125, 21.0 g) with CHCl3/EtOAc = 5:1,
D (Fractions 126–155, 10.9 g) with CHCl3/EtOAc = 5:1, E (Fractions 156–170, 1.4 g) with CHCl3/EtOAc
= 2:1, F (Fractions 171–180, 2.4 g) with EtOAc, G (Fractions 181–195, 2.9 g) with EtOAc, and H (Fractions
196–208, 0.7 g) with EtOAc/MeOH = 5:1. Fraction E (1.4 g) was rechromatographed on a silica gel
(70–230 mesh, 100 g) column using n-hexane/EtOAc = 1:1 to yield Residue E7 (426 mg). Residue E7
(426 mg) was rechromatographed on a silica gel (70–230 mesh, 100 g) column using n-hexane/EtOAc =
2:1 to yield Residues E11 (125 mg), E12 (33 mg), and E13 (43 mg). Residue E11 was separated by HPLC
(ODS, 70% MeOH) to yield Compounds 7 and 8 (1.5 mg and 13.2 mg). Residue E12 was separated
by HPLC (ODS, 65% CH3CN) to yield 4 (2.8 mg). Residue E13 was separated by HPLC (ODS, 70%
MeOH) to yield 5 (1.5 mg). Fraction F (2.4 g) was rechromatographed on a silica gel (70–230 mesh,
120 g) column using n-hexane/EtOAc = 1:1 to yield Residues F1 (1.2 g) and F2 0.5 g). Residue F1 was
rechromatographed on a silica gel (70–230 mesh, 600 g) column using n-hexane/EtOAc = 2:1 to yield
Residue F2 (Fractions 88–101, 123 mg). Residue F2 (123 mg) was rechromatographed on a silica gel
(230–400 mesh, 10 g) column using n-hexane/EtOAc = 2:1 to yield Residue F3 (71.0 mg). Residue
C7 (71.0 mg) was separated by HPLC (ODS, 70% MeOH) to yield 6 (2.9 mg). Residue F2 (0.5 g) was
rechromatographed on a silica gel (70–230 mesh, 10 g) column using n-hexane/EtOAc = 2:1 to yield
Residue F4 (Fractions 33–50, 54.2 mg). Residue F4 was separated by HPLC (ODS, 50% CH3CN) to
yield Carapanosin A (1) (3.4 mg), B (2) (2.9 mg), and C (3) (2.7 mg).

Carapanosin A (1): Colorless amorphous solid; m.p. 140–142 ◦C; [α]22
D −74.6◦ (c 0.32, CHCl3);

UV (EtOH) λmax (log ε): 208 (3.52), 235.5 (3.54); IR (cm−1, KBr): 3647, 1751, 1700, 1652; FAB-MS
m/z (rel.int.): 731 [M + H]+ (100), 671 (12), 95 (17); HR-FAB-MS m/z 731.2551 [M + H]+ (C36H43O16,
calcd. 731.2551).

Carapanosin B (2): Colorless amorphous. [α]20
D 64.0◦ (c 0.05, EtOH); UV (EtOH) λmax (log ε): 237.5,

213 (log ε 3.62, 3.84); IR (cm−1, KBr): 3566, 1734, 1663, 1039. FAB-MS m/z (rel.int.): 773 [M + H]+ (49),
715 (65), 699 (77), 43 (100); HR-FAB-MS m/z 773.2659 [M + H]+ (C38H45O17, calcd. 773.2657).

Carapanosin C (3): Colorless crystal; m.p. 236–239 ◦C; [α]22
D +80.5◦ (c 0.13, EtOH); UV (EtOH) λmax

(log ε): 238.5 (log ε 3.74); IR (cm−1, KBr): 3566 (OH), 1734, 1699, 1668, 1240, 1171; FAB-MS m/z (rel.int.):
505 [M + Na]+ (50), 483 [M + H]+ (77), 465 (23), 423 (52), 405 (14), 328 (25), 176 (37), 95 (100); HR-FAB-MS
m/z: 483.2388 [M + H]+ (C28H35O7, calcd. for 483.2383).

3.3. Cell Cultures

RAW264.7 cells (mouse macrophages) (obtained from DS Pharma Biomedical Co., Ltd.
(Osaka, Japan)) were grown in DMEM. The medium was supplemented with 10% FBS and antibiotics
(100 units/mL penicillin and 100 µg/mL streptomycin). The cells were incubated at 37 ◦C in a 5% CO2

humidified incubator.

3.4. Determination of RAW264.7 Cell Proliferation

RAW264.7 cell proliferation was examined in accordance with a method reported previously [22].
Briefly, RAW264.7 cells (5 × 104 cells in 100 µL) were seeded onto a 96-well microplate, and incubated
for 24 h. DMEM containing test samples (100 µL total volume, a final concentration of 30, 10, 3, or 1 µM)
dissolved in DMSO (final concentration of 0.2%) was added. After treatment for 24 h, MTT solution
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was added. After a 3 h incubation, 20% sodium dodecyl sulfate in 0.1 M HCl was added to dissolve the
formazan produced in the cells. The absorbance of each well was read at 570 nm using a microplate
reader. The optical density of vehicle control cells was assumed to be 100%. Values are expressed
as the mean ± standard error of the mean (S.E.M.). One-way ANOVA, followed by Dunnett’s test,
was used for statistical analysis. Significant differences from the vehicle control (0 µM) group shown
as *: p < 0.05 and **: p < 0.01.

4. Conclusions

Two new phragmalin-type limonoids, Carapanosins A (1) and B (2) as well as a gedunin-type
limonoid, Carapanosin C (3) were isolated from the seeds of Carapa guianensis. Their structures
were elucidated by spectroscopic analyses. In the NO inhibitory assay, Compounds 3, 6, and 8
exhibited similar NO inhibitory activities (IC50 3: 13.7 µM; 6: 4.9 µM; 8: 10.8 µM) to L-NMMA
(IC50 23.9 µM) without cytotoxicity. These results suggest that Compounds 3, 6, and 8 have potential
as anti-inflammatory disease agents.
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