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Objective: To evaluate the association between radiation exposure from repeated

nuclear medicine (NM) examinations and the subsequent risk of neoplasm in

pediatric patients.

Methods: From 2000 to 2017, participants under 18 years of age who underwent NM

scanning were identified using the Health and Welfare Data Science Center (HWDC)

dataset, which was extracted from the Taiwan National Health Insurance Research

Database (NHIRD). Both the exposed cohort and unexposed subjects were followed

up with until the presence of any malignancy arose, including malignant brain, lymphoid

and hematopoietic tumors and benign brain or other central nervous tumors.

Results: There were 35,292 patients in the exposed cohort and 141,152 matched

subjects in the non-exposed group. The exposed cohort had an overall higher IR (IR:

incidence rate, per 100,000 person-years) of any malignancy and benign central nervous

tumor than the non-exposed group [IR, 16.9 vs. 1.54; adjusted hazard ratio (HR), 10.9;

95% CI, 6.53–18.2]. Further stratifying the number of NM examinations into 1-2, 3-4,

and 5 or more times revealed that the IR of pediatric neoplasms increased gradually

with the increased frequency of NM examinations (IR, 11.5; adjusted HR, 7.5; 95% CI,

4.29–13.1; IR, 25.8; adjusted HR, 15.9; 95% CI, 7.00–36.1; IR, 93.8; adjusted HR, 56.4;

95% CI, 28.8–110.3).

Conclusion: NM examination is significantly associated with a higher risk of pediatric

neoplasms, according to our population-based data. Thorough radiation protection and

dose reduction in pediatric NM procedures should be an issue of concern.

Keywords: nuclear medicine (NM), pediatric neoplasms, radiation protection, malignancy, National Health

Insurance Research Database (NHIRD)
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INTRODUCTION

Radiation hazards to patients and medical workers exposed
to radiological examinations have raised worldwide concerns
in recent decades (1–3). The ICRP 2015 Proceedings indicate
that 32.7 million global diagnostic nuclear medicine (NM)
examinations are performed annually, with an increase of 0.2
million examinations per year since 1991 (4). According to the
National Council on Radiation Protection and Measurements
(NCRP) 160 report, NM procedures have increased from 6.3
million in 1984 to 18 million in 2006, with ∼1% of these
procedures performed on children in the United States (5).
NM imaging provides essential physiological and pathological
information in oncology, urology, and orthopedics, and such
imaging is particularly valuable in children and infants, in whom
a rapid and accurate diagnosis is crucial for developmental health
and reducing disease progression. Children have a higher risk
for adverse effects from radiation exposure than adults, and
the subsequent lifelong estimated cancer risks due to repeated
radiological examination should not be ignored (6, 7). NM
procedures are traditionally thought to be safe and non-invasive
without serious complications. For example, 99mTc-DMSA renal
scintigraphy can be used acutely to confirm the presence of
acute pyelonephritis or, 4–6 months later, the sequelae of renal
cortical scarring in pediatric patients with recurrent urinary
tract infections. The estimated effective dose administered for
a common 99mTc-DMSA scan is low, varying between 0.6 and
0.8 millisieverts (mSv). Although the majority of NM exams
performed on children require a low effective dose of <1 mSv,
radiation exposure and cancer risk from repeated scans in the
acute stage and disease follow-up should never be overlooked (8).
Some NM examinations, especially in oncology and orthopedics,
can result in an intermediate radiation dose, between 3 and 6mSv,
which is close to the radiation dose received from one modern
CT scan (9, 10). Several studies have revealed evidence of higher
cancer risk after repeated CT scan exposure in pediatric patients
(11–15). It is conceivable that the cancer risk associated with NM
procedures in the pediatric population is a topic that warrants
further assessment. Our encrypted identification and medical
records of participants were representatively extracted from the
NHIRD, which has the advantage of being one of the largest
national databases in the world. This population-based study was
designed to investigate the possible association between pediatric
neoplasms and diagnostic NM procedures.

MATERIALS AND METHODS

Data Source
This study used data from the Health and Welfare Data Science
Center (HWDC), which contains over 99% of 23 million
Taiwanese residents’ national electronic medical records. The
International Classification of Diseases, Clinical Modification
(ICD-9-CM) and International Classification of Diseases, Tenth
Revision, Clinical Modification (ICD-10-CM) were used as
diagnostic tools for diseases. This study was approved by the
Central Regional Research Ethics Committee, China Medical
University, Taichung, Taiwan (CMUH109–109-REC2–031).

Study Population
The study period of this retrospective population-based cohort
study was between 2000 and 2017. We selected participants
under 18 years of age who underwent nuclear medicine
(NM) scans (Taiwan National Health Insurance payment code
26001B∼26070B). Positron emission tomography (PET) and
I131−related therapy were not included due to cancer selection
bias. For each NM scan patient, we selected four patients who
never underwent NM scans as unexposed comparison group
based on sex, age, and index year. The exclusion criteria for both
the NM scan group and the unexposed group were as follows:
patients who ever underwent high radiation dose examination or
therapy, such as CT scan and radiation therapy, and those with
disorders that may have increased cancer risk, such as multiple
endocrine neoplasia (ICD-9-CM code 258.01–258.03; ICD-10-
CM code E31.20-E31.23); neurofibromatosis; phakomatosis; and
tuberous sclerosis (ICD-9-CM code 237.70–72; 759.5, 759.6;
ICD-10-CM code Q85.0–85.9). In addition, we excluded patients
if they had a prior history of cancer before the index date and
cancer development within the first 2 years of follow-up (lag
period of 2 years for cancer diagnosis). The date for the first
NM examination was defined as the index date and the start of
follow-up set at 2 years after the index date. All participants were
followed from cohort entry until the presence of the primary
outcome, death, censoring for loss or the end of the study period
(December 31, 2018), whichever came first (Figure 1).

Outcomes
The major categories of leukemias, lymphomas and malignant
brain tumors represent close to 70% of all pediatric cancers (16).

A previous study revealed that repeated head CT scans might
increase the risk of benign pediatric brain tumors (12). Therefore,
our primary outcome measure included any malignant tumor
(ICD-9-CM code 140.0–208.92; ICD-10-CM code C00.1-C80.1),
malignant lymphoid and hematopoietic tissue (ICD-9-CM
code 200.00–208.92; ICD-10-CM code C81.00-C96.9), malignant
brain and other central nervous tumor (ICD-9-CM code 191.0,
192, 194.2, 194.3, 194.4; ICD-10-CM code C71.0-C72.9), and
benign brain and other central nervous neoplasm (ICD-9-CM
code 225.0–225.9, 227.3, 227.4; ICD-10-CM code D32.0-D33.9).

Statistical Analysis
We computed the categorical variables as numbers and
percentages and the continuous variables as the mean and
standard deviation (SD). For the difference in the categorical
and continuous demographic variables between the NM scan
group and unexposed comparison group, statistical significance
was determined with the chi-square test and Student’s t-test. To
address the concern of constant proportionality, we examined
the proportional hazard model assumption using a test of scaled
Schoenfeld residuals. Results showed that there was no significant
relationship between Schoenfeld residuals for radiation exposure
and follow-up time (p-value = 0.71) in the model evaluating the
neoplasm risk. Univariable and multivariable Cox proportional
hazards models were used to estimate the risk of pediatric
neoplasms in children with and without NM scans. With
adjustment for sex, age, and urbanization in multivariable
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FIGURE 1 | Flowchart for selecting study participants. NM, nuclear medicine; CNS, central nervous system; MEN, multiple endocrine neoplasia.

analysis, we obtained the adjusted hazard ratio. The Kaplan–
Meier method was applied to obtain the cumulative incidence
curve. Statistical analysis was performed using SAS software,
version 9.4, and we generated survival curves in R software. The
significance criterion was a two-sided p-value < 0.05.

RESULTS

Characteristics of Study Population
The comparisons of demographic characteristics in participants
with and without NM scans of the study are listed in Table 1.
From 2000 to 2017, the cohort consisted of 35,292 patients
with NM scans and 141,152 patients without NM scans. After
matching, the distribution of sex, age and urbanization was
similar in the NM scan-exposed group and the unexposed
comparison group. The average age in both groups was∼6 years
old. There were more female patients (50.4%) than male patients
(49.6%) in both groups. The average follow-up timewas∼9 years.

Higher Cancer Incidence Rates in the NM
Scan Exposure Cohort
As shown in Table 2, the overall incidence rates (IR: incidence
rate, per 100,000 person-years) of any malignant tumor and
benign central nervous neoplasm in the NM-exposed cohort
were significantly higher than those in the non-exposed group
[IR, 16.9 vs. 1.54; adjusted hazard ratio (HR), 10.9; 95% CI,
6.53–18.2]. The incidence rate of malignant lymphoid and
hematopoietic cancer in the exposed cohort was significantly
higher than that in the non-exposed group (IR, 6.46 vs. 0.92;
adjusted HR, 6.77; 95% CI, 3.33–13.8). The incidence rate of
malignant brain and other central nervous tumors in the exposed
cohort was significantly higher than that in the non-exposed

TABLE 1 | Demographic characteristics and incidence rate in cohorts with and

without NM examination exposure.

Unexposed Exposure P-value

Variables (N = 141,152) (N = 35,292)

n (%) n (%)

Sex 0.99

Female 71,128 (50.4) 17,784 (50.4)

Male 70,024 (49.6) 17,508 (49.6)

Age stratified 0.99

<12 110,689 (78.4) 27,675 (78.4)

≥12 30,463 (21.6) 7,617 (21.6)

Age, mean ± SD a 6.29 ± 5.23 6.16 ± 5.35 <0.001

Age, median (IQR) 4 (2–10) 4 (1–10)

Urbanization† 0.02

1 (Very high) 78,165 (55.4) 19,490 (55.2)

2 50,805 (36.0) 12,756 (36.1)

3 9,334 (6.61) 2,415 (6.84)

4 (Low) 2,848 (2.02) 631 (1.79)

Follow-up year, mean ± SDa 9.21 ± 3.65 9.22 ± 3.63 0.95

Follow-up year, median (IQR) 9.71 (6.12–12.4) 9.75 (6.14–12.4)

NM, nuclear medicine; at-test, SD, standard deviation; IQR, interquartile range.
†The urbanization level was categorized by the population density of the residential area

into 4 levels: level 1 as the most urbanized region and level 4 as the least urbanized region.

group (IR, 2.77 vs. 0.38; adjusted HR, 6.78; 95% CI, 2.27–20.3).
The incidence rate of benign brain and other central nervous
tumors in the exposed cohort was significantly higher than that
in the non-exposed group (IR, 1.54 vs. 0.08; adjusted HR, 25.0;
95% CI, 3.01–207.7).
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TABLE 2 | Comparison of incidence rate of radiosensitive tumor and hazard ratio between cohorts with or without NM procedures.

Variable Without NM scan With NM scan Compared to without NM scan

Event IR Event IR Crude HR (95% CI) Adjusted HR (95% CI)

Any malignant tumor and benign central nervous neoplasm 20 1.54 55 16.9 11.0 (6.58–18.3)*** 10.9 (6.53–18.2)***

Any malignant tumor 19 1.46 50 15.4 10.5 (6.19–17.8)*** 10.4 (6.10–17.6)***

Malignant lymphoid and hematopoietic cancer 12 0.92 21 6.46 6.99 (3.44–14.2)*** 6.77 (3.33–13.8)***

Malignant brain and other central nervous neoplasm 5 0.38 9 2.77 7.19 (2.41–21.5)*** 6.78 (2.27–20.3)***

Benign brain and other central nervous neoplasm 1 0.08 5 1.54 23.9 (2.88–198.6)** 25.0 (3.01–207.7)**

NM, nuclear medicine; IR, incidence rate, per 100,000 person-years; HR, hazard ratio; Adjusted HR, multivariable analysis including sex, age, urbanization.

**p < 0.01.

***p < 0.001.

TABLE 3 | Risk of pediatric neoplasm by NM scan frequency.

Frequency of NM scan N Event PY IR Crude HR (95% CI) Adjusted HR (95% CI)

None 141,152 20 1,300,566 1.54 1.00 1.00

1–2 30,055 32 278,243 11.5 7.47 (4.27–13.1)*** 7.50 (4.29–13.1)***

3–4 3,606 8 30,987 25.8 16.8 (7.40–38.2)*** 15.9 (7.00–36.1)***

≥5 1,631 15 15,998 93.8 59.9 (30.7–117.1)*** 56.4 (28.8–110.3)***

NM, nuclear medicine; PY, person-years; IR, incidence rate per 100,000 person-years; HR, hazard ratio; Adjusted HR, multivariable analysis including sex, age, urbanization.

***p < 0.001.

Trend in Increased NM Frequency
Associated With Higher Cancer Risk
Table 3 shows the stratification of the number of NM exams
in the exposed cohort into 1-2, 3-4, and 5 or more times and
revealed that the incidence rates of pediatric neoplasms increased
gradually with the increased frequency of NM exams (IR, 11.5;
adjusted HR, 7.5; 95% CI, 4.29–13.1; IR, 25.8; adjusted HR,
15.9; 95% CI, 7.00–36.1; IR, 93.8; adjusted HR, 56.4; 95% CI,
28.8–110.3). Figure 2 shows that the cumulative incidence of
pediatric neoplasms in children who underwent NM scanning
was significantly higher than that in children who did not
undergo scanning (log-rank test p < 0.001).

DISCUSSION

This current study shows that pediatric patients who are exposed
toNMexaminations have a significantly higher risk of developing
neoplasms than non-exposed subjects. The incidence rates of any
malignant tumor and benign brain and central nervous neoplasm
in the NM scanning cohort were significantly higher than those
of patients without scanning (16.9 vs. 1.54; adjusted HR, 10.9;
95% CI, 6.53–18.2). Subsequent analysis revealed the trend that
with an increasing number of NM scans, the risk of pediatric
neoplasms was aggregated (increase in adjusted HR from 7.50 to
56.4 with the increase in frequency from 1–2 to>5).

The most significant consequence of low-level radiation
exposure in humans is cancer. The carcinogenic risk of radiation
may be two to three times higher in children than in adults,
although this risk varies with organ and tissue type (8).
Cancer induction resulting from radiation exposure occurs in
a stochastic manner: there is no threshold point, and the risk

FIGURE 2 | Cumulative incidence rate of pediatric neoplasms in patients with

or without nuclear medicine (NM) scans. Pediatric neoplasms had a

significantly higher incidence rate in the NM scan exposure group (log-rank

test p < 0.001).

increases proportionally with the dose (17). The vulnerability of
the pediatric population to ionizing radiation is due not only
to the enhanced radiosensitivity of their tissues but also to a
longer time period for the manifestation of stochastic radiation
effects. First, our study results revealed that the incidence rate
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of pediatric neoplasms was significantly higher in the NM
exposure group from the beginning of the follow-up period,
which is consistent with the lack of a stochastic effect threshold.
Furthermore, a higher risk of cancer is significantly associated
with a higher frequency of NM exams, which indicates higher
radiation dose exposure. This proportional probability of cancer
occurrence is also compatible with the dose-dependent stochastic
effect (Table 2; Figure 2). The abovementioned two results
demonstrate the traditionally accepted linear and no-threshold
model of the stochastic radiation effect.

Hereditary deformity attributed to low-dose radiation is
the other example of a stochastic effect. Earlier studies
linked prenatal medical radiation exposure to pediatric cancer
in offspring, but there was no solid evidence for these
conclusions (18, 19). Recent articles reviewed animal studies
or applied different risk estimation models to discuss low-
dose radiation exposure in nuclear medicine and the associated
risk of cancer (20, 21). A PubMed-based literature search
revealed a lack of large-scale investigations into childhood
NM radiation exposure and subsequent cancer risk. One of
the possible reasons is difficulties in pediatric NM procedure
dose estimation. NM radiation dosimetry is challenging due to
diversities in the uptake, retention, and clearance of variable
radiopharmaceuticals. Furthermore, individual administered
doses in children also differ depending on the patient’s body
mass, type of examination, available SPECT model, examination
time, and patient cooperation (22, 23). Nevertheless, updated
nuclear medicine drug decay half-lives are now available in
ICRP Publication 107 (24). Based on these contemporary
radiopharmaceutical data and the new biokinetic model,
more accurate absorbed dose estimations are available for
patients examined with NM procedures (25–27). With advances
in absorbed dose estimation, we expect more quantitative
knowledge about the risk of cancer associated with pediatric NM
procedures in the future. At present, parents of pediatric patients
are always anxious about the lifelong cancer risk associated
with NM procedures. According to our study results, cancer
risk associated with pediatric NM examinations should never be
ignored. As a result of this issue, we advise physicians to take
a more comprehensive approach and to consider the benefits
of nuclear medicine as well as the potential risk associated
with radiation exposure when deciding the best option for
pediatric patients.

LIMITATION

The HWDC datasets do not provide information about the
clinical purpose of NM examinations. Thus, a screening effect
and selection bias in the NM exposure cohort may have been
present in this study. Pediatric patients who underwent NM
procedures might receive additional radiation exposure, such
as through routine plain films or other special examinations.
We excluded high radiation dose procedures such as CT scan,
radiotherapy, PET scan, and therapeutic NM procedures in
both the exposure and unexposed groups, and this confounding
factor might not be strong enough to affect the significance of

our result. In addition, the NHIRD (National Health Insurance
Research Database) cannot provide radiopharmaceuticals’
dosage from each NM examination, the lack of the accurate
data about radiopharmaceuticals decay (related to the
accurate absorbed radiation and exposure) is our major
study limitation.

Therefore, due to the lack of data about the actual absorbed
radiation dose at each NM examination, our results indicating
higher pediatric cancer risk associated with NM exposure should
be interpreted with caution. Besides above mentioned limitation,
prenatal information and family history of our participants
were not included in the HWDC datasets, and hereditary or
genetic effects of developing pediatric neoplasms could not
be assessed.

In conclusion, this study benefits from a long follow-up
period (2000–2018) and a large sample size (35,292 subjects
with NM exposure) and shows that low-dose radiation exposure
from NM examinations is significantly associated with a higher
risk of cancer and benign central nervous tumors in pediatric
patients. Nuclear medicine practitioners, including physicians
and technologists, should showmore initiative to protect patients
from radiation and should be prudent in optimizing the radiation
dose in pediatric NM procedures.
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