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Abstract

Mitochondrial DNA (mtDNA) can provide genome-level information (e.g. mitochondrial

genome structure, phylogenetic relationships and codon usage) for analyzing molecular

phylogeny and evolution of teleostean species. The species in the order Beloniformes have

commercial importance in recreational fisheries. In order to further clarify the phylogenetic

relationship of these important species, we determined the complete mitochondrial genome

(mitogenome) of garfish Hyporhamphus quoyi of Hemiramphidae within Beloniformes. The

mitogenome was 16,524 bp long and was typical of other teleosts mitogenomes in size and

content. Thirteen PCGs started with the typical ATG codon (with exception of the cyto-

chrome coxidase subunit 1 (cox1) gene with GTG). All tRNA sequences could be folded into

expected cloverleaf secondary structures except for tRNASer (AGN) which lost a dihydrouracil

(DHU) stem. The control region was 866 bp in length, which contained some conserved

sequence blocks (CSBs) common to Beloniformes. The phylogenetic relationship between

26 fish Beloniformes species was analyzed based on the complete nucleotide and amino

acid sequences of 13 PCGs by two different inference methods (Maximum Likelihood and

Bayesian Inference). Phylogenetic analyses revealed Hemiramphidae as the sister group to

Exocoetidae and it is a paraphyletic grouping. Our results may provide useful information on

mitogenome evolution of teleostean species.

1. Introduction

Mitochondrial DNA (mtDNA) of teleosts is a circular genome ranging from 15 to 19 kbp in

length that is generally composed of two ribosomal RNA genes (12S rRNA and 16S rRNA), 13

protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs) and two typical non-coding

control regions (origin of the light strand (OL) and control region (CR)) which contain essen-

tial regulatory elements for replication and transcription [1, 2]. MtDNA is commonly used for
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population genetics and phylogenetic molecular evolution due to maternal inheritance, rapid

evolution, coding content conservation, and high substitution rates compared to the nuclear

genome[3, 4]. In addition, the molecular characteristics of the mitogenome, such as gene rear-

rangement, tRNA secondary structure and models of the control of mtDNA replication are

valuable for deep phylogenetic analysis [5, 6].

Garfishes (order Beloniformes), which are known for their importance to commercial and

recreational fisheries, consist of approximately 260 species classified into 6 families depending

on the taxonomy [7]. Identifying adult garfish is not difficult [7], but larvae identification is

difficult to carry out based on morphological characters. Several partial mitochondrial CRs

gene sequences from Beloniformes have been sequenced and used for systematics [8]. How-

ever, the CRs do not provide enough phylogenetic information for molecular evolution and

sometimes even appear of disputation. Although other researchers had previously determined

the complete mitogenomes of some species from Beloniformes and constructed a phylogenetic

tree to analyse their interspecies relationship[2], we still do not understand the higher-level

phylogeny of Beloniformes because of the lack of more completely sequenced mitogenomes

that will allow obtaining more informationfor a deeper exploration and evolutionary relation-

ships. So far, there are 35 described variations that deviated from conserved mtDNA organiza-

tion in teleosts, although none described among Beloniformes[9]. Therefore, sequencing more

Beloniformes mtDNA may show novel variations in mtDNA organization among vertebrates.

To date, more than 200 complete mitogenomes have been determined from teleostean species,

however, only 26 species from Beloniformes are available in the GenBank database. The garfish

Hyporhamphus quoyi, which is zooplankton feeders and carnivores[10], is a widespread spe-

cies in the family Hemiramphidae (Beloniformes) ranging from Southeast Asia, Oceania, the

eastern Pacific Ocean and West Africa[7]. At present, the complete mitogenome of H. quoyi
has not been sequenced. To understand the deeper interspecies relationships of Beloniformes,

we sequenced the complete mitochondrial genome of H. quoyi and its genome organization

and structure were compared with other Beloniformes fish. In addition, the phylogenetic tree

has been reconstructed by the Bayesian inference (BI) and Maximum Likelihood (ML) meth-

ods to understand the evolutionary relationships among Beloniformes. The characterization of

the H. quoyi mitogenome may provide more information about the evolution of teleosts and

will aid in larvae identifications.

2. Methods

Sample collection, DNA extraction, PCR amplification and sequencing

Adult specimens of H. quoyi were collected in the Pearl River estuary (N 21˚450, E 133˚360),

China, in June 2017 and no specific permissions were required for this location. According to

the International Union for Conservation of Nature Red List, H. quoyi were not protected or

endangered species. Our study was conducted with the approval from the Institutional Animal

Care and Use Committee at Jinan University. All operations were performed according to

international guidelines concerning the care and treatment of experimental animals. All sam-

ples were preserved in 95% ethanol and were stored at -80˚C until use. Total genomic DNA

was isolated from dorsal muscle tissue samples using proteinase K treatment, followed by the

Animal Tissue Genomic DNA Extraction Kit. To sequence the H. quoyi mitogenome, several

primer pairs were designed for the amplification according to the conservative sequence based

on the conserved sequences which were obtained by aligning the complete mitogenome of

Hyporhamphus sajori (GenBank: AB370892.1) and Hyporhamphus intermedius(GenBank:

NC_026467.1) (S1 Table)[2]. PCR amplification reactions were performed with PrimeSTAR1

GXL DNA Polymerase under the following conditions: after an initial denaturation step at
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95˚C for 1 min, then 35 cycles at 95˚C for 20 s (denaturation), 55˚C for 45 s (annealing) and

72˚C for 1–5 min (elongation). PCR products were sequenced from both directions using a

primer walking method.

Sequence annotation and analysis

We used the program Seqman within Lasergene software to check and assemble manually

the mitogenome sequences of H. quoyi. The complete sequence and its annotation were per-

formed by NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast) and the DNAStar package

(DNAStar Inc. Madison, WI, USA). The circular gene map of mitogenome was drawn by

GCView Server[11]. The location of the 13 PCGs and the two rRNAs were primarily deter-

mined through Dual Organellar Genome Annotator (DOGMA)[12]. All of the tRNA gene

sequences were identified by the tRNA-scan-SE1.21 from the website http://lowelab.ucsc.edu/

tRNAscan-SE/ using the default search mode and the ‘Mito/chloroplast’ source[13]. The soft-

ware RNAstructure was used to draw the secondary structure of tRNA genes and OL[14]. The

relative synonymous codon usage (RSCU) of the 13 PCGs was calculated by the software

MEGA 6[15]. Tandem repeats in the control region (CR) were analysed using the Tandem

Repeats Finder program (http://tandem.bu.edu/trf/trf.html)[16]. The nucleotide composition

skewness was measured according to the following formulas: AT skew [(A−T)/(A+T)] and GC

skew [(G−C)/(G+C)][17]. To analyse evolutionary adaptation, the rates of nonsynonymous

(Ka) and synonymous (Ks) substitutions in the mtDNA among 26 garfish of Beloniformes

were estimated with DnaSP 5.10.01 [18]. The complete mitochondrial DNA sequence of the

H. quoyi was deposited into the GenBank database under the accession number MG851912.1.

Phylogenetic analysis

A total of 26 Beloniformes mitogenomes available in GenBank were used to investigate

the phylogenetic relationships among fish (Table 1). The mitogenome of Perciformes fish

(Caesio cuning (KP874185.1), Emmelichthys struhsakeri (AP004446.1) and Banjos banjos
(KT345965.1)) was used as outgroups[19–21]. The nucleotide and amino acid sequences of the

13 PCGs were aligned using default settings and concatenated, which were used for phyloge-

netic analysis via BI and ML methods by MrBayes v 3.2.4 and raxmlGUI, respectively[22, 23].

Each gene was aligned separately by the software Clustal X with default settings[24]. GTR+ I

+ G was selected as the appropriate model for the nucleotide sequences by Modeltest 3.7 based

on Akaike’s information criterion (AIC)[25]. MtArt+ I+ G+ F was the appropriate model for

the amino acid sequence dataset according to ProtTest 3.4 based on AIC[26]. For the Bayesian

Inference, four independent runs were allowed to run simultaneously for 1,000,000 genera-

tions and each was sampled every 1,000 generations, with the first 25% discarded as burn-in.

Stationarity was considered to be reached when the average standard deviation of split fre-

quencies was much less than 0.01. In ML analysis, the default parameters were used and the

node support values were assessed by bootstrap resampling (BP) estimated using 100 repli-

cates. The resulting phylogenetic trees were drawn by FigTree v1.4.3.

Results and discussion

Genome organization and structure

The complete mitogenome sequence of H. quoyi was a 16,525 bp circular molecule. The mito-

genome was typical of other Beloniformes fish mitogenomes, including 13 PCGs (cox1-3,

nad1-6, nad4L, atp6, atp8 and cytb), 22 transfer RNA genes (one for each amino acid and two

each for serine and leucine), 2 rRNA genes (12S rRNA and 16S rRNA) and two non-coding
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regions (the control region (CR) and OL) (Fig 1 and Table 2). Twenty-three genes were tran-

scribed on the heavy strand (H-strand), whereas the other genes (nad6 and eight tRNA genes

(Asn, Gln, Ala, Cys, Tyr, Ser (UCN), Glu, and Pro)) were oriented on the light strand (L-

strand). The organization and composition in the H. quoyi mtDNA was identical to most of

Beloniformes fish sequenced to date[27, 28].

Skewness, overlapping, and intergenic spacer regions

The nucleotide composition of the H. quoyi mitogenome was slightly biased towards A and T,

accounting for 56.80%. The overall base nucleotide composition of the H-strand was as fol-

lows: A = 4,838 (29.28%), T = 4,550 (27.53%), G = 2,534 (15.33%), and C = 4,603 (27.86%).

The highest A+T content (65.24%) was detected in the CR, which was consistent with previous

reports of the skewness of teleostean species. The average AT-skew of Beloniformes mtDNA

was 0.0089±0.0269, ranging from 0.0425 in Dermogenys pusilla to −0.0517 in Hyporhamphus
intermedius[9, 29]. The AT-skew in H. quoyi mitogenome was positive (0.0307), which was

similar to most mitogenomes of Exocoetidae, Belonidae, Scomberesocidae and Zenarchopteri-

dae (Table 1). Among all sequenced Beloniformes mitogenomes, H. quoyi has a the most

Table 1. Summary of the base composition of the mitogenomes at each codon position of the concatenated the 13 PCGs across 27 Beloniformes species.

Family Species Accession number Size (bp) Whole genome composition PCGs

A% G% T% C% A+T% AT skew GC skew AT skew GC skew

Adrianichthyidae Oryzias curvinotus NC_034775.1 16676 27.72 17.40 26.48 28.41 56.13 -0.0124 -0.2069 -0.1015 -0.2350

Adrianichthyidae Oryzias dancena GU013789.1 16863 29.00 16.52 23.85 30.63 59.63 -0.0272 -0.1814 -0.1194 -0.1984

Adrianichthyidae Oryzias javanicus GU013790.1 16890 26.77 17.78 28.12 27.32 54.10 -0.0102 -0.2253 -0.1127 -0.2512

Adrianichthyidae Oryzias latipes NC_004387.1 16714 27.26 17.95 26.52 28.28 55.53 -0.0183 -0.1927 -0.1156 -0.2264

Adrianichthyidae Oryzias luzonensis NC_012979.1 16666 26.42 18.62 27.63 27.34 53.76 -0.0171 -0.1948 -0.1154 -0.2155

Adrianichthyidae Oryzias melastigma NC_018546.1 16864 28.94 16.53 23.82 30.71 59.65 -0.0297 -0.1806 -0.1210 -0.1954

Adrianichthyidae Oryzias minutillus NC_012975.1 16953 29.31 17.31 24.01 29.36 58.67 -0.0009 -0.1621 -0.0986 -0.1756

Adrianichthyidae Oryzias sarasinorum AB370891.1 16462 29.18 17.16 24.93 28.73 57.91 0.0339 -0.2740 -0.0900 -0.2031

Adrianichthyidae Oryzias sinensis NC_013434.1 16654 29.21 16.37 26.57 27.85 57.05 0.0077 0.1846 0.0900 0.2031

Adrianichthyidae Xenopoecilus sarasinorum NC_011172.1 16462 29.18 17.16 24.93 28.73 57.91 0.0077 -0.1846 -0.0900 -0.2031

Belonidae Strongylura anastomella NC_026998.1 16654 29.21 16.37 26.57 27.85 57.05 0.0077 0.1846 0.0900 0.2031

Belonidae Tylosurus acus KU605633.1 16723 29.03 17.13 26.22 27.62 56.65 0.0249 -0.2097 -0.0456 -0.2220

Belonidae Ablennes hians NC_011180.1 16825 30.00 14.65 27.09 28.26 58.26 0.0298 -0.2980 -0.0496 -0.3447

Exocoetidae Parexocoetus brachypterus NC_036719.1 16776 29.05 15.90 27.91 27.14 56.19 0.0339 0.2740 -0.0513 -0.3113

Exocoetidae Prognichthys sealei NC_036722.1 16527 27.80 17.46 26.17 28.58 56.38 -0.0137 -0.1997 -0.0612 -0.2717

Exocoetidae Cheilopogon agoo NC_036720.1 16526 29.47 16.10 26.92 27.51 56.98 0.0345 -0.2514 -0.0493 -0.2885

Exocoetidae Cheilopogon atrisignis NC_029730.1 16530 28.77 16.64 27.34 27.24 56.01 0.0273 -0.2433 -0.0553 -0.2770

Exocoetidae Cheilopogon cyanopterus NC_036721.1 16529 28.92 16.49 27.35 27.24 56.16 0.0298 -0.2476 -0.0536 -0.2813

Exocoetidae Cheilopogon doederleinii NC_033541.1 16525 29.23 16.30 27.16 27.32 56.54 0.0338 -0.2500 -0.0495 -0.2820

Exocoetidae Cheilopogon unicolor NC_029728.1 16529 29.06 16.40 27.24 27.31 56.37 0.0310 -0.2485 -0.0511 -0.2813

Exocoetidae Cypselurus hiraii NC_007403.1 16528 29.91 15.63 26.83 27.56 57.47 0.0409 -0.2638 -0.0360 -0.3034

Exocoetidae Exocoetus volitans NC_003184.1 16527 28.35 17.12 27.19 27.34 55.69 0.0180 -0.2273 -0.0658 -0.2594

Hemiramphidae Hyporhamphus intermedius NC_026467.1 16720 26.71 16.59 27.08 29.62 56.33 -0.0517 -0.2401 -0.1519 -0.2652

Hemiramphidae Hyporhamphus sajori AB370892.1 16721 26.69 16.61 27.84 28.86 55.55 -0.0391 -0.2527 -0.1396 -0.2802

Hemiramphidae Hyporhamphus quoyi MG851912.1 16525 29.28 15.33 27.86 27.53 56.80 0.0307 -0.2899 -0.0598 -0.3195

Scomberesocidae Cololabis saira NC_003183.1 16499 30.42 14.76 25.73 29.09 59.51 0.0224 -0.2711 -0.0704 -0.2986

Zenarchopteridae Dermogenys pusilla NC_034337.1 16529 30.70 14.60 26.50 28.19 58.89 0.0425 -0.2895 -0.0442 -0.3340

https://doi.org/10.1371/journal.pone.0205025.t001
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negative GC-skew (−0.2980) indicating that a higher content of Cs compared to Gs. Similar

GC-skew values were also detected in other Beloniformes mitogenomes, apart from Ablennes
hians[2]. Additionally, the mitogenome had a 31 bp overlap between genes in eleven locations

ranging from 1 to 11 bp. Two overlaps, atp8-atp6(11 bp) and nad4l-nad4(6 bp), were detected

in the H. quoyi mitogenome. The same phenomenon occurred in the Metazoa[30, 31]. There

was a 69-bp nucleotide sequence dispersed in twelve intergenic spacers, ranging in size from 1

to 38 bp, with the longest spacer sequence located between the trnN and the trnC, which

formed the origin of the light strand.

Fig 1. Circular map of the mitogenome of Hyporhamphus quoyi. Transfer RNAs are designated by the IUPAC-IUB single letter

amino acid codes (L1: trnLCUN; L2: trnLUUR;S1: trnLAGN; S2: trnLUCN). Labeling from the outside to inside circle: genes encoded on

the heavy strand, genes encoded on the light strand, positive or negative AT skew[(A−T)/(A+T)], BLAST H. intermedius, H. sajori
and P. brachypterus results, GC content (peaks out/inside the circle indicate values higher or lower than average GC content,

respectively), GC skew [(G−C)/(G+C)], respectively.

https://doi.org/10.1371/journal.pone.0205025.g001
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Transfer RNA genes and ribosomal RNA genes

A total of 22 tRNA genes in the H. quoyi mitogenome were identified successfully based on

their potential secondary structures (Fig 2). With the exception of 8 tRNAs, all other tRNAs

were encoded by the H-strand (Table 2). The length of tRNAs of H. quoyi ranged from 66 bp

to 74 bp in size. Most of the tRNA genes could be folded into typical cloverleaf secondary

Table 2. Characteristic constituents of the mitochondrial genome of H. quoyi.

Feature Strand� Position Spacer (+)/Overlap (–) Start/Stop codon

tRNA-Phe (F) H 1–69 0

12S rRNA H 69–1012 -1

tRNA-Val (V) H 1012–1085 -1

16S rRNA H 1085–2771 -1

tRNA-Leu (L1) H 2772–2845 0

nad1 H 2846–3820 0 ATG/TAA

tRNA-Ile (I) H 3824–3895 3

tRNA-Gln (Q) L 3894–3964 -2

tRNA-Met (M) H 3963–4034 -2

nad2 H 4034–5080 -1 ATG/TAG

tRNA-Trp (W) H 5079–5151 -2

tRNA-Ala (A) L 5153–5221 1

tRNA-Asn (N) L 5223–5295 1

OL L 5296–5333 0

tRNA-Cys (C) L 5334–5400 38

tRNA-Tyr (Y) L 5401–5471 0

cox1 H 5473–7026 1 GTG/TAA

tRNA-Ser (S1) L 7033–7101 6

tRNA-Asp (D) H 7107–7180 5

cox2 H 7185–7875 4 ATG/T

tRNA-Lys (K) H 7876–7950 0

atp 8 H 7951–8118 0 ATG/TAA

atp 6 H 8108–8791 -11 ATG/TAA

cox3 H 8791–9576 -1 ATG/TAA

tRNA-Gly (G) H 9576–9646 -1

nad3 H 9647–9997 0 ATG/TAA

tRNA-Arg (R) H 9995–10065 -3

nad4l H 10065–10361 -1 ATG/TAA

nad4 H 10355–11732 -7 ATG/T

tRNA-His (H) H 11733–11801 0

tRNA-Ser (S1) H 11801–11870 -1

tRNA-Leu (L1) H 11873–11947 2

nad5 H 11947–13785 -1 ATG/TAA

nad6 L 13782–14303 -4 ATG/TAA

tRNAGlu (E) L 14304–14372 0

cytb H 14376–15516 3 ATG/T

tRNA-Thr (T) H 15517–15589 0

tRNA-Pro (P) L 15590–15659 0

Control region H 15660–16525 0

�H and L refer to the heavy and light strand, respectively.

https://doi.org/10.1371/journal.pone.0205025.t002
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structures, except trnS2 (AUN) lacking of a DHU stem. This phenomenon occurs in most tele-

ost mitogenomes including Beloniformes species [31–33]. Although almost all secondary

structures of tRNAs had amino acid acceptor stem with 7 bp paired bases, the remaining

trnaF, trnaV, trnaE and trnaP have a 9 bp aminoacyl acceptor stem. A total of 16 unmatched

base pairs (G-U pairs) were found in the H. quoyi tRNAs, which form a weak bond. A positive

AT skew (0.1209) and a negative GC skew (−0.1250) were found among the concatenated

sequences of all 22 tRNAs in H. quoyi, indicating tRNAs biased toward As and Cs. Similar

Fig 2. Secondary structures of transfer tRNAs in the H. quoyi mitogenome.

https://doi.org/10.1371/journal.pone.0205025.g002
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results had been found in the ribosomal genes. The AT skew of 12S and 16S rRNA genes were

0.1610 and 0.2425, respectively, and they had a negative GC skew (−0.0930 and −0.0992). The

length of the 12S rRNA and 16S rRNA were 944 bp and 1,687 bp and A+T contents were

53.28% and 56.97%, respectively. The location of the 12 rRNAs was between trnF and trnV,

and the location of the 16 rRNAs was between trnV and trnL1 (UUR), which were similar for

most vertebrates [31, 34, 35].

Protein-coding genes

The 13 PCGs in H. quoyi mitogenome comprised 11,433 bp in total, with a A+T content of

56.50%, and ranged in size from 168 bp (atp6) to 1,839 bp (nad5). The start and stop codons of

the 13 PCGs in the H. quoyi mtDNA were shown in Table 2. All but one PCGs of H. quoyi ini-

tiated with methionine (ATG) as the start codon. The only exception was the cox1 gene, which

utilized GTG as a start codon. The phenomenon of alternative start codons occurs in most tel-

eost mitogenomes[8, 31, 32]. The majority of the PCGs of H. quoyi had the complete termina-

tion codons TAA (nad1, nad3, nad4l, nad5, nad6, cox1, cox3, atp6 and atp8) or TAG (nad2).

The remaining three genes (cox2, nad4 and cytb) utilized T as incomplete termination codons,

which were presumed to be completed through post-transcriptional RNA editing mechanism

in metazoan mitogenomes[36]. The AT skew and GC skew values of the PCGs were shown in

Fig 3. All PCGs of GC skew and AT skew values were negative, except for nad2 and nad6, indi-

cating most PCGs contained more Ts and Cs, which was identical to most previous observa-

tions[6, 28, 35].

RSCU for the H. quoyi mtDNA were shown in S2 Table and Fig 4. The value greater than

1 mean the codon more commonly used. Nine amino acid were encoded by four different

codons and 13 amino acid were encoded by two codons. Excluding AGA and AGG codons,

the total number of codons in PCGs of H. quoyi was 3792. The most common amino acids

were Leucine 1 (Leu 1, 552), alanine (Ala, 292)and threonine (Thr, 335) in H. quoyi. In all 13

PCGs, the Ka/Ks ratio was much less than 1 (varied from 0.0192 (cox1) to 0.1618 (nad6))

(Fig 5), indicating that all the PCGs were evolving under the purifying selection. The result

suggested negative selective coefficients affected purifying selection against deleterious

mutations [37]. In addition, the highest ratios were in nad5 and nad6 in the H- and L-strand,

Fig 3. The AT and GC skew in the PCGs of the H. quoyi mitogenome.

https://doi.org/10.1371/journal.pone.0205025.g003
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respectively, indicating that the selection pressures were relatively independent on the two

strands.

Non-coding regions

The mtDNA had two long non-coding regions, OL and CR, which were used for the replica-

tion, and maintenance of the mitogenome. A 38 bp OL, which was folded into a hairpin sec-

ondary structure, was located between trnN and trnC (S1 Fig)[38]. The 866 bp long CR was

found between tRNAPro and tRNAPhe with 65.24% A+T content, which was essential for the

initiation of vertebrate mtDNA replication[9, 31, 34]. Several conserved sequence blocks

(CSBs), which could be very important roles for mitochondrial metabolism, were found in the

CR of teleost fish[39]. The central conserved blocks (CSB-F, CSB-E and CSB-D) were found in

Fig 4. RSCU in the mitogenomes of H. quoyi.

https://doi.org/10.1371/journal.pone.0205025.g004

Fig 5. Evolutionary rates of H. quoyi mitogenome. Rate of non-synonymous substitutions (Ka), rate of synonymous substitutions

(Ks) and ratio of the rate of non-synonymous substitution to the rate of synonymous substitution (Ka/Ks) for each PCGs are shown.

https://doi.org/10.1371/journal.pone.0205025.g005
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the CR of H. quoyi, and the conserved sequence block domains (CSB-1, CSB-2 and CSB-3)

were similarly detected (Fig 6). By comparing the recognition sites in Beloniformes species, all

of the CSBs were typically present in CR of teleost fish [19, 39]. The relatively similar repetitive

motifs (GGTTTTT) and highly conserved motifs (CTTAATG) were found in CR of H. quoyi.
Besides, tandem repeats were not recognized in H. quoyi. Beyond the genera Oryzias and

Ablennes, tandem repeats did not similarly appeared in other Beloniformes fish [2, 32].

Phylogenetic analysis

The phylogenetic relationships of Beloniformes were constructed by the BI and ML methods

based on concatenated nucleotide and amino acid sequences of the 13 PCGs from 27 Beloni-

formes species and three outgroups species (Figs 7 and 8). The phylogenetic trees contained

consistently three major clades, including (I) Adrianichthyidae, (II) Scomberesocidae, Beloni-

dae and Zenarchopteridae, (III) Hemiramphidae and Exocoetidae. The best supported phylo-

genetic relationship of Beloniformes is as follows: (Adrianichthyidae + ((Hemiramphidae

+ Exocoetidae) + (Scomberesocidae + (Belonidae + Zenarchopteridae))). We sequenced H.

quoyi within Hemiramphidae as the sister group to Exocoetidae, and H. quoyi in comparison

to the other two Hemiramphidae species shared a close ancestry with Exocoetidae. This result

may be that the mitogenome of H. quoyi more close to P. brachypterus within Exocoetidae

than the other two Hemiramphidae fish based on BLAST analysis, and especially in nad2
(Fig 1). The topology relationships of Beloniformes was consistent with most phylogenetic

mitogenomes research[1, 19]. However, previous work based on partial mitochondrial gene

(16S and cytb) and nuclear genes (Rag2 and Tmo) for phylogenetic analysis indicated that

Hemiramphidae was close to Belonidae besides Exocoetidae[40]. Whether the difference in

the phylogenetic analysis is due to e.g. hybridization, introgression and lineage sorting is

Fig 6. Features present in the control regions of the H. quoyi mitogenome. The gray background denote conserved motifs

ATGTA and its complement TACAT. The relatively similar repetitive motifs (GGTTTTT) have green background and highly

conserved motifs (CTTAATG) have yellow background.

https://doi.org/10.1371/journal.pone.0205025.g006
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unknown. It is worth noting that the phylogenetic placement of H. quoyi inferred here actually

makes Hemiramphidae paraphyletic. Moreover, the previous research based on nuclear genes

also showed that Hemiramphidae including H. quoyi and H. sajori was a paraphyletic group-

ing[40]. Besides, each of the family Zenarchopteridae and Scomberesocidae were only one

mitogenome sequenced to date. Additional mitogenomes data from Zenarchopteridae, Scom-

beresocidae and Hemiramphidae fish are required to demonstrate the relationships among

Beloniformes species in the future.

Fig 7. Inferred phylogenetic relationships among Beloniformes by the ML methods based on concatenated

nucleotide and amino acid sequences of the 13 PCGs, Perciforme fish, C. cuning (KP874185.1), E. struhsakeri
(AP004446.1) and B. banjos (KT345965.1) as outgroups. The numbers along branches indicate ML bootstrap values

based on concatenated nucleotide (blue numbers) and amino acid (red numbers) sequences of the 13 PCGs,

respectively.

https://doi.org/10.1371/journal.pone.0205025.g007

Fig 8. Inferred phylogenetic relationships among Beloniformes by the BI methods based on concatenated nucleotide and

amino acid sequences of the 13 PCGs, using Perciforme fish, C. cuning (KP874185.1), E. struhsakeri (AP004446.1) and B.

banjos (KT345965.1) as outgroups. The numbers along branches indicate Bayesian posterior probability values based on

concatenated nucleotide (blue numbers) and amino acid (red numbers) sequences of the 13 PCGs, respectively.

https://doi.org/10.1371/journal.pone.0205025.g008
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