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Resveratrol (RES) is considered to be an activator of AMP-activated protein kinase
(AMPK) with many reported health benefits. Polydatin (POD) is a natural precursor
and glycosylated form of RES. The glycoside structure of POD alters the bioactivity.
Overnutrition-stimulated reactive oxygen species (ROS) promote the AMPK suppression
and metabolic dysregulation. The present work compared the effects of POD and RES
in ameliorating energy homeostasis imbalance in mice fed a high-fructose diet and
elucidated the underlying mechanisms of action. Our results showed that POD elevated
the fecal levels of valeric acid and caproic acid via modification of gut microbiota,
while RES did not significantly influence the levels of fecal short-chain fatty acids
(SCFAs). Both POD and RES markedly decreased the oxidative stress and activated
the AMPK signaling pathways in the liver. POD and RES exerted a similar effect in
alleviating glucose dysmetabolism, but POD was more effective in ameliorating lipid
dysmetabolism than RES. Furthermore, valeric acid and caproic acid alone can activate
the AMPK and ameliorate hypercholesterolemia, and enhance the effects of POD on
improving lipid metabolism in mice. Overall, for the first time, we demonstrated that POD
administration elevated the fecal levels of valeric acid and caproic acid by modifying gut
microbiota, thus promoting AMPK activation may be the underlying mechanism that
POD is superior to RES in alleviating the lipid dysmetabolism. Our results suggest that
POD may be an alternative for RES as an AMPK activator.

Keywords: polydatin, resveratrol, non-alcoholic fatty liver disease, 5′-aMP-activated protein kinase, gut
microbiota, short-chain fatty acids
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INTRODUCTION

As the glycosylated form of resveratrol (RES, 3,4′,5-
trihydroxystilbene) (Figure 1D), polydatin (POD, 3,4′,5-
trihydroxystilbene-3-β-D-glucoside) (Figure 1A), also called
piceid, is an interesting bioactive compound of Polygonum
cuspidatum (2% of dry weight) (1). For a long time, POD was
considered to be a lower bioavailability than RES, because the
glycoside with a large molecular size and just can be better
absorbed when the glycosides are hydrolyzed to their bioactive
aglycones RES by β-glucosidases in the small intestine (2–6).
Polygonum cuspidatum plants, grapes, berries, and peanuts
contain RES only approximately 0.2% of dry weight (5), but
RES possesses well-known health benefits and is widely applied
in medicines, foods, and cosmetic products. RES mainly exists
as the glycoside POD in plants (5, 6), hence, to increase the
production of RES, POD should be converted into RES by
deglycosylation technique (3–6), which is difficult and expensive.
In the last decade, accumulated evidence suggests gut microbiota,
such as Lactobacillus spp., Bacteroides spp., and Bifidobacterium
spp, involves in the absorption, metabolism, and bioavailability
of polyphenols glycosides (7–9). For instance, glycosides can
be hydrolyzed to bioactive aglycones by β-glucosidases that
secreted by bacterial in colon and enable the absorption of
polyphenols glycosides (8, 9). Bifidobacterium strains show
the capacity to enhance the bioavailability of daidzein under
dysbiosis conditions (8). In addition, antibiotics treatment caused
gut dysbiosis was involved in poor bioconversion of daidzin
glycoside and polyphenols (8, 10). These reports indicated that
gut microbiota-derived β-glucosidases in the colon play a role
in improving the absorption and bioavailability of polyphenols
glycosides, especially under the condition that a large amount of
ingested but unabsorbed polyphenols glycosides can reach and
persist to the colon. Moreover, Wang et al. recently found that
POD and RES keep balance through mutual transformation after
oral administration and ultimately POD is the main substance in
serum (∼70%) (11). Thus, the actual bioactivity of POD and RES
in vivo needs further comparative investigations.

The prevalence of metabolic disease is a serious public health
challenge, as recognized by the World Health Organization in
2000 (12, 13). Fructose consumption increased pronouncedly in
recent decades because the use of sucrose and high-fructose corn
syrup in processed foods and beverages, and it has markedly
contributed to the incidence rate of metabolic disease, such as
non-alcoholic fatty liver disease, obesity and type 2 diabetes
mellitus (T2DM) (14–16). Mammalian 5′-AMP-activated protein
kinase (AMPK) is a regulator of cellular energy homeostasis and
a sensor of adenine nucleotides that is activated in states of
energy deficiency but suppressed in the overnutrition conditions
(17, 18).

Extensive studies have demonstrated that the specific
activation of AMPK in liver is beneficial to metabolic syndrome
control; thus, AMPK is considered a crucial target for prevention
and treatment of overnutrition-associated disease (19–21).
Putative AMPK activators, such as the first-line and most
prescribed drug metformin, have been identified and developed
for the treatment of T2DM (20, 21). SCFAs mainly produced

from the catabolism of carbohydrates by gut microbiota (22,
23), and may play an important role in regulating energy
homeostasis. Acetate, butyrate, and propionate participate
glucolipid neogenesis in liver (24), facilitate fat storage and fatty
acid oxidation by browning of fat tissues (25, 26) or restrict
energy intake via promoting the release of glucagon-like peptide
1 and peptide YY in colon (26, 27). Overnutrition-stimulated
ROS promotes the AMPK deactivation by the suppression of
phosphorylation of AMPKa at Thr172 (p-AMPKα [Thr172]) is
one of the major inducements of metabolic disorders (18, 28, 29).

In addition, numerous studies have shown that nutrient
overload could cause the gut microbiota dysbiosis and alter
the levels of SCFAs in gut (30–32), and enhance the systemic
oxidative stress level (18, 33, 34). All these alterations are
consistently associated with the accumulated adipose tissue,
elevated body weight, blood glucose level, systemic inflammation,
and metabolic complications (30, 35).

Resveratrol is the most widely studied plant-derived natural
product that can activate AMPK by multiple mechanisms such as
the activation of SIRT1 (36) and the inhibition of mitochondrial
function (37) and phosphodiesterases (38). Recent years, several
studies suggest that POD possesses higher ability than RES on
ameliorating oxidative stress by increasing the levels of total
superoxide dismutase (SOD), catalase, glutathione peroxidase,
and glutathione and decreasing the level of malondialdehyde
(MDA) in mice (11), and has stronger anti-inflammatory
effect on reducing the production of proinflammatory cytokine
interleukin-17 in human peripheral blood mononuclear cells
(39). In addition, POD can prevent fructose-induced liver lipid
deposition by activating nuclear factor (erythroid-derived 2)-like
2 antioxidant pathway and scavenging ROS in rats (40), inhibit
adipose tissue inflammation and improve the lipid metabolism in
high-fat-fed mice (41), and ameliorate glucolipid dysmetabolisms
via activating AMPK signaling pathway in human hepatoma
HepG2 cells (42). Of important is that gut microbiota participates
in enhancing the absorption, metabolism, and bioconversion
of glycosides by promoting the activity and secretion of β-
glucosidases in colon (2, 8, 32). Considering the contribution
of accumulated ROS, gut microbiota dysbiosis, and deactivation
or suppression of AMPK to energy homeostasis imbalance in
the condition of nutrient overload, the above-mentioned reports
indicate that POD may possess stronger bioactivity than RES on
regulating glucolipid metabolism. Herein, we hypothesized that
POD is stronger than RES on ameliorating energy homeostasis
imbalance. This study aimed to compare the alleviating effects of
POD and RES on glucolipid dysmetabolism and non-alcoholic
fatty liver disease and investigate the underlying mechanisms of
action in high-fructose diet-fed mice.

MATERIALS AND METHODS

Chemicals and Materials
The primary antibodies AMPKα, p-AMPKα (Thr172), insulin
receptor substrate (IRS), p-IRS (Ser307), phosphatidylinositol
3-kinases (PI3K), p-PI3Kp85 (Tyr458)/p55 (Tyr199), protein
kinase B (AKT), p-AKT(Ser473), acetyl-CoA carboxylase
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FIGURE 1 | The predicted binding modes of polydatin (POD) and resveratrol (RES) docked into AMP-activated protein kinase (APMK). (A,D) Chemical structures of
POD and RES, respectively. The binding location of AMPK (black box area) interacting with POD and RES were shown as molecular surface structures in 3D docking
model (B,E); H-bonds and hydrophobic interactions between POD or RES and AMPK in a 2D docking model (C,F).

(ACC), p-ACC (Ser79), thioredoxin-interacting protein
(TXNIP) and the second antibodies anti-mouse IgG and
anti-rabbit IgG were purchased form the Cell Signaling
Technology Inc. (Boston, MA, United States). The primary
antibodies peroxisome proliferator-activated receptor-alpha
(PPAR-α) and PPAR-β were purchased from the Santa Cruz
Biotechnology Co., Ltd. (Dallas, United States) and carnitine
palmitoyltransferase-1 alpha (CPT-1α) was obtained from the
Abcam (Cambridge, United Kingdom). POD (purity above
95%) and RES (purity above 99%) were obtained from the
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Fructose, valeric acid sodium and caproic acid sodium were
purchased from the Maclin Biochemical Technology Co., Ltd.
(Shanghai, China). Recombinant human insulin was bought
from Tonghua Dongbao Pharmaceutical Co., Ltd. (Tonghua,
China). N-acetylcysteine (NAC) was purchased from the Sigma-
Aldrich (St. Louis, MO, United States). Other chemicals and
drugs were of the highest grade available.

Molecular Docking
The isoform and binding site of AMPK (α1β1γ1) was confirmed
according to the previously reported AMPK direct activator A-
769662 (43–45). The three-dimensional (3D) structure of AMPK
was downloaded from the Protein Data Bank (ID: 4ZHX),
and the ligand 2D and 3D structures of POD and RES were
constructed by Chem3D Ultra (Version 8.0), respectively. The
ligand (POD or RES) was docked into the active site of the
prepared AMPK crystal structure by Schrodinger (Version 12.5).
The binding ability of POD or RES with AMPK was evaluated
by docking scores.

Animal Care Experimental Design for
Drug Ddministration
Male C57BL/6J mice, 5 weeks old and weighing 20 ± 2 g, were
purchased from the Guangdong Provincial Laboratory Animal
Center Co., Ltd. (Guangzhou, China). Mice were housed in a
room with controlled temperature (23 ± 2◦C, 40 ± 10% relative
humidity, and 12-h light–dark cycle), and were allowed free
access to water ad libitum and food.

Experiment 1: The animal model of non-alcoholic fatty liver
disease was induced by 10% (w/v) fructose for 3 weeks and
30% fructose for 5 weeks in drinking water. The mice were
randomly divided into four groups based on body weight (n= 5–
8): Mice in Control group were given ad libitum access to
drinking water, mice in Model group were given 30% fructose-
containing drinking water, and mice in POD or RES group were
given 30% fructose-containing drinking water and 50 mg/kg/day
POD or RES by oral gavage, respectively, for another 10 weeks
(Figure 2). After that all mice were fasted overnight, peripheral
blood was collected from the ophthalmic vein after anesthetized
and then the mice were sacrificed by cervical dislocation. Serum
was obtained by centrifugation (5,000 round/min, 10 min, 4◦C)
and stored at −80◦C. Livers were collected and stored at −80◦C.
The fresh fecal samples of each mouse were collected and stored
at −80◦C during the final week of the animal experiment.
POD and RES (5 mg/mL) were suspended sufficiently in the
carboxymethylcellulose sodium aqueous solution (0.5%, w/v).

Experiment 2: The animal model of non-alcoholic fatty liver
disease was induced by fructose (30%, w/v) in drinking water
for 5 weeks. The mice were randomly divided into eight groups
based on the body weight (n= 5–7): Mice in Control group were
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FIGURE 2 | Experimental design for drug administration.

given ad libitum access to drinking water, mice in Model group
were given 30% fructose-containing drinking water, mice in POD
group were given 30% fructose-containing drinking water and
25 mg/kg/day POD by oral gavage, mice in valeric acid sodium
group were given 30% fructose and 100 mmol/L valeric acid
sodium-containing drinking water, mice in caproic acid sodium
group were given 30% fructose and 100 mmol/L caproic acid
sodium-containing drinking water, mice in POD plus Valeric acid
sodium group were given 30% fructose and 100 mmol/L valeric
acid sodium-containing drinking water and 25 mg/kg/day POD
by oral gavage, mice in POD plus caproic acid sodium group
were given 30% fructose and 100 mmol/L caproic acid sodium-
containing drinking water and 25 mg/kg/day POD by oral gavage,
and the mice in NAC group were given 30% fructose-containing
drinking water and 0.5 g/kg/day NAC by oral gavage, for another
6 weeks (Figure 2). After that all mice were fasted overnight
and sacrificed by cervical dislocation after anesthetized. Liver and
serum were harvested and stored at −80◦C. The drinking fluid
was exchanged daily.

Fasting Blood Glucose Measurement
and Insulin Tolerance Tests
One touch glucometer (Roche Diagnostics, Mannheim,
Germany) was used to measure the fasting blood glucose
(FBG) levels on tail vein blood of mice after overnight fasting.
For the insulin tolerance tests (ITT), after overnight fasting,
insulin (0.3 unit) was administered by the intraperitoneal
injection, and the blood glucose was measured at 0.5, 1.0, 1.5,
and 2.0 h after the injection with the glucometer.

Serum Parameters Assay
Serum aspartate aminotransferase (AST), alanine
aminotransferase (ALT), creatinine (Cr), and blood urea nitrogen
(BUN) levels were measured with an automatic biochemical
analyzer (HITACHI 7020, Japan). Kits for triglyceride (TG),
total cholesterol (TC), free fatty acid (FFA), LDL-cholesterol
(LDL-C), MDA, and SOD obtained from Nanjing Jiancheng

Bioengineering Institute (Nanjing, China). The levels of serum
insulin and HbA1c were measured using the commercial ELISA
kits from Jiangsu Meimian industrial Co., Ltd. (Yancheng, China)
and Jiangsu Boshen Biotechnology Co., Ltd. (Nanjing, China).
Homeostasis model assessment-insulin resistance (HOMA-IR)
index was calculated by the following formula:

HOMA− IR = Glucose (mmol/L) × Insulin (mU/L)÷ 22.5

Quantitation of Total Cholesterol,
Triglyceride, and Free Fatty Acid in Liver
Livers (0.1 g) were homogenized in ice-cold tissue extraction
buffer (1 ml) and then the lysates were clarified by centrifugation
(12,000 g, 4◦C, 15 min), after that the supernatant was collected
for analysis. The levels of TC, TG, and FFA were measured
according the corresponding protocols in the commercial kits
provided by manufacturers.

Histology Assay
Harvested liver specimens were fixed in paraformaldehyde
solution at room temperature, dehydrated, embedded in paraffin,
after that a fully automated rotary microtome (LEICA RM2255,
Shanghai, China) was used to cut the paraffin into 5 µm
thickness serially. Periodic acid-schiff (PAS), hematoxylin-eosin
(HE), MASSON, and oil red O stains were performed according
to the standard protocols of the corresponding commercial kits,
respectively, and then the slices were pictured with electron
microscope (Nikon eclipse ti, Japan). All the assays were
performed in a blinded manner.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was extracted from liver tissues of mouse using
TRIzol reagent, obtained from Takara Biotechnology, according
to the manufacturer’s protocol. The cDNA was prepared using
50 ng of total RNA by the reverse transcription according to
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the manufacturer’s instructions. SYBR Green qPCR SuperMix
was performed on a CFX System (Bio-Rad, Hercules, CA,
United States) according to the manufacturer’s instructions.
Real-time PCR of cDNA was performed using standard PCR
cycling condition. Relative expression level of target gene was
normalized against control group β-actin and presented as a
ratio to the expression level in other groups with the formula
2−(11Ct). The primer sequence of each tested gene is shown in
Supplementary Table 1.

Western Blot
Livers (0.1 g) were homogenized in 0.1 mg/ml
phenylmethylsulfonyl fluoride-containing ice-cold RIPA
buffer (1 ml) and then the lysates were clarified by centrifugation
(12,000 g, 4◦C, 15 min), after that the supernatant was collected
and stored at −80◦C. The samples were denatured with
loading buffer (99◦C, 10 min), then the equal protein were
separated by SDS-PAGE gel electrophoresis and transferred
onto a polyvinylidene fluoride (PVDF) membrane. The
membrane was probed with primary antibody according to
the dilution ratio provided by manufacturers overnight at
4◦C, and then incubated with secondary antibody according
to the dilution ratio provided by manufacturers at room
temperature for 60 min. The immunoreactivity was detected
using the ChemiDoc XRS + detection system (ECL, Bio-Rad,
United States). The densitometric analysis was performed with
Quantity One R© Image Analyzer software program (Bio-Rad).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
for normalization.

Gut Microbiota Profiling
Total genome DNA of bacterial was extracted from frozen feces
with QIAamp DNA stool Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s guideline. The specific primer
with the barcode (16S V3 + V4) was used to amplify the 16S
rDNA gene. TruSeq R© DNA PCR-Free Sample Preparation Kit
(Suzhou RENOLD Biological Technology Co., Ltd., Suzhou,
China) was used to construct the DNA sequencing libraries. Fast
Hifidelity Polymerase and Phusion R© High-Fidelity PCR Master
Mix with GC Buffer (New England Biolabs Co., Ltd., Beijing,
China) were used for The PCR amplification under the standard
thermal cycling and extension conditions. Paired-end sequencing
of the PCR products was performed on the NovaSeq6000 at
Suzhou Bionovogene Co., Ltd. (Suzhou, China).

Short-Chain Fatty Acids Measurement
Gas chromatography-mass spectrometer method (Thermo
TRACE 1310-ISQ LT instrument, Agilent HP-INNOWAX
column with 30 m × 0.25 mm ID × 0.25 µm particle size)
(Suzhou Bionovogene Co., Ltd., China) was used to measure the
fecal levels of acetic acid, propionic acid, butyrate, isobutyric
acid, caproic acid, valerate and isovaleric acid. 50 µL phosphoric
acid (15%), 100 µL internal standard (isohexic acid) solution
(125 µg/mL) and 400 µL ether were homogenated with 50 mg
fresh feces for 1 min, then the mix were centrifuged at 12000 rpm
and 4◦C for 10 min. After that the supernatant was collected for
measurement.

Statistical Analysis
Data were expressed as mean ± SEM, and compared using the
Student’s t-test or two-way ANOVA post hoc Bonferroni test,
as appropriate (GraphPad Prism 5 Software, Inc., La Jolla, CA,
United States). The correlation coefficient between the fecal levels
of SCFAs and the relative abundance of gut microbiota at the
genus level were performed with Pearson correlation analysis
(SPSS software, version 20, IBM, Armonk, NY, United States).
The significance levels were established at a p-value of <0.05.

RESULTS

Binding Interactions of Polydatin and
Resveratrol With Activated Protein
Kinase
To better understand the interactions of POD and RES with
AMPK, molecular docking study was performed to analyze the
binding abilities of POD and RES with AMPK. The molecular
docking results between the ligands (POD and RES) and the
receptor (AMPK) suggest POD displayed a higher predicted
binding score than RES (−8.677 vs. −6.802) (Figures 1B,E).
This indicates that POD possesses a stronger interaction with
AMPK than RES. Conventional hydrogen bond and van der
Waals are the mainly binding bonds between POD and RES with
AMPK. POD exerts higher binding ability with AMPK than RES
may involve there are more hydroxyl groups in POD (Figure 1)
because hydroxyl groups formed H-bonds to AMPK (Figure 1C)
are important for stable binding. The more residues of AMPK
units or binding pocket involved in the H-bond interaction or the
binding of POD and AMPK by van der Waals also contributed to
its binding (Figure 1C).

Polydatin Is More Active Than
Resveratrol in Alleviating Lipid
Dysmetabolism Than Resveratrol in Mice
Fed a High-Fructose Diet
Body weight (Supplementary Figure 1A) and serum parameters,
such as ALT, AST, Cr, and BUN (Supplementary Table 2),
showed that the doses of POD and RES employed did not possess
toxicity in mice. Since the intake of extra calories from fructose
in drinking fluid (Supplementary Figure 1B), the food intake
was lowered (Figure 3A). Both the POD and RES administrations
did not significantly influence the fluid intake (Supplementary
Figure 1A), but, interestingly, elevated the food intake of the mice
(Figure 3A). High-fructose diet enhanced the insulin tolerance
(Figures 3B,C), elevated the levels of serum insulin, FBG, and
serum HbA1c (Figures 3D–F) and caused the hepatic glycogen
accumulation and fibrogenesis (Figures 3G,H). POD and RES
alleviated these lesions with a similar effect (Figures 3D–H). In
addition, serious lipid accumulation (Figure 3I), fatty infiltration
and amyloidosis (Figure 3J) of liver were also observed in the
model mice. POD showed a better effect on preventing these
lesions than RES (Figures 3I,J). This was also validated by
the higher capacity of POD in reducing the levels of TC and
TG in liver (Figures 3K,L) and serum (Figures 3M,N). These
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FIGURE 3 | Effects of POD and RES on glucolipid metabolism and fatty liver. (A) Food intake. (B) Insulin tolerance test (ITT) and the area under the curve (AUC).
(C) Homeostasis model assessment -insulin resistance (HOMR-IR, HOMA-IR = Glucose [mmol/L] × Insulin [mU/L] ÷ 22.5). (D) Serum insulin level. (E) Fasting blood
glucose level (FBG) and AUC of FBG. (F) Serum HbA1c level. (G–J) Hepatic periodic acid-schiff (PAS) (200×), MASSON (200×), Oil red O (200×), and HE stainings
(200×), respectively. (K–M) Total cholesterol (TC), triglycerides (TG), and free fatty acid (FFA) in liver, respectively. (N–Q) Serum levels of TC, TG, FFA, and low-density
lipoprotein-cholesterol (LDL-C), respectively. Data are presented as mean ± SEM. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. # p < 0.05, ## p < 0.01,
### p < 0.001, compared to model group. & p < 0.05, compared to POD group. NS, p > 0.05.
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results suggest that POD and RES can alleviate the glucolipid
dysmetabolism, and POD is superior to RES on ameliorating
non-alcoholic fatty liver disease than RES in mice fed a high-
fructose diet.

At the molecular level, fructose consumption suppressed
the AMPK signaling pathway, such as downregulation of
p-AMPK (Thr172), CPT-1α, PPAR-α, PPAR-γ, p-ACC (Ser79),
p-AKT (Ser473), -PI3Kp85 (Tyr485), and p-IRS1 (Ser307)
and upregulation of TXNIP, in liver (Figures 4A,B). POD
significantly prevented these alterations (Figures 4A,B), and
RES displayed a preventing effect on the downregulation of
p-AMPKα (Thr172) (Figure 4A), but without affecting the levels
of the downstream proteins PPAR-γ, p-ACC (Ser79), p-AKT
(Ser473), and p-PI3Kp85 (Tyr485) (Figures 4A,B). In addition,
long-term fructose consumption caused elevation of oxidative
stress level in liver indicated by the pronouncedly increase of
TXNIP (Figure 4A) and MDA (Figure 4E) and decrease of
SOD (Figure 4F), both POD and RES administrations effectively
prevented these alterations (Figures 4E,F). However, neither
POD nor RES affected the mRNA levels of GPR41 and GPR43
in liver (Figures 4C,D).

Polydatin Increases the Fecal Levels of
Caproic Acid and Valeric Acid by
Modification of the Gut Microbiota
The α-diversity analysis of the gut microbiomes showed
frcutose consumption lowered the diversity of microbiota
(Figures 5A,B). POD and RES administrations markedly
increased the microbiota diversity evidenced by the elevated
Shannon and Simpson indexes (Figures 5A,B). The β-diversity
analysis evaluated the overall differences in groups, results
showed a distinct clustering of gut microbial community
structure in control and model groups (Figure 5C), POD and
RES administrations altered the structure in a similar trend
(Figure 5C). The Venn diagrams were used to show the over
lapping operational taxonomic units (OTUs), which displayed
the similarity and consistency of samples. There are 313 OTUs
shared in all groups (Figure 5D). Three hundred and 68 OTUs
were identified in control group, and fructose consumption
increased the OTUs numbers to 509 (Figure 5D). Interestingly,
POD administration lowered the OTUs numbers to 398 and RES
increased the OTUs numbers to 511 (Figure 5D). These results
indicated long-term intake of fructose markedly affected the
community structure and relative abundance of gut microbiomes
(Figures 5A–E), and POD has a higher regulating effect on
gut microbiomes than RES (Figure 5D). The function of the
significantly altered gut microbiota (Figures 5F–K) post POD or
RES treatment will be discussed in the discussion section.

Our results showed the levels of fecal SCFAs of mice
in the model group without a significant alteration
compared to control (Figures 5L–N), POD treatment
markedly elevated the levels of valeric acid and caproic
acid (Figures 5M,N), but RES did not pronouncedly affect
the levels of SCFAs (Figures 5L–N). Correlation analyses
between SCFAs levels and relative abundance of gut
microbiota indicated the valeric acid level was significantly

negative correlated with the abundance of Parasutterella
(Figure 5O) and positive correlated with the abundance
of Acetitomaculum, Anaerotruncus, Candidatus_Soleaferrea,
Colidextribacter, Harryflintia, Mucispirillum, Negativibacillus,
Butyricimonas, [Eubacterium]_ventriosum_group,
Candidatus_Soleaferrea, Bifidobacterium, Monoglobus,
Lactococcus, Allobaculum, Intestinimonas, Lachnoclostridium,
[Eubacterium]_nodatum_group, Streptococcus, Romboutsia,
Anaerovorax, and unidentified_Ruminococcace at the genus level
(Figure 5O). However, the caproic acid level was significantly
negative correlated with the abundance of Escherichia-
Shigella, NK4A214_group, Roseburia and Colidextribacter,
and positive correlated with the abundance of Anaerofustis and
[Eubacterium]_ventriosum_group (Figure 5O).

Caproic Acid and Valeric Acid Activate
Activated Protein Kinase and Enhance
the Effects of Polydatin on Alleviating
Lipid Dysmetabolism in Mice Fed a
High-Fructose Diet
The markedly elevated levels of fecal valeric acid and caproic
acid via modifying gut microbiomes by POD administration
may be the main reason that POD exerted a higher property on
ameliorating lipid dysmetabolism than RES. Thereby, we next
investigated the regulating effects of valeric acid and caproic
acid on AMPK and lipid metabolism in mice fed a high-
fructose diet. Results showed that both caproic acid sodium and
valeric acid sodium reduced the lipid accumulation, and the
levels of TG and FFA in liver (Figures 6A,C,D). In addition,
caproic acid sodium decreased the levels of TC, TG, FFA, and
LDL-C in serum (Figures 6E–H). Importantly, we found when
the low dose of POD (25 mg/kg) without a pronouncedly
improvement on non-alcoholic fatty liver disease, caproic acid
sodium and/or valeric acid sodium can enhance the effects of
POD on preventing lipid dysmetabolism (Figures 6A,B,F–H).
Consistently with these improving effects of SCFAs (caproic acid
sodium and valeric acid sodium) or SCFA plus POD on lipid
metabolism, AMPK was activated post the treatment indicated by
the significantly upregulation of p-AMPK α (Thr172) and p-ACC
(Ser79) (Figure 7). Neither caproic acid sodium nor valeric acid
sodium affected the mRNA levels of GPR41 and GPR43 in liver.

DISCUSSION

In this work, we firstly demonstrated that POD shows higher
ameliorating effect on non-alcoholic fatty liver disease than
RES in mice fed a high-fructose diet. The mechanism of
action may involve POD administration promoted the elevation
of valeric acid and caproic acid in feces by modifying gut
microbiota thus activating the AMPK signaling pathway. Since
nutrition overload and overnutrition-stimulated ROS promoted
the AMPK deactivation or suppression which is the major
pathological mechanism of metabolic disorders (17, 18, 28, 29)
(Figures 4A, 7A), considering POD has been proved with the
property of activating AMPK in vitro (42) and scavenging ROS
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FIGURE 4 | Effects of POD and RES on AMPK signaling pathway and biomarkers of oxidative stress in liver. (A) AMPK signaling pathway proteins. (B) Insulin
signaling pathway proteins. (C,D) The mRNA levels of GPR41 and GPR43. (E) MDA level. (F) SOD enzyme activity level. Data are presented as mean ± SEM.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, compared to control group. # p < 0.05, ## p < 0.01, ### p < 0.001, compared to model group. NS, p > 0.05.

in vivo (40, 46, 47), and exerts stronger anti-oxidant capacity
in vivo (11) and anti-inflammatory effect in vitro than RES (39).
Our results suggest that POD displayed a higher effects than RES
on improving the overnutrition-related diseases by activating the
AMPK signaling pathway via modification of the gut microbiota
in vivo.

Gut microbiota and its metabolites SCFAs and oxidative
stress state play an important role in maintaining energy
homeostasis through regulating AMPK. Butyricimonas is a SCFA-
producing bacteria (48–52) and participates in driving the
reduction of body mass index (BMI) in response to insulin (50,
52). POD treatment pronouncedly increased the abundance of
Butyricimonas (Figure 5F) though the fructose intake without
significant decreasing the abundance of Butyricimonas at the
genus level. Bifidobacterium is considered a probiotics that
participates SCFAs production (8, 9, 53). Both POD and
RES markedly increased the abundance of Bifidobacterium
at the genus level (Figure 5G). Lactobacillus involves in
the absorption and metabolism of polyphenols glycosides by
enhancing the activity and secretion of β-glucosidase (7–9).

POD did not compromise the abundance of Lactobacillus,
but RES exerted a suppression effect on Lactobacillus when
fructose consumption increased the abundance of Lactobacillus
at the genus level (Figure 5H). Desulfovibrio, Muribaculum,
and Rikenella are probiotics that beneficial for the energy
homeostasis (8, 54, 55). Both POD and RES significantly
increased the abundance of the genera Desulfovibrio and
Muribaculum (Figures 5I,J), and RES increased the genera
Rikenella (Figure 5K). In addition, correlation analyses between
SCFAs levels and gut microbiota abundance indicated that the
valeric acid level was significantly positive correlated with the
abundance of Butyricimonas, [Eubacterium]_ventriosum_group
and Bifidobacterium (Figure 5O). And the caproic acid level
was significantly positive correlated with the abundance of
[Eubacterium]_ventriosum_group (Figure 5O). These results
suggest that Butyricimonas, [Eubacterium]_ventriosum_group
and Bifidobacterium may involve in the elevation of fecal levels of
valeric acid and caproic acid (Figures 5M,N). Of interest is that
POD displayed a higher regulating effect on the gut microbiomes
and its metabolites SCFAs than RES, which is indicated by
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FIGURE 5 | Microbiome and SCFAs of the fecal samples. Alpha-Diversity was presented by a box plot of the Shannon (A) and Simpson (B). (C) Principal coordinate
analysis (PCoA) plot analysis. (D) Petal analysis of OTU. (E) Relative abundance of gut microbiota at the genus level (top 30). (F–K) Relative abundance of the altered
microbiota. (L–N) Levels of SCFAs. (O) Correlation analysis of SCFAs level and gut microbiota abundance at the genus level. Data are presented as mean ± SEM.
Orange, positive correlation. Blue, negative correlation. ∗ p < 0.05, ∗∗ p < 0.01, compared to control group. # p < 0.05, ## p < 0.01, ### p < 0.001, compared to
model group. & p < 0.05, compared to POD group. NS, p > 0.05.

the reversed OTUs (Figure 5D) and pronouncedly elevated the
valeric acid and caproic acid levels in feces (Figures 5M,N) by
POD administration. This is in line with the reports that since the

ingested glycosides are poorly absorbed by the small intestine, a
significant fraction of POD can persist to the colon, where they
encounter the gut microbiota and play a better modifying effect
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FIGURE 6 | Effects of valeric acid and caproic acid on lipid metabolism in mice fed a high-fructose diet. (A) Oil red O staining (200 ×). (B–D) Levels of TC, TG, and
FFA in liver. (E–H) Levels of TC, TG, FFA, and LDL-C in serum. Data are presented as mean ± SEM. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001, compared to control
group. # p < 0.05, ## p < 0.01, ### p < 0.001, compared to model group. & p < 0.05, && p < 0.01, compared to POD group. NS, p > 0.05.

on the structure and composition of microbiota and ultimately
affecting its metabolites (2, 8, 32).

Emerging evidence indicates that intestinal microbial
metabolites influence the host and contribute to the development
of metabolic syndrome and T2DM (24, 56). SCFA formed from
the result of a complex interplay between the gut microbiota
and dietary fiber. As the signaling molecules between the gut
microbiota and the host, SCFAs play a regulatory role on human
metabolism in local, intermediary, and peripheral metabolism

(56). As the endogenous receptors for SCFAs, G protein-coupled
receptor free fatty acid receptor 2 (FFAR2, GPR43), and FFAR3
(GPR41) have already been identified. Acetate, propionate, and
butyrate are the most abundant SCFAs produced by microbiota
and presented in the gut lumen at high levels (57–59). Meanwhile,
the shorter acetate preferentially activates GPR43, the longer
butyrate preferentially activates GPR41, and propionate displays
similar agonism on GPR43 and GPR41 (60). However, several
reports have clarified and discussed that SCFAs can activate
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FIGURE 7 | Effects of valeric acid and caproic acid on p-AMPK α (Thr172) and p-ACC (Ser79) proteins and GPR41 and GPR43 mRNA levels in liver. (A) The protein
levels of p-AMPK α (Thr172) and p-ACC (Ser79). (B,C) The mRNA levels of GPR41 and GPR43. Data are presented as mean ± SEM. ** p < 0.01, compared to
control group. # p < 0.05, ## p < 0.01, compared to model group. ˆ p < 0.05, compared to control group. NS, p > 0.05.

FIGURE 8 | Schematic diagram showing the underlying mechanisms of polydatin administration on ameliorating energy homeostasis imbalance.

the AMPK and maintain the energy homeostasis (61–63) in a
GPR43 or GPR41 dependent (64–66) or independent (63, 67)
mechanism, and the independent mechanism is consistent with

the finding that butyrate and propionate still ameliorated insulin
resistance and body weight gain in GPR41-deficient mice (67). In
this study, we found the markedly elevated fecal levels of valeric
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acid and caproic acid by modification of gut microbiota by POD
administration can activate the AMPK (Figures 4A, 7A) and
promote the effects of POD on ameliorating lipid dysmetabolism
(Figures 6A,B,F–H) without affecting the mRNA levels of
GPR43 and GPR41 in liver (Figures 4C,D, 7B,C). Our results
firstly demonstrated the activation of valeric acid and caproic
acid on AMPK in vivo, and reinforced the concept that SCFAs
activate AMPK is likely the common mechanism (61, 63, 67)
for alleviating the energy homeostasis imbalance in a GPR43 or
GPR41 independent manner.

The NAC, recognized as a ROS scavenger, is widely employed
as a tool for explaining the consequences of oxidative stress and
as a clinical drug for antioxidant therapy (68, 69). Scavenging
of ROS is beneficial for alleviating metabolic disorders in high
glucose conditions (18, 70). Indeed, in the present work, we found
NAC administration significantly reduced the levels of FFA in
liver (Figure 6D) and TG and FFA in serum (Figures 6F,G)
in mice fed a high-fructose diet. However, NAC treatment
without preventing the downregulation of p-AMPK α (Thr172)
(Figure 6A), and the elevation of lipid accumulation, TC and
TG in liver (Figures 6A–C), and TC and LDL-C in serum
(Figures 6E,H). This indicates that reducing the level of oxidative
stress alone by NAC cannot reverse the lipid dysmetabolism
induced by high-fructose diet. POD administration alleviated
oxidative stress by reducing ROS-driven TXNIP over-expression
(Figure 5A) (40) and lipid peroxide MDA (Figure 4E), and
enhancing the antioxidant enzyme SOD in liver (Figure 4F);
and activated hepatic AMPK signaling pathway (Figures 4A, 7A)
by elevating the fecal levels of valeric acid and caproic acid via
modifying gut microbiota (Figures 5M,N). As a consequence of
the improved oxidative stress state and activated AMPK signaling
pathway, POD ameliorated the lipid dysmetabolism more
effectively (Figure 3). Furthermore, the crucial role of valeric
acid and caproic acid in activation of AMPK and improvement
of lipid metabolism were confirmed by the upregulation of
p-AMPK upalpha (Thr172) (Figure 7A) and the reduction of
lipid accumulation, TC, TG, FFA, or LDL-C in liver and serum
(Figure 6) by valeric acid sodium and/or caproic acid sodium
treatment and valeric acid sodium or caproic acid sodium plus
POD administration in mice fed a high-fructose diet.

CONCLUSION

In summary, this study investigated the ameliorating effects of
POD and RES on insulin resistance, glucolipid dysmetabolism
and non-alcoholic fatty liver disease by reducing the oxidative
stress and preventing AMPK suppression induced by high-
frcutose diet in mice (Figure 8). For the first time, we found
POD possesses a higher improvement effect on non-alcoholic
fatty liver disease than RES (Figures 3I–Q) in mice, the
mechanism of action may involve the pronouncedly elevated
fecal levels of valeric acid and caproic acid via modification of gut
microbiota by POD administration can activate AMPK signaling
pathway and enhance the effects of POD on alleviating lipid
dysmetabolism (Figures 4A, 7A, 6A,B,F–H). RES is considered
to be an AMPK activator (71–73) with well-known health

benefits and widely applied in medicines, foods, and cosmetic
products. As a natural precursor of RES, POD is superior to
RES in anti-oxidant (11), anti-inflammatory (39), modification
of gut microbiota (Figures 5D,M,N), and improvement of
lipid metabolism (Figures 3I–Q). Thus, POD may be an
alternative of RES as AMPK activator and for industrial and
medical applications.
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