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Abstract

A mathematical model is proposed which is able to describe the most important features of cell differentiation, without
requiring specific detailed assumptions concerning the interactions which drive the phenomenon. On the contrary, cell
differentiation is described here as an emergent property of a generic model of the underlying gene regulatory network,
and it can therefore be applied to a variety of different organisms. The model points to a peculiar role of cellular noise in
differentiation and leads to non trivial predictions which could be subject to experimental testing. Moreover, a single model
proves able to describe several different phenomena observed in various differentiation processes.
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Introduction

A major challenge in complex systems biology is that of

providing a general theoretical framework to describe the

phenomena involved in cell differentiation, i.e. the process

whereby stem cells, which can develop into different types,

become progressively more specialized, The aim of this paper is

indeed that of proposing a dynamical model of cell differentiation

which is able to cover a broad spectrum of experimentally

observed phenomena. The model we propose here is an abstract

one (i.e. it does not refer to a specific organism or cell type) and it

aims at describing the most relevant features of the differentiation

process, which can be briefly summarized as follows:

1. different degrees of differentiation: totipotent stem cells can

give rise to any cell type, typically undergoing some stages of

progressive differentiation; there are also pluripotent and

multipotent cells which can give rise to several, but not all,

cell types;

2. stochastic differentiation: in some experimental conditions [1]

[2] [3], both in vitro and in vivo, one can observe that a

population of identical multipotent cells generates different cell

types, in a stochastic way;

3. deterministic differentiation: in some experimental conditions

(different from those of point 2 above), e.g. during embryo

growth or in controlled experiments, specific signals trigger the

development of a multipotent cell into a well-defined type [4],

through a repeatable sequence of intermediate states. The

signals correspond to the activation or deactivation of selected

genes or groups of genes;

4. limited reversibility: the differentiation process is almost always

irreversible (one-wayness) but there are limited exceptions, in

that a cell which has reached an intermediate degree of

differentiation can come back to a previous stage, under the

action of appropriate signals [5] [6];

5. induced pluripotency: it has been observed that also fully

differentiated cells can come back to a pluripotent state by

modifying the expression level of some genes [7] [8];

6. induced change of cell type: it has been observed also that the

expression of few transcription factors can convert one cell type

into another, e.g. mouse fibroblasts into induced functional

neurons [9].

Since cell differentiation is tightly related to the activation/

deactivation of groups of genes, it is appropriate to look at models

of gene networks in order to describe the dynamics of

differentiation.

Note that the presence in the same system of properties 2 and 3

implies an intriguing mixture of stochasticity and determinism.

Therefore it is not obvious that a single model can describe all

these phenomena. There are indeed models of differentiation

which are able to describe some of them [3] [10] [11]; they make

use of a continuum description and, in part because of

computational limitations, are bound to take into account the

contributions of only few genes. Here we hypothesize that the

robust properties of differentiation are rather the outcome of the

interaction of very many genes, so our model is based on a

simplified dynamical model of genetic regulatory networks,

namely noisy random Boolean networks (NRBNs for short), which

actually allow simulations of large networks [12]. NRBNs

represent an extension of the well-known model of random

Boolean networks [13] [14] [15] [16] (RBNs) that, in spite of their

approximations, have been able to describe important experimen-

tal facts concerning gene expression[17] [18] [19].

A classical RBN is a dynamical system, based on a directed

graph with N nodes (genes), which can assume binary values 0 or 1
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(inactive/active); time is discrete, with synchronous updating of all

the node values. Each node has exactly kin input connection; in the

classical model used here kin is the same for all nodes and the input

are chosen randomly with uniform probability among the

remaining N-1 nodes (prohibiting multiple connections). To each

node a Boolean function is associated, which determines its value

at time t from the values of its inputs at the previous time step. The

Boolean functions are chosen at random for every node, by

assigning to each set of input values the outcome 1 with probability

p. Both the topology and the Boolean function associated to each

node do not change in time. The network dynamics is discrete and

synchronous, so fixed points and cycles are the only possible

asymptotic states in finite networks. Extensive studies have shown

that, considering the robustness with respect to small changes in

initial conditions it is possible to distinguish different dynamical

regimes: ordered, critical and disordered (often called ‘‘chaotic’’

although, since it refers to cycles, the term pseudo-chaotic would

be more appropriate). In the ordered regime small transient

perturbations die out, while in the disordered one they initially

tend to grow. Networks whose structural parameters take values

intermediate between those which are typical of ordered and

disordered ones are called critical.The interested reader is referred

to existing excellent reviews for a more complete discussion of

RBNs [13] [14] [15] [16].

The most interesting behaviour has been shown by nets in a

critical regime, which show both robustness and adaptiveness [20]

and it has been suggested that living organisms are driven by

evolution in a critical dynamical state (at or close to the boundary

between ordered and chaotic phases) [21] [22]. Recent results,

which compare RBN simulations with experimental data, lend

support to the view that biological genetic regulatory networks

indeed operate close to the critical region [17] [18] [19]. Therefore

in the present study all the results shown refer to RBNs whose

parameters lie in the critical region (in particular, we choose for all

the simulations the values kin~2 and p~1=2).

Note however that attractors of RBNs are unstable with respect to

noise even at low levels. Consider for example a transient flip of a

randomly chosen node when the system is in a state of one of its

attractors: even if the flip lasts for a single time step one sometimes

observes transitions from that attractor to another one (see Figure 1a).

Such transitions are observed in almost all the networks, and

their frequency scales with the network size in a way described in

[12]. In particular, the probability that a flip on a randomly

chosen node leads the system to a different state cycle decreases

with the network size, but in a sublinear way, so that the overall

number of transitions turns out to be an increasing function of N.

Noise is known to play a role in key cellular processes [23] [24]

[25] [26] [27] [28], and it has been proposed since the seminal

work of Kupiec [29] that it be involved in differentiation; random

fluctuations also play a role in some existing mathematical models

of differentiation [11] [30].

We will therefore investigate the asymptotic dynamics of the

network subject to noise, modelled by the transient flip of a

randomly chosen node which lasts for a single time step; after that,

the node follows the rules of the network deterministic dynamics.

This is indeed the smallest possible random fluctuation affecting a

Boolean system. It will also be assumed that the noise level is small

enough to allow the system to relax to an attractor before a new

flip occurs. Several simulations have indeed shown that, while the

transient from a random initial state to an attractor may be long,

the transitions between two different attractors almost always

require a small number of steps. This hypothesis allows one to

make use of the knowledge of the attractors of the deterministic

system to analyze the behaviour of its noisy version, thereby

strongly simplifying the description of the asymptotic dynamics of

the stochastic system [31].

It would be natural to identify the attractors of RBNs with cell

types, as originally proposed by Kauffman [14] [15] [16], since

they correspond to different coherent dynamical states of

activation, with the same genome (i.e. topology and Boolean

functions). However, since attractors (this term will always be used

here for those of the deterministic system) are unstable with respect

to noise, they can no longer be associated to cell types. A possible

way out was proposed by Ribeiro and Kauffman [31] who

observed that there exist sets of attractors, which they called

ergodic sets, which entrap the system in the long time limit, so the

system continues to jump between attractors which belong to the

set. It would then be natural to associate cell types to such ergodic

sets, but unfortunately it turns out that most NRBNs have just one

such set (at most 2 of them have been observed in extensive

Figure 1. Attractor transition graphs in a RBN. Circles represent network attractors; arrows represent transitions among attractors induced by
single spin flips. All the nodes of all the states of each attractor are perturbed one by one; the numbers on each arrow are the fractions of cases where
the corresponding transition is observed, so they provide an estimate of the probability that, by flipping at random the state of a node in an attractor,
that transition takes place. In (a) the complete attractor transition graph is shown, while in (b) and (c) only those links which correspond to above-
threshold transitions are retained (h~0:03 in (b) and h~0:04 in (c)).
doi:10.1371/journal.pone.0017703.g001
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simulations). This strong limitation on the number of ergodic sets

rules out the possibility to associate them to cell types.

A possible solution to this problem was proposed in [12] and is

briefly summarized in the next section, where it is also shown that

by a proper interpretation it can describe in an elegant way the

fact that there exist different degrees of differentiation, and that it

provides a natural way to simulate stochastic differentiation (i.e.

properties 1 and 2). In the following section we show that the same

model describes also deterministic differentiation, when appropri-

ate signals are provided (i.e. property 3), while in a further section

we show that it also accounts for limited reversibility, induced

pluripotency and induced change of cell type (properties 4, 5 and

6). Finally, in the last section we discuss the biological meaning of

the key hypotheses, the implications of the model and possible

experimental tests.

Results

Threshold ergodic sets and stochastic differentiation
Observe that the kind of noise which is taken here into account

is fairly intense, as it amounts to silencing an expressed gene or to

express a gene which would otherwise be inactive; therefore it is an

event which is much less frequent than, e.g., molecular-scale

fluctuations. Consider now the case where the transition between

two attractors occurs only when a single specific node is flipped.

This may well be an event too rare to happen with significant

probability in the cell lifetime. Therefore we will introduce a

threshold, and will take into account only those transitions that

may happen by a number of flips above that threshold (Figure 1b

and Figure 1c). Note that here we are not considering multiple flips

(these would be even rarer) but different paths that lead from one

attractor to another. It is intuitively clear that the threshold should

be related to the level of noise in the cell, and it has indeed been

shown elsewhere [12] that it scales with the reciprocal of the

frequency of flips, i.e. the noise level. A more thorough discussion

of the biological significance of the threshold will be deferred to the

final section.

Since we consider only above-threshold transitions, the notion

of Ergodic Set, precisely defined in [12] and [31], has to be

modified in that of a Threshold Ergodic Set, that is a set of

attractors that entrap the system in the long time limit, so the

system continues to jump between attractors belonging to the set.

Formally, let Ai(i~1�EEM) be the M attractors of a given

network (under the action of the deterministic transition functions),

and let A be the set of such attractors. We say that an attractor Aj

is directly h-reachable from another attractor Ai if at least a

fraction h of different flips leads the system, when it is in attractor

Ai, to attractor Aj . We also say that Aj is indirectly h-reachable

from Ai if there exists a path which leads from Ai to Aj via

transitions between pairs of attractors which are directly h-

reachable.

A Threshold Ergodic Set (briefly, TES or, when the value of the

threshold is considered, TESh) is defined as a subset of A

composed by attractors which have the following properties:

N any member of the TESh is h-reachable from any other

member of the set, not necessarily in a single step;

N given that threshold value, no transition can make the system

leave the TESh

Within this definition, we can describe an ergodic set as a TESh

with h~0.

Let us now consider what happens by gradually increasing the

threshold. At h~0 one typically has a unique TES but, by

increasing the threshold, it breaks into some disjoint TESs. By

further increasing the threshold these TESs in turn break into

smaller ones until, at high enough levels of the threshold, all

attractors are also TESs (i.e. they cannot be abandoned). The

process is shown in Figure 2. The ratio between the total number

of TESs and the total number of attractors increases as the

threshold is increased, and for each network there is a value such

that, when h exceeds that value, all the attractors are also TESs. A

quantitative analysis of the way in which the number of different

TESs increases as a function of the threshold, for different network

sizes, can be found in [12].

We propose to associate cell types to TESs. They represent

indeed coherent stable ways of functioning of the same genome

(i.e. connections and Boolean functions) even in the presence of

noise. The problem that hampered the straightforward association

of cell types to ergodic sets is no longer present in this case, since

there may be several TESs in the same network.

The degree of differentiation is supposed to be related to the

possibility for the cell, in its asymptotic state, to wander in a

portion of phase space which should be smaller for a more

differentiated cell. In the present framework, a convenient proxy

for the available portion of phase space is the number of attractors

belonging to the TES. Therefore, a totipotent cell should be

associated to the TES0 (i.e. the one found when h~0), while as the

threshold is increased more differentiated forms appear (pluripo-

tent or multipotent cells), corresponding to smaller TESs like those

shown in Figure 2. At high enough threshold values all the

attractors are TESs, and these should describe the fully

differentiated cells. A TES with a single attractor will be called a

single-TES, while a TES with two or more attractors is a multi-

TES.

In order to describe differentiation, in the present framework it

is assumed that it implies a change in the threshold, which in turn

implies a change in the noise level. Differentiation increases if the

threshold increases, i.e. the noise level decreases, and this latter

effect could be related to an improvement in the mechanisms

whereby fluctuations are kept under control [27]. The association

of differentiation to changes in the threshold level represents the

most stringent outcome of this model, and is in principle amenable

to experimental test, as it will be discussed in the final section. For

the time being let it suffice to note that association of

differentiation to different levels of noise has already been

proposed on theoretical and experimental bases [30] [32] [33]

and that a higher noise level in undifferentiated cells, with respect

to more differentiated forms, has been actually reported [34] [35]

[36].

While the above hypothesis explains in a straightforward way

the fact that there are different degrees of differentiation (i.e.

property 1), related to different threshold values, it should be noted

that also stochastic differentiation [34] [37] (property 2) is

described by the model. Indeed, the fate of a given cell depends

on the particular attractor where it is found at the moment when

the threshold is increased: the new type will be the one described

by the TES to which that attractor belongs, at the higher threshold

value (see Figure 2).

Note that the above framework allows one also to understand

important experimental findings [2] where it has been observed

that a population of monoclonal partially differentiated cells

actually hosts a rather wide distribution of concentrations of some

molecular markers. By selecting and isolating, from the initial

population, a subpopulation with similar values of these markers, it

turns out that the initial wide distribution is eventually restored. It

is apparent that this behaviour is entirely coherent with the picture

where each cell, at a given time t, is in an attractor of a TES: if a
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subpopulation, composed by cells in the same attractor, is picked

up, the whole TES is recreated under the action of noise. Similar

results have also been obtained with embryonic stem cells [32].

Note also that the experimentally observed subpopulations show

different patterns of gene expression, some of them being close to

that of the cells which are reached after differentiation has taken

place; this again is what one could expect from the TES picture. It

is also worth noticing that the authors of this study report that the

kinetics of the process is coherent with a picture of a cell switching

between different metastable attractors, like it has been supposed

here. The cells considered in this study can differentiate to

different fates, but it has been observed that by chemically

stimulating them with erythropoietin one always obtains the same

cell type: this is a nice example of deterministic differentiation,

which will be discussed in the next section.

Switch nodes determine the cell fate
There exist indeed several processes, e.g. during the embryo-

genesis, in which cell differentiation is not stochastic but it is driven

towards precise, repeatable types by specific chemical signals,

which activate or silence some genes. These signals are thus

represented in the model by permanent perturbations of a node

(for reasons of simplicity we will consider the fixing of the value of

a single node at a time), which fix its state to 1 or 0. In order to

describe these deterministic differentiation processes in our model

we couple these permanent perturbations with an increase of the

threshold (which by itself would lead to the stochastic differenti-

ation shown in Figure 2).

The model will be considered able to describe deterministic

(signal-driven) differentiation if one can demonstrate the existence

of switch genes, whose permanent activation or inhibition always

leads the system through the same differentiation pathway, i.e.

nodes that uniquely determine to which TES the system will

evolve. Switches are precisely defined as follows: starting from a

certain TES, if fixing the value of a node from all phases of each

attractor of that TES the system goes always in the same attractor

(when the threshold is increased), then the perturbed node is a

switch (in that TES). A less stringent yet meaningful definition

could be given by requiring that the perturbation leads the system

to attractors belonging to the same TES; the present one is

however easier to verify. The existence of switch nodes has actually

been verified to be a widespread property (found in about 1/3 of

the nets), thereby proving the effectiveness of the model. Note that

it is not necessary to prove that switches exist for all the NRBNs, it

is indeed sufficient to show that they are present in a significant

fraction of them, so that natural selection can pick up the ‘‘good’’

ones.

In Figure 3 one can see an example of differentiation, from a

multi-TES0 to a set of single-TESs, which shows a remarkable

qualitative similarity with differentiation diagrams of real cell

lineages, like e.g. hemopoietic cells.

Some considerations arise from the experiments we performed:

first of all, this case represents just one possible diagram obtained

from simulations; the system shows indeed a very rich and

complex landscape of possible behaviours, as in biological

differentiation. It is interesting to observe that two types of

redundancies have been observed in real cells, when moving in a

signal-driven way from an intermediate type A to a more

differentiated type B: in some cases the transition can be achieved

by acting on different genes of A [38], and in other cases B may be

reached also by acting on a cell type C which does not belong to

the lineage of A [23][39]. These correspond in the model

respectively to the cases in which a new TES can be reached

from the same multi-TES acting on different switches and to the

cases in which a single type can be reached from different

pathways. Both can be actually observed in the example shown in

Figure 3.

It is also important to observe that the model accounts in

a straightforward way for differentiation diagrams where there

are both deterministic and stochastic steps. A similar combina-

tion has also been observed in nature, e.g. in hemopoietic cell

differentiation [40].

Note also that a chemical signal can be modelled by the

permanent perturbation of a gene, also when the latter is not a

Figure 2. TESs and stochastic differentiation. As the threshold is increased the single TES0 breaks into smaller disjoint TESs, which correspond
to more differentiated cells, until eventually final cell types are reached (i.e. single-TESs). Stochastic differentiation is explained by the fact that the
new TES which is reached when the threshold is increased depends upon the attractor in which the cell is found and upon the node which is flipped
(a few possible transitions are shown by dotted lines).
doi:10.1371/journal.pone.0017703.g002
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switch. In this case, by definition, if the threshold is increased

one observes differentiation towards different TESs: therefore

according to the model one can observe stochastic differentiation

(albeit of a different type) even when chemical signals are

present; a statement which can be subject to a experimental

verification.

Simulating induced pluripotency and other properties
In recent years considerable attention has been raised by the

discovery of induced pluripotency (property 5) where overexpres-

sion of a few transcription factors (from 1 to 4) in differentiated

cells can make them ‘‘come back’’ to a less differentiated state [7]

[8] [41]. Simulating such a process of dedifferentiation by a

decrease of the threshold would be straightforward but, since there

is no evidence that such a process actually takes place in

experiments, we checked whether dedifferentiation can be

achieved without modifying the threshold, by simply fixing the

value of a gene to 1 permanently so to simulate its overexpression

(of course this makes sense on those genes which are not always

active in the model).

This phenomenon can actually be observed in some networks,

as shown in Figure 4. This behaviour is not generic, and it is found

rarely, but also in biological systems there are just a few genes that

can give rise to induced pluripotency. Note also from Figure 4 that

most of the attractors of the TESh reached in this way are identical

(apart from the perturbed node) to those of the original TES0, a

situation which can be summarized by saying that the two TESs

are similar to each other - and this closely parallels what has been

experimentally observed. Note also that the above description

belongs to the set of so-called stochastic models of iPSC that seem

in accordance with known experimental facts [42].

Finally, it is important to observe that the model is actually able to

describe also property 6, i.e. possible transitions between two

differentiated cell types (as shown in Figure 5), as well as property 4,

concerning the existence of limited exceptions to the irreversibility

of cell differentiation, as shown in Figure 6. Note that the difference

with respect to induced pluripotency (Figure 4) is that in the present

case the return to a less differentiated state can be accompanied by

an increase in the threshold, while in simulating the Yamanaka

experiment no change of the threshold was performed.

Figure 3. A case of deterministic differentiation. In this schematization each box represents a TES and each circle represents an attractor.
Arrows indicate possible different path differentiation and labels on arrow indicate the switch: the number is the number of the node that act as a
switch, A means that it is switched-on and S means that it is switched-off. Note that it is here possible to observe two kinds of redundancy: in one
case a particular TES can be reached acting on different switches of the same multi-TES (as shown by double labels on the same arrow); in the other
case the same TES can be reached acting on switches belonging to different multi-TESs (i.e. the same TES can be reached from different pathway), as
in the case of the red single-TES, which can be reached either from the azure or from the turquoise multi-TES.
doi:10.1371/journal.pone.0017703.g003
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Discussion

The most interesting features of the model presented here can

be briefly summarized as follows:

1. a single model describes all the main features of differentiation

(listed at the beginning of the Introduction);

2. the explanation of differentiation makes use of the global

properties of a generic dynamical system, without resorting to

detailed hypotheses concerning very specific control circuits, so

differentiation is linked to sets of attractors of a large network,

rather than to a specific interactions between few genes. Note

also there is no need to introduce epigenetic barriers [3];

3. the control of the noise level plays a crucial role in

differentiation; while a role for noise in differentiation has

already been hypothesized [30] [32] [33], in our system it is

indeed the control of the noise level that drives differentiation (to

the best of our knowledge a similar hypothesis has been proposed

only by Hoffman et al; their model is however different in many

respects from ours, and in particular it requires a number of

assumptions concerning the effect of the environment on the

cellular noise and on the proliferation rate);

4. switches provides an elegant way to model deterministic

differentiation, without requiring further ad hoc assumptions.

Note that some care must be exercised in applying our results to

present-day biological genetic networks, which are likely not

randomly wired, but have been shaped by evolution. So it may

well be that present-day differentiation pathways are controlled at

least in part in a more rigid and perhaps reliable way, but even in

this case our model should hold as a proposal for the origin of

differentiation, and it should also provide a partial description of

modern differentiation. The most striking result obtained here

concerns the importance of the threshold: if we permanently

Figure 4. Yamanaka-like in silico experiment. Schematization of the Yamanaka experiment: starting with one multi-TES0 (the leftmost graph),
which represent a totipotent stem cell, one increases the threshold until a single-TES0:11 is reached (composed by the rightmost attractor of the
central graph), which represents a fully differentiated cell. Then, by permanently perturbing a node belonging to the single-TES0:11 to the fixed state
1 (overexpression) one obtains the multi-TES0:11 (the rightmost graph). This graph refers to a network with 10 nodes.
doi:10.1371/journal.pone.0017703.g004

Figure 5. An example of transition between differentiated cells. By increasing the threshold to 0.1, from the initial multi-TES0 a single-TES is
reached which represents a fully differentiated cell type. A permanent perturbation leads to a different attractor which, at the same threshold level, is
also a single-TES, corresponding to a different cell type.
doi:10.1371/journal.pone.0017703.g005
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modify the expression of one or a few genes without acting on the

threshold, the breakup of a TES into smaller disjoint ones has not

been observed. This statement is in principle subject to

experimental testing, provided that we define the biological

meaning of the threshold. As it has been repeatedly stressed, this

could be related to the level of noise in the cell [12].

If the threshold is related to the noise level, and if differentiation

requires a change of the threshold, then differentiation should be

accompanied by a change in the noise level. It is important to

remark that flips (active/inactive) similar to those adopted here

have actually been observed [43] as well as to make reference to

some works which suggest that in stem cells more genes are usually

active than in differentiated ones, albeit at a lower level [34] [35].

Since this entails a smaller number of copies of m-RNA molecules

per cell, and since the relative role of fluctuations is higher when

the number of exemplars is lower, this indicates that noise can

indeed be higher in stem cells than in differentiated ones. It is also

particularly interesting to observe that it has recently been

reported [2] [35] [36] that the state of gene expression levels of

(at least some) stem cells can be described as slowly itinerating

among several quasi-stable states, a description which fits that of a

TES.

The deterministic differentiation processes which are observed

e.g. in embryo growth require that the threshold of a cell can

change when needed. It is natural to suppose that the threshold

itself is under genetic control, so that it can be modified when

appropriate. Among the various mechanisms, which may be

involved in such control, let us mention that i) the folding/

unfolding of chromatin can modify the level of noise of many

genes [44] and ii) the production of miRNA can silence genes

which are expressed at low levels, thereby making expression noise

vanish [45]. These two mechanisms can suppress noise around the

inactive state of the genes. Other mechanisms can be at work to

stabilize the active state, for example by producing more copies of

m-RNA per unit time [46], by reducing the degradation rate of the

proteins or by using buffer circuits to keep constant nonzero

activation values [45].

On the theoretical side, there are several aspects that are worth

exploring, including those concerning the generality of our results.

The general picture of the cell as a dynamical system, and the idea

that differentiated cells are more constrained in their wandering in

phase space can be applied also to other models of gene and cell

dynamics [10], and the question can be raised concerning the

possibility of obtaining similar results also with these other gene

network models. We have modelled here only a single cell,

lumping the effect of the other neighboring cells in a ‘‘signal’’

which sets the value of a particular gene; it would be interesting to

explore along these lines also the role of the interactions among

communicating cells in differentiation.

In the present version of the model, the threshold level is

modified by in an exogenous way but, as it has been observed, it is

likely to be itself under genetic control. It would therefore be

interesting to develop a model where the threshold itself is

ruled by a pattern of activation of some genes, and look at the

unfolding of differentiation. A limited step in this direction was

performed in [47] where the effects of mutations in particular

genes (threshold regulating genes) were analyzed. Other research

directions include the use of variations of the classical RBN model,

motivated by increasing knowledge of the actual properties

of biological systems (like e.g. scale-free networks, modular

networks, different updating schemes, multiple-valued or contin-

uous models, etc.).

Figure 6. Examples of specified and determined cell. An example of exception to irreversibility is shown in the upper box (which is part of a
larger differentiation graph) where one sees that by inhibiting a specific switch node the red TES differentiates to the azure one, but the path can be
reversed. The lower box describes another (irreversible) branch of the same network.
doi:10.1371/journal.pone.0017703.g006
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Let us finally remark that the availability of sophisticated

system-level models like this can lead to a deeper understanding of

the process and can provide impulse to the experiments by

suggesting testable hypotheses, in particular those concerning the

importance of controlling the noise level in differentiation.

Materials and Methods

The simulations concerning RBNs were made using a software

developed in house, written in C++. Different network sizes were

tested, unless otherwise stated, the results shown in this paper refer

to networks with 100 nodes (a few smaller networks with 10 and 20

nodes were also simulated, as well as some larger ones with 200

nodes).

Except for the 10-node and 20-node networks, exhaustive

testing of the possible initial conditions is impossible, so in

networks of 100 or more nodes attractors were found starting by

10.000 randomly chosen initial conditions.

In all the simulations the number of incoming links is kin~2

and the bias of the Boolean function is p~
1

2
, thereby guranteeing

that our networks sare critical according to the definition recalled

in Section 1 and thoroughly discussed in [14] and [16].

The search was performed with an algorithm able to find

attractors with periods not larger than 500 time steps (and a

maximum transient of 1000 steps). It turns out that these search

parameters allow one to find an attractor for all the initial

conditions in about 99% of the random networks.

The transition graph between different attractors was obtained

by perturbing (independently) each node of each state of each

attractor. For each perturbation the new attractor was found,

thereby determining the weights of the links of the attractor

transition graph.

The search for TESs was made using a software developed in

house, written in C++. The algorithm was based on the search for

the strongly connected components of the attractor transition

graph (taking into account the level of the threshold). For each

strongly connected component it was then checked whether it

actually entrapped the system, a necessary condition for it to be a

TES.

The results concerning the switches have been obtained as

follows, starting from critical RBNs with 100 nodes. In order to

describe cells with the same genome, i.e. the same structure of the

RBN, which can evolve to different fates we limited our analysis to

networks with more than one switch and where there are at least

two switches leading to different asymptotic states. Starting from

TES0 we searched for a switch and, when we found one, we fixed

its value and grew up the threshold to obtain a TESxw0 composed

by a smaller number of attractors. Then we repeated the

procedure starting from the newly found TESxw0 to find a

TESxwy with an even smaller number of attractors, until we found

a single-TES (i.e. a fully differentiated cell). In this way we

explored just one of the possible paths, only a tree branch, so in

order to obtain a complete picture of the possible fates we iterated

the procedure for all the branches of the root (the initial multi-

TES0) and all possible sub-branches. Eventually we found all the

possible system fates, which can be represented e.g. as in Figure 2.

The software codes used for simulation of the dynamics of

RBNs, for searching the attractors, for determining the attractor

transition graph and for finding the TESs are available upon

request by one of us (A.B. email: alessia.barbieri@unimore.it).
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