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A B S T R A C T

The SARS-CoV-2 virus causing the global pandemic is a coronavirus with a genome of about 30Kbase length.
The design of vaccines and choice of therapies depends on the structure and mutational stability of encoded
proteins in the open reading frames (ORFs) of this genome. In this study, we computed, using Expectation
Reflection, the genome-wide covariation of the SARS-CoV-2 genome based on an alignment of ≈130 000
SARS-CoV-2 complete genome sequences obtained from GISAID. We used this covariation to compute the
Direct Information between pairs of positions across the whole genome, investigating potentially important
relationships within the genome, both within each encoded protein and between encoded proteins. We then
computed the covariation within each clade of the virus. The covariation detected recapitulates all clade
determinants and each clade exhibits distinct covarying pairs.
1. Introduction

Severe Acute Respiratory Syndrome (SARS) is a viral respiratory
disease caused by the SARS-associated coronavirus. In December 2019,
this pneumonia-like disease re-emerged in the Chinese city of Wuhan
and the novel beta-coronavirus 2 (SARS-CoV-2) was identified as the
causative agent [1]. The genome was first characterized by Wu et al. in
December 2019 [2]. Since then the SARS-CoV-2 virus has spread relent-
lessly all over the world and been declared a worldwide pandemic with
79 million cases leading to 1.7 million deaths to date [3,4]. SARS-CoV-2
is an +ssRNA virus belonging to the coronaviridae family major genera
Betacoronavirus [5]. The viral genome encodes several open reading
frames (ORFs): ORF1ab, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10.
These ORFs encode for several non-structural proteins (NSPs) while
there are specific regions encoding the spike glycoprotein (S), envelope
(E), membrane glycoprotein (M), and the nucleocapsid protein (N).
The genome (NC_045512.2, 29 870 nucleotides long) of the virus can
be broken into 11 encoding regions: ORF1ab (266-21555), S (21563-
25384), ORF3a (25393- 26220), E (26245-26472), M (26523-27191),
ORF6 (27202-27387), ORF7a (27394-27759), ORF7b (27756-27887),
ORF8 (27894-28259), N (8274-29533), ORF10 (29558-29674) [6].

While the reference genome is used for most investigations, there
is also an abundance of data available which can be used to monitor
variations in the genome and analyze the evolution and nature of the
virus. This data was assembled by GISAID to document different strains
of the virus in a new database: EpiCoV. With the first viral entry on
January 10 2020, the database has grown to 292,000 submissions [7].
In this study we use 137 636 of these strains to analyze the evolution
of the virus.
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In our analysis we develop a co-evolutionary interaction network of
nucleotide positions using an entropy-based method to infer genome-
level interaction in the SARS-CoV-2 genome.

1.1. Coevolution

The variation of the virus’s genetic structure is of considerable
medical and biological importance for prevention, diagnosis, and ther-
apy. Mutations in the viral genome allows us to investigate potentially
important relationships within the genome. Comparative RNA sequence
analysis has long been used to investigate co-evolution via covari-
ance of nucleotide mutations (30,31) with difficulty arising in the
separating of indirect and direct interactions that lead to such co-
variation. A similar issue in inferring protein residue interactions was
addressed by Lapedes et al. [8] and many later groups [9–11] in
a statistical physics methodology that has come to be called Direct
Coupling Analysis (DCA), and which has successfully inferred direct
interactions (DIs) in proteins as well as between proteins. For RNAs,
the DCA-based methods infer physical interactions, both secondary and
tertiary, between nucleotides in an RNA molecule by analyzing the
co-evolutionary signals of nucleotides across sequences in the RNA
family [12]. More recently, this analysis has been applied to the SARS-
CoV-2 genome by Zeng et al. [13]. In this paper we will utilize a form
of logistic regression optimization, Expectation Reflection [14,15], with
DCA to infer DI in the SARS-CoV-2 genome. These interactions may
also provide information on protein–protein interaction. Additionally
this analysis could be useful in vaccine development, aiding in efforts
to mitigate ‘‘escape pathways’’ for the virus to use in future strains [16].
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Fig. 1. Comparing Incidence across Clades. We plot total number of retained columns (incidence) against the allowed conserved percentage per a given nucleotide position for
both ORF1ab and S regions (across all clades).
Fig. 2. Comparing the Incidence of S and ORF1ab. We plot the percentage of retained columns (incidence) against the allowed conserved percentage per a given nucleotide
position (in the full genome data set).
1.2. SARS-CoV-2 genome analysis using expectation reflection

Our analysis begins with the acquisition and alignment of genome
sequence data, described in Section 4.2. Once the data is aligned
we pre-process the aligned sequences by removing sequence positions
which contain 95% or more conservation as discussed in Section 2.1.
We infer covarying positions from the curated-aligned genome data us-
ing the Ising model of statistical physics pioneered by Lapedes et al. [8]
which is outlined in Section 4.1. The resulting genome-wide interac-
tions are discussed by encoding region in Section 2.2. Our analysis
includes the presentation of position interaction maps and tabulation
of the strongest resulting DI pairs. For the strongest DI pairs we also
present the single site amino acid (AA) frequency as well as the AA-
pair counts. Similar analysis is also applied to the G, GR, GH, S and V
clades in Section 2.3.

2. Results

2.1. Clade incidence

As in any ab initio inference problem, when inferring co-evolution-
ary interactions between nucleotide positions in the SARS CoV-2
genome, we must consider certain properties of the data at hand. As
an example, the length of the full genome is approximately 29 000
nucleotide positions. However, when we consider genome positions in
2

which no single nucleotide is expressed more than 95% of the time
(95% conserved), the relevant positions are reduced by approximately
two-thirds. Decreasing the conserved percentage decreases the number
of allowed repetitions in a given position (data column). In other words,
as we decrease the threshold for conserved columns, the condition for
variation at a given position becomes more stringent and the number of
columns retained for analysis will decrease. As in the example above,
going from 100% (full genome, all columns allowed) to 95% con-
servation removes a significant number of genome positions. Because
inference with ER relies on mutations at a given position we must con-
sider the resulting number of columns, or incidence, after such curation.
In addition, region-specific incidence may also underline importance
to the efficacy of the virus because higher incidence represents more
variation and mutation. We also consider the clade-specific incidence of
the full genome since we will consider genome interactions in different
clades in future sections.

In Fig. 1 we plot the incidence of the ORF1ab and S regions for
different thresholds of allowed conservation. These incidence curves
are given for the different clade data sets. Fig. 1 shows that region
incidence varies between clades and that the incidence of different
encoding regions is affected differently for a given clade. For example,
consider the full genome data set against the S clade set in Fig. 1. The
full genome data set (blue) has one of the highest ORF1ab incidence
curves, but the same level of incidence is not necessarily expressed in
the S region. In contrast, the S clade (purple) shows middling incidence
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Fig. 3. hCoV-19 Genome-Wide Interaction Map. We infer covariation in nucleotide positions across ≥ 130 000 sequences.
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Table 1
Top 10 ORF1ab DI pairs. Listing the strongest DI pair positions (bolded
positions not in ORF1ab).
Position 1 Position 2 DI

14408 3037 0.456
1059 25563 0.441
14805 26144 0.380
7540 23401 0.343
14408 23404 0.340
3037 23403 0.335
21254 22227 0.329
18555 23401 0.313
21367 21369 0.291
1163 23401 0.283

for ORF1ab and one of the strongest incidence curves for the S encoding
region.

This analysis can also give some intuition on the nature of individ-
ual encoding regions by quantifying the level of variability expressed
within a given clade. For example, in Fig. 1, we see differences in which
clades express higher incidence between the ORF1ab and S encoding
regions. We can apply the same principle to compare the ORF1ab and
S regions in the full genome data set. In Fig. 2, we plot the incidence
of ORF1ab and S in the full genome sequence set as we increase the
allowed conserved percentage per given nucleotide position. This figure
shows different levels of position-wise variability for the two encoding
regions.

For the remainder of the paper we will set the conservation thresh-
old to 95%. This is in order to retain a significant number of positions
for the subsequent analysis. We must also consider that the size of a
given clade, or genome data set will affect the incidence and variability.
Specifically, as the number of sequence considered changes, the level
of variability, enforced by the conservation thresholds, will be altered
as well. Therefore, when considering smaller data sets, such as the S
and V clades, we must keep in mind that the incidence is affected by
the cardinality of the set itself.

2.2. Genome wide analysis

We begin by inferring interactions between nucleotide positions

across the entire genome. Fig. 3 shows a gray-scale of DI calculated

3

from inferred couplings between positions (𝑖, 𝑗) using all available
sequences. Position pairs which showed significant coevolution (𝐷𝐼 ≥
.1) are emphasized. In Fig. 3, the full interaction map is dominated
by interactions in ORF1ab (positions 266-21556), S (positions 21564–
25384), and ORF7ab (27395-27888). Proximal nucleotide positions
(diagonal of the interaction map) express strong covariation as shown
by the thick black diagonal bar. In fact, we suppress the emphasis of
𝐷𝐼 > 0.1 for proximal pairs (‖𝑖− 𝑗‖ < 10) in all interaction maps due to
the prevalence of proximal pair interactions with 𝐷𝐼 > 0.1. However,
here are several off-diagonal position pairs (far apart in the genome)
hich show strong covariation. This shows potential evolutionary links
etween specific positions or regions in different parts of the genome.
s an example we can consider the top 5 DI pairs for the entire genome

n Table given below. While most of the position pairs are proximal, the
trongest interaction is more than 20 000 nucleotides apart.

Position 1 Position 2 DI
2237 22384 0.915
28881 28883 0.801
29700 29721 0.670
241 313 0.665
14408 3037 0.456

In order to further explore features from the full interaction map we
will divide the full genome into different encoding regions, focusing on
those regions which show significant incidence.

2.2.1. ORF1ab
The ORF1ab region of SARS-CoV-2 genome is an important polypro-

tein gene which encodes 16 nonstructural proteins important to the life
cycle of the virus. Because of this importance, some of the proteins
encoded in this region have been proposed as potential targets for
antiviral therapy [17–19]. Fig. 3 shows that the region also has the
largest number of non-conserved nucleotide positions, or position inci-
dence, (as described in Section 2.1) of the major encoding regions. This
increased incidence is expressed in the cardinality of the interaction
map (see Fig. 4).

Table 1 shows the top 10 DI pairs in ORF1ab with bolded positions
representing distal (non ORF1ab) positions. Note that more than half
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Fig. 4. ORF1ab Interaction Map.
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Table 2
ORF1ab Single Site AA Frequencies. We consider
the distributions of resulting amino acids from the
nucleotide positions which had the highest DI in
ORF1ab.

Single site Freqs.

14408 L: .857, P: .139
3037 F:.995
1059 T:832,I:.164
25563 Q:.783,H:.215
14805 Y:.998
26144 G:.945,V:.040
7540 T:.997
23401 Q:.999
23404 G:.861,D:.138
23403 G:.861,D:.138
21254 A:.933,X:.106
22227 A:.956,V:.029
18555 D:.999
21367 I:.941,X:.059
21369 I:.941,X:059
1163 I:.938,F:.059

of the top 10 DI pairs in Table 1 are distal which may be an indicator
of the significance of the region to other encoding regions (and their
resulting functions).

While the interaction map and DI pairs are a useful overview of
genome coevolution, it is important to consider whether these coe-
volving positions result in alterations of amino acids encoded by the
interacting positions. Table 2 gives the resulting proportion of amino
acids (AA) encoded by the nucleotide positions outlined in Table 1.
The table shows frequent occurrence for a dominant AA at any given
position. This analysis can be extended to consider the AA pair counts
for a given genome position pair. Table 3 shows the AA pair counts of
the dominant DI pairs in ORF1ab. In the given position pair matrices
we see three cases arise: A high AA-pair count on the diagonal, on a
single row/column, or in a single element. A high AA-pair count on
the diagonal means the prevalence of two AA-pairings resulting from
the coevolution of the two positions. The AA-count between positions
14 408 and 23 404 is a good example of this first case. Dominance
of a given row or column suggests that one position remains mostly
fixed while the other position expresses variability, as seen in the AA-
counts for the position position pairing of 3037 and 23 403 where 3037
 s

4

almost always encodes Phenylalanine. The final case in Table 3 is a
single AA-pair expressed dominantly for a given position as seen with
positions 21 367 and 21 369. This case shows little coevolution and
generally occurs in AA-pairs from positions with lower DI where both
positions have a dominant AA in their single site AA frequency (see
21 367 and 21 369 in Table 2). We continue with the same analysis for
the S encoding region.

2.2.2. Spike glycoprotein
The Spike protein encoding region (S) plays a vital role in viral

entry into the host cells [20]. As a result this region is considered a
key target in current vaccine development [21]. In Fig. 5 and Table 4
we present both the interaction map and the top ranked DI pairings
respectively for the S region gene positions. In addition to this DI
analysis we present the single site frequencies and AA-pair non-singular
AA-counts in Tables 5 and 6. For the S encoding region we only include
the top 3 rated DI amino acid pairings. Regardless of this curation, the
AA-pair matrices in Table 6 show a single AA-pair count prevalence
for all but the strongest DI pairing. This pairing, between positions
22 363 and 22 384, shows a strong diagonal. However, the alternate
can be any amino acid pairing which shows that the main trend is the
threonine-valine combination.

2.2.3. ORF3a
The ORF3a gene region encodes a unique membrane protein with

a 3-membrane structure and it is essential for the pathogenesis of
the disease [22,23]. The interaction map of ORF3a expresses minimal
incidence so it is not shown. However, the interactions in ORF3a are
still important to consider. The region itself shows little variation (only
5 pairs have DI> 0.1) with the exception of position 25 563 as seen
n previous work [24]. Regardless, in Table 7 we are able to show
hat 25 563 interacts with several other regions including ORF1ab and

with the strongest coevolution occurring with position 1059 in the
RF1ab region. We consider the encoded amino acids for positions
oevolving in ORF3a in Tables 8 and 9. In Table 9 we see a new case in
he AA-pair distribution with position pairs of 25 563 and both 22 992
nd 25 429. In both these pairs, the majority of the AA pair count is
he primary AA for each position. However, the second most prevalent
airing is in the primary–secondary AA couples for the position. While
high count on the matrix diagonal represents the prevalence of two
A pairs, the distribution in these pairs shows more variety with 3

ignificant pairings expressed in the position interaction.
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Table 3
ORF1ab AA Pair Counts. Encoded amino acid counts for high ranked
DI positions in ORF1ab. Considering the most prevalent amino acids for
each position.

3037
14408

F Other

L 117404 497
P 19006 117
Other 544 68

14408
23404

L P Other

G 117540 457 521
D 269 18615 72
Other 101 40 21

1059
25563

T I Other

Q 107023 257 434
H 7274 22237 99
Other 223 45 44

3037
23403

F Other

G 117983 535
D 18827 129
Other 143 19

21254
22227

A X Other

A 123066 8487 14
V 3845 246 0
Other 1452 525 1

14805
26144

Y Other

G 129808 259
V 5532 12
Other 1988 37

21367
21369

I X Other

I 129512 0 0
X 0 8112 0
Other 0 0 12

1163
23401

I F Other

Q 128884 8055 488
Other 172 23 14

Table 4
Top 10 S DI pairs. Listing the strongest DI pair positions (bolded
positions not in S).
Position 1 Position 2 DI

22363 22384 0.915
23401 7540 0.343
23401 18555 0.313
22497 22495 0.301
22353 22355 0.292
23401 1163 0.283
23401 16647 0.275
22334 22336 0.263
22539 22541 0.245
22526 22524 0.239

2.2.4. ORF7ab
ORF7ab contains a viral antagonist of host restriction factor BST-

2/Tetherin and induces apoptosis [25]. We present the interaction map
for both ORF7a and ORF7b separately in Figs. 6 and 7. We also present
the top 10 DI pairs for each region in Table 10.

It is important to note that there was little significant coevolution
between positions in ORF7ab and other regions of the genome. We will
only present the AA single site frequencies, in Table 11 for this region
5

Table 5
S Single Site AA Frequencies. We consider the distri-
butions of resulting amino acids from the nucleotide
positions which had the highest DI in S.

Single Site
Freqs.

22363 V:.894,X:.106
22384 T:.896,X:.104
23401 Q:.998,X:.001
7540 T:.997,X: .003
18555 D:.997,X:.003
22497 I:.893,X:.107
22495 G:.893,X:.107
22353 A:.891,X:.109
1163 I:.938,X:.057
16647 T:.989,X:.011
22334 W:.937,X:.062
22336 W:.938,X:.062
22539 I:.951,X:.049
22541 V:.994,X:.005
22526 P:.947,X:.053
22524 Q:.937,X:.062
22354 A:.891,X:.109
22488 E:.893,X:.106

Table 6
S AA Pair Counts. Encoded amino acid counts for high ranked DI
positions in S. Considering the most prevalent amino acids for each
position.

22363
22384

T X Other

V 122556 426 13
X 736 13882 1
Other 8 1 13

23401
7540

Q X Other

T 137009 115 69
X 417 25 0
Other 1 0 0

23401
18555

Q X Other

D 137074 91 68
X 353 49 1
Other 0 0 0

Table 7
Top 5 ORF3a DI pairs. Listing the strongest DI pair positions (bolded
positions not in ORF3a).
Position 1 Position 2 DI

25563 1059 0.441
25563 22444 0.202
25563 22992 0.155
25563 25429 0.129
25563 20268 0.117

because of the single AA dominance at each position considered. In
addition to this strong dominance (≥ 90%) of the primary AA at each
position, the secondary AA at all positions was undefined (X).

2.2.5. Nucleocapsid
We conclude our complete genome analysis with a brief description

of our findings of coevolution in the Nucleocapsid (N) encoding region.
The N protein plays varied roles in the regulation of the infected cell
metabolism and packaging of the viral genome. Therefore, the protein
plays an important role in both replication and transcription [26]. The
N region contains an specific nucleotide variation in the triplet 28 881,
28 882, and 28 883 discussed in previous work [24]. This triplet, ap-
propriately, presents the only DI ≥ 0.1 in the region, as presented in
Table 12.
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Fig. 5. S Interaction Map.
Table 8
ORF3a Single Site Amino Acid Frequencies. We
consider the distributions of resulting amino acids
from the nucleotide positions which had the highest
DI in ORF3a.

Single Site
Freqs.

25563 Q:.783,H:.215
1059 T:.832,I:.164
22444 D:.891,X:.109
22992 S:.914,N:.046,X:.039
25429 V:.893,L:.105
20268 L:.961,X:.039

2.3. Clades

When investigating genetic variance, it is useful to stratify available
data to understand and analyze genomic diversity. Analysis of genetic
variance plays a crucial role in expanding knowledge and develop-
ing prevention strategies. Previous work has developed phylogenetic
trees and divided the SARS-CoV-2 genome both genomically and ge-
ographically into clades [27]. We extend this analysis to see how
such stratification affects the virus’s genome-wide covariation. Before
presenting our results on clades, it is important to note that our initial
results yielded many previously defined clade determinants [27]. These
determinant nucleotide (NT) positions are bolded in Table 13. In the
following sections we apply our method to these clades and investigate
the resulting change in the coevolution of NT positions across the
genome.

2.3.1. G clade
We begin our clade analysis with the largest existing clade. The

G clade is stratified by the most common set of events, a quadruplet
of mutations: C241T, C3037T, C14408T, A23403G [27]. Extracting
genome sequences with these features we re-apply ER, resulting in the
interaction map in Fig. 8. Comparing the full interaction map (Fig. 3)
and the G clade interaction map (Fig. 8), we see a drastic change in
incidence.

Both genome sequence sets have the same curation applied, with
pre-processing removing genome positions which were ≥ 95% con-
served. However, within the G clade we see a severely decreased
6

Table 9
ORF3a AA Pair Counts. Encoded amino acid counts for high ranked
DI positions in ORF3a. Considering the most prevalent amino acids for
each position.

25563
1059

Q H Other

T 107027 7275 222
I 254 22236 45
Other 434 99 44

25563
22444

Q H Other

D 95971 26464 226
X 11721 3134 84
Other 22 12 2

25563
22992

Q H Other

S 97416 28147 226
N 5870 507 4
Other 4429 956 81

25563
25429

Q H Other

V 93248 29530 124
L 14391 20 2
Other 76 60 185

25563
20268

Q H Other

L 103696 28365 251
X 4013 1245 59
Other 6 0 1

incidence in ORF1ab, with positions from NT 19 300 to 19 500 no
longer showing sufficient variation. This change in incidence is ex-
pressed in Fig. 9 as a decrease in cardinality of the interaction map
from the full genome set to the G clade genome set.

The incidence change in the S encoding region is much less severe.
The NT range from 2200 to 24 000 appears mostly unchanged, showing
the same pattern of significant DI (𝐷𝐼 > 0.1, red dots). In addition to
the changed incidence of ORF1ab and S. While variation of the different
encoding regions differs in ORF1ab and S, there are alterations in the
top ranked DI positions throughout both regions.
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Fig. 6. ORF7a Interaction Map.
Fig. 7. ORF7b Interaction Map.
First consider Table 14, which gives the top ranked DI pairs in
ORF1ab for the full genome sequence set and the G clade genome
sequence set side by side. None of the top ranked DI pairs from the full
genome analysis remain in the top ranked pairs for the G clade. This is
not due to an overall loss in information, as the DI magnitude remains
in the same region (DI∈ [0.2, 0.4]). Most of the removed pairs were G
clade determinants, therefore these positions are fixed in the G clade,
specifically positions 14 408, 3037, 23 403 (and proximal positions). By
fixing these positions we effectively removed the variation of positions
represented in 6 of the top 10 pairs. However, it seems that the
connection between ORF1ab and other encoding regions, specifically
the S region, was retained. Consider the NT position 23 403 from the
S encoding region, which was fixed in the G clade genome sequence
7

set. During the stratification of the G clade genome sequence set, the
variation at 23 403 (likely 23 401 and 23 404 as well) was removed.
This small NT group in region S accounted for 4 of the top 10 DI pairs
for ORF1ab. However, while 23 403 and its corresponding positions no
longer coevolved with ORF1ab, the NT position 22 870 expressed a very
strong connection with ORF1ab in the G clade.

This trend continues in the S encoding region. Table 15 shows
the top ranked DI pairs in the S encoding region for the full genome
sequence set and the G clade genome sequence set. As before, none of
the top ranked DI pairs from the full set survive the stratification which
creates the G clade genome sequence set.
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Fig. 8. G Clade Full Genome Interaction Map.
Fig. 9. ORF1ab Interaction Maps. Showing the interaction map for the ORF1ab region with both the full genome sequence set (left), as well as the G clade genome sequence
et (right).
.3.2. Other clades
We conclude our analysis with an overview of the remaining clades

resented in previous work: GR, GH, S, and V clades [27]. Specifically
e present the interaction maps for the different clades (Figs. 10–13).

With the given number of sequences in the smaller clades, the
ample size limits the inference. This is evident when considering the
hift in DI threshold in the Figs. 10–13 with significant DI changing
.1 ⟶ 0.025. Due to the smaller sample sizes in these clades, we forego

further analysis as the inference would be unreliable.

3. Discussion

In this work we have presented a novel analysis of the SARS
CoV-2 genome by finding genome interactions both within and across
8

encoding regions. In our analysis of the SARS CoV-2 genome we
have presented several perspectives on nucleotide interactions in the
genome. These interactions showed both proximal interactions within
individual encoding regions as well as distal interactions between dif-
ferent encoding regions throughout the genome. We inferred nucleotide
position interactions for the entire genome as well as the separate
encoding regions. Particular attention was given to the ORF1ab and
S regions, which demonstrated the highest variability in the given data
set. We were able to draw analogous conclusions from previous work
by inferring the most common variations previously reported [24].
Additionally, our genome-wide interaction maps expressed determinant

positions of all clades available at the time our data was acquired [27].
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Table 10
Top 10 ORF7ab DI pairs. Listing the strongest DI pair positions.
Position 1 Position 2 DI

27801 27803 0.365
27688 27792 0.333
27698 27700 0.299
27579 27581 0.295
27803 27805 0.277
27794 27796 0.268
27804 27806 0.248
27805 27807 0.227
27758 27761 0.209
27688 27752 0.188

Table 11
Single Site Amino Acid Frequencies. We consider
the distributions of resulting amino acids from the
nucleotide positions which had the highest DI in
ORF7ab.

Single Site
Freqs.

27801 F:.934,X:.065
27803 F:.934,X:.065
27792 F:.929,X:.071
27688 P:.904,X:.096
27698 L:.904,X:.1
27700 I: .903,X.1
27579 I:.902, X:.097
27581 F:.901,X: .099
27805 L:.941,X:058
27794 F:.929,X:071
27696 F:.931,X:.069
27804 L:.941,X:058
27806 L:.941,X:058
27807 L:.988,X:.011
27761 I:.902,X:.097
27752 T:.902,X:.098

Table 12
Nucleocapsid (N) DI pair. The single pairing ≥ 0.1 is also one of the
strongest DI in the genome.
Position 1 Position 2 DI

28881 28883 0.801

Table 13
Clade Determinants in Genome-Wide Analysis. We outline the clade
determinants from DI presented in Section 2.2 (bolded).
Clade Determinants Present in DI

Position 1 Position 2 DI Region Clade

14408 3037 0.456 ORF1ab G
1059 25563 0.441 ORF1ab GH
14805 26144 0.380 ORF1ab V
14408 23404 0.340 ORF1ab G
3037 23403 0.335 ORF1ab G, GR
25563 1059 0.441 ORF3a G
25563 22444 0.202 ORF3a G
25563 22992 0.155 ORF3a G
25563 25429 0.129 ORF3a G
25563 20268 0.117 ORF3a G
28881 28883 0.801 N GR

Generating interaction maps of individual clades showed clade-specific
coevolution of nucleotide positions.

We further considered the level of variability, both within regions of
the full genome data set and for different clades. This was accomplished
by varying the threshold for conserved columns while considering the
retained column incidence. This relationship shows nucleotide variabil-
ity is different both between encoding regions of the full genome and
between different clades. Region-specific incidences are not consistent
between clades, with individual regions expressing different variability
in different clades. Comparison of region-specific incidence can also
 p

9

Table 14
ORF1ab top ranked DI pairs. We show the 10 top ranked DI pairs for
ORF1ab generated from the full genome sequence set and the G clade
genome sequence set.

Full Genome

Position 1 Position 2 DI

14408 3037 0.456
1059 25563 0.441
14805 26144 0.380
7540 23401 0.343
14408 23404 0.340
3037 23403 0.335
21255 22227 0.329
18555 23401 0.313
21367 21369 0.291
1163 23401 0.283

G Clade

Position 1 Position 2 DI

7501 22870 0.458
18516 22870 0.323
16608 22870 0.321
7501 16608 0.278
1125 28963 0.262
1125 22870 0.257
1550 28666 0.250
19257 19259 0.231
18516 7501 0.230
7501 18516 0.230

Table 15
S top ranked DI pairs. We show the 10 top ranked DI pairs for S
generated from the full genome sequence set and the G clade genome
sequence set.

Full Genome

Position 1 Position 2 DI

22363 22384 0.915
23401 7540 0.343
23401 18555 0.313
22497 22495 0.301
22353 22355 0.292
23401 1163 0.283
23401 16647 0.275
22334 22336 0.263
22539 22541 0.245
22526 22524 0.239
22354 22488 0.218

G Clade

Position 1 Position 2 DI

21832 21853 0.803
22870 7501 0.458
22870 18516 0.323
22870 16608 0.321
21822 21824 0.265
21966 21964 0.264
21964 21966 0.263
22870 1125 0.257
21995 21993 0.244
22008 22010 0.236
21803 21805 0.234

give intuition on the level of variability or specific regions within
specific clades.

Our work shares significant similarities in results with the work of
Zeng et al. [13] in which 50 000 SARS-CoV-2 genomes were analyzed
using pseudo-likelihood maximization [28]. We inferred 5 of the 8
epistatic links described in their work with the notable exception
of not inferring 3 interaction pairs: (17858, 18060), (17747, 17858) and
17747, 18060) in the ORF1ab region. This exclusion is likely due to the
arger data-set used in our analysis as those links were removed during
ost-processing due to insignificant DI scoring (< .1). Another notable
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Fig. 10. GH Clade Interaction Map. Showing the interaction map for the GH clade genome sequence set.
Fig. 11. GR Clade Interaction Map. Showing the interaction map for the GR clade genome sequence set.
difference between the results and methodology of this work and that
of [13] is in the consideration of inherited significance. It should be
noted that phylogenetic statistical analysis is a deep subject and there is
a great deal of subtlety regarding the applicability of simple approaches
like randomization [29]. [13] utilize phylogenetic randomization to
filter out insignificant inferences that arise only due to phylogenetic
relationships. We simply use data-driven clade stratification to remove
such effects. This stratification in turn yields novel sets of interactions
10
which are clade specific and therefore are unlikely to be influenced
by shared inheritance. In the absence of clade determinant positions
however, the use of phylogenetic randomization by [13] would be
necessary.

Future extensions of this analysis provide several avenues of inves-
tigations. First, as the database of SARS CoV-2 genomes grows, the
incidence and overall variability will increase, yielding further insights
into genome interactions. Additionally, the availability of data over
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Fig. 12. S Clade Interaction Map. Showing the interaction map for the S clade genome sequence set.
Fig. 13. V Clade Interaction Map. Showing the interaction map for the V clade genome sequence set.
longer time periods will allow for chronological compartmentalization
of genome data sets and interaction maps can be compared across
the temporal evolution of the virus. Second, this analysis can also
be applied to diseases for which there is more data available as the
importance of genome interactions is not SARS-CoV-2 specific.

4. Materials and methods

4.1. Ising model covariation analysis

We use the standard Ising model analogy first applied to protein
sequences by Lapedes et al. [8]. This basic method has been ap-
plied by many groups with small refinements on how the couplings
11
of the Ising model are actually computed. We formulated the Ising
model coupling calculation in terms of logistic regression with one-
hot encoding of the genome sequences. As there is no closed form
solution to logistic regression problems, essentially all methods for
finding coefficients are iterative. The particular algorithm we used
to find the logistic regression coefficients was Expectation Reflection
which has been demonstrated to perform well in the limit of for
small sample sizes [15], but the results do not differ appreciably from
logistic regression with regularization as implemented in the Scikit-
learn Python package, for example. Indeed, the Scikit-learn logistic
regression implementation turns out to be considerably faster than our
ER implementation. Here we outline the method and how it is applied
to infer connections between genome positions. We begin with a given



E. Cresswell-Clay and V. Periwal Mathematical Biosciences 341 (2021) 108678

O

𝜎

𝐻

f

a

i
1
p

4

c
W
o
t
M

4

f
a

D

c
i

genetic sequence,

𝜉 = (𝐴, 𝑇 , 𝑇 , 𝐴, 𝐴,𝐴,𝐺,… , 𝐴) (1)

In order to translate this into a binary variable sequence required
for the Ising model we can use a OneHot transformation [30]. This
transformation converts a nucleotide into a binary representation,

𝐴 ⟶ 1000
𝐺 ⟶ 0100
𝑇 ⟶ 0010
𝐶 ⟶ 0001

which allows us to convert the genome sequence set into a binary
sequence set. Therefore the previous sequence in Eq. (1) becomes 𝜎 =

neHot(𝜉),

= (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,… , 1, 0, 0, 0)

(2)

Now that we have established the conversion of a set of genetic
sequences into a set of binary variables we can continue to the compu-
tation of the interactions between these binary variables. Given a binary
variable 𝜎(𝑡) representing the 𝑡th sequence such that with 𝑡 ∈ [1, 𝑁 =
137686] sequences, or states, which the SARS-CoV-2 virus genome can
take. An individual sequence has the form 𝜎 = (𝜎1, 𝜎2,… , 𝜎𝑁𝑇 ) where
𝑁𝑇 is the number of binary variables representing the nucleotides such
that with the 29903 length genome 𝑁𝑇 = 29903×4. We can then assume
that given a current sequence 𝜎(𝑡), an individual position in a future
sequence changes stochastically according to the following conditional
probability,

𝑃
[

𝜎𝑖(𝑡 + 1)|𝜎(𝑡)
]

= 𝑒𝜎𝑖(𝑡)𝐻(𝑡)
∑

𝜎𝑖(𝑡) 𝑒
𝜎𝑖(𝑡)𝐻(𝑡)

(3)

where the local field, 𝐻𝑖(𝑡),

𝑖(𝑡) =
𝑁
∑

𝑗
𝑊𝑖𝑗𝜎𝑗 (𝑡) (4)

where 𝑊𝑖𝑗 represents the connection between positions 𝑖 and 𝑗. 𝐻𝑖 is a
unction of the current sequence state 𝜎(𝑡)𝑖 and expresses the influence

of a given sequence position 𝜎𝑗 on the future state of sequence position
𝜎𝑖. This conditional relationship allows us to iteratively search for the
ideal 𝑊 using all 𝑁 available sequences. The method, and resulting
lgorithm, is discussed in further detail in previous work [14,15].

The concept of how to go from the coefficient matrix to a measure of
nteraction strength between sequence position pairs we take from [11,
2,28,31]. They defined a Direct Information (DI) between all position
airs using the computed interaction matrix.

.2. Genome data: Acquisition and alignment

The data used for both the full genome-wide covariation and the
lade-specific genome-wide covariation was acquired from GISAID [7].
e downloaded all 137 636 available complete SARS-CoV-2 sequences

n October 19, 2020. The resulting sequences were then aligned on
he Biowulf Linux cluster at the National Institutes of Health, Bethesda,
D. MAFFT [32] was used to align the sequences.

.3. Code and data

The raw and processed data, along with the code and instructions
or both the processing and analysis of the data is available on github
t https://github.com/nihcompmed/SARS-CoV-2-genome.
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