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Abstract

Dengue is an emerging vector-borne viral disease across the world. The primary dengue

mosquito vectors breed in containers with sufficient water and nutrition. Outdoor containers

can be detected from geotagged images using state-of-the-art deep learning methods. In

this study, we utilize such container information from street view images in developing a risk

mapping model and determine the added value of including container information in predict-

ing dengue risk. We developed seasonal-spatial models in which the target variable dengue

incidence was explained using weather and container variable predictors. Linear mixed

models with fixed and random effects are employed in our models to account for different

characteristics of containers and weather variables. Using data from three provinces of

Thailand between 2015 and 2018, the models are developed at the sub-district level resolu-

tion to facilitate the development of effective targeted intervention strategies. The perfor-

mance of the models is evaluated with two baseline models: a classic linear model and a

linear mixed model without container information. The performance evaluated with the cor-

relation coefficients, R-squared, and AIC shows the proposed model with the container

information outperforms both baseline models in all three provinces. Through sensitivity

analysis, we investigate the containers that have a high impact on dengue risk. Our findings

indicate that outdoor containers identified from street view images can be a useful data

source in building effective dengue risk models and that the resulting models have potential

in helping to target container elimination interventions.

Author summary

The primary dengue mosquito vectors breed in containers with sufficient water and nutri-

tion. Outdoor containers can be detected from geotagged images using state-of-the-art

deep learning methods. Eight breeding site container types in Google street view images
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are detected using convolutional neural networks. We investigate the added value of

including container information from geotagged images in predicting dengue risk. To

explain the target variable dengue incidence, weather variables are added to complement

the container variable predictors. Linear mixed-effects models are built to account for the

effects of spatial and seasonal variation in weather and container variables on the dengue

incidence. Evaluation is carried out over three provinces in Thailand: Bangkok, Nakhon

Si Thammarat, and Krabi in comparison with classic linear models as well as the mixed

effect models without container information. The proposed model with the container

information outperforms both baseline models in all three provinces. We further perform

sensitivity analysis to investigate the sensitivity of dengue incidence to the changes in the

number of containers as well as the improvement in the model performance. This is the

first work on dengue risk prediction models using container density information from

geotagged images analysis.

Introduction

Dengue is a mosquito-borne viral infectious disease that has rapidly spread across the world

and places tropical countries under a huge socio-economic and disease burden. During the

past five decades, the incidence of dengue has increased 30-fold, with the current global inci-

dence estimated at 390 million cases per year [1]. Two species of Aedes mosquitoes, Aedes
aegypti and Aedes albopictus are the primary dengue vectors. Aedes aegypti has adapted to

human habitats and breeds primarily in artificial water containers such as jars, old tires, and

flower pots, whereas Aedes albopictus tended to breed in natural containers such as tree stumps

and coconut shells and to a lesser extent in artificial containers. As potential breeding sites,

containers in the environment are routinely surveyed and container elimination is one of the

most effective approaches to dengue control. While larval and container surveys can provide

crucial information on mosquito vector populations to help in risk prediction and in targeting

control efforts, the labor-intensive nature of the surveys limits their practical scope. As a result,

studies incorporating larval counts in risk prediction models have been limited in number [2]

and scope and indirect proxies such as socioeconomic status and proximity to vector larval

development sites are commonly used in risk prediction models [3].

Haddawy et al. [4] presented a novel approach to detect outdoor open containers that con-

stitute potential dengue vector breeding sites in geotagged images and demonstrated the

approach on Google street view (GSV) images. Eight of the most common containers are

detected in the images using a convolutional neural network. The object recognition algorithm

has an accuracy over a test set of images of 0.91 in terms of F-score. The container counts

obtained from the GSV images agree well with container counts from available manual sur-

veys. Results from multivariate linear regression relating densities of the eight container types

which are considered as the potential breeding sites for both Aedes aegypti and Ae. albopictus
to larval survey data show the good prediction of Breteau index values in the dengue season

with an R-squared of 0.674. The value of the produced container density information in risk

prediction remained an open question.

In this study, we aim to investigate whether container densities obtained from GSV images

can be used effectively for dengue risk mapping. Given that GSV images cover only areas

along roads and have more limited coverage in rural areas than urban areas, the answer is not

obvious. We, therefore, sought to investigate this empirically. Using the container density val-

ues from Haddawy et al. [4] and four years of dengue incidence data, we employ a risk
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prediction approach to determine the added value of container densities obtained from GSV

images in predictive models for three provinces in Thailand. We develop Linear Mixed Effects

Models (LMER) at the sub-district level, and along with the container density, population

data, and metrological covariates are included in the models. Extensive analyses are carried

out using incidence data for performance evaluation. The results show that the models with

the container variables can predict significantly more accurately than the baseline models.

This is the first work to explore the use of container density information obtained from the

geotagged images in dengue risk prediction.

Related work

Weather factors such as the amount of rainfall, humidity, and temperature [2,5–8] were

most often incorporated into the dengue risk models. Other than the weather variables,

Gross domestic product (GDP) per capita, house conditions [9], and distance to the water

source; climatic data such as temperature, rainfall, humidity; environmental data such as

vegetation, surface water, and land cover [2] were also commonly used in dengue risk map-

ping. Entomological indicators such as Breteau Index, House Index, ovitrap Index (at

Mexico only), have been considered as proxies for mosquito population in early warning

and response systems for dengue outbreak [2,10,11]. In Thailand, Thammapalo et al. [12]

reported that larval indices are predictive of the risk for dengue virus transmission. Hettiar-

achchige et al. [13] made use of surveillance data on Aedes aegypti larvae and weather data

to build a two-stage risk prediction system for assessing dengue transmission via Aedes
aegypti mosquitoes on the island of Taiwan. In another study [14], the authors monitored

and analyzed the adult female Ae. aegypti population using vector traps. They compared

generalized additive models (GAM) with climate variables including precipitation, temper-

ature, and humidity, and a GAM that additionally included mosquito abundance in the pre-

vious week obtained from sticky traps as an explanatory variable. Their results suggest that

the adult mosquito infestation index is a good predictor of dengue occurrence. Aryaprema

et al. [15] use the Breteau index in predicting dengue risk. They constructed ROC curves to

determine the performance of the Breteau indices as predictors of impending dengue out-

breaks and to establish a threshold value. In Thailand, seasonal and geographical variations

are known to have effects on the infestation of Aedes mosquito in the containers in human

inhibitions and surroundings [16].

Several existing studies on vector-borne disease risk prediction have used information from

GIS images and other remotely-sensed data to represent the type of land cover providing an

indirect assessment of appropriateness for vector breeding and survival [6,17–22]. Besides the

land cover type, the remotely sensed data have been used to detect the quality of neighbor-

hoods in predicting the dengue risk. Khormi & Kumar [23] used high-resolution GIS images

to determine factors such as the density of houses in each neighborhood in each district, the

width of streets, and roof area of houses to create a prediction model identifying levels of risk

of dengue and to describe the association between dengue cases and the related socio-eco-

nomic factors. Although remote sensing-based approaches are an efficient tool to collect data

on different predictors over large areas, Louis and colleagues [2] showed that reliable predic-

tors for dengue from remote sensing have not yet been established.

Existing risk maps have been developed at low spatial resolution and predicted dengue risk

on a country or state scale [2], while only two studies [20,24] were run at the municipality

level. The need for risk maps that can deliver information at a spatial precision that would be

sufficient to take actions on a finer scale is noted by Louis et al. [2].
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Methods

Study sites

The study area consists of three provinces in Thailand: Nakhon-Si-Thammarat, Krabi, and

Bangkok. Nakhon Si Thammarat is located in southern Thailand (8˚ 32’ 16.5" N Latitude and

99˚ 56’ 50.7" E Longitude). The terrain in Nakhon-Si-Thammarat consists of the eastern

coastal plain near the Gulf of Thailand, the mountainous area, and the western plain in

between two mountains. The overall population in Nakhon-Si-Thammarat is approximately

1.5 million people observed in December 2017 [25]. There are 23 districts and 165 sub-dis-

tricts. The seasons in Nakhon Si Thammarat are affected by the Gulf of Thailand. The average

temperature throughout the entire year is around 27˚C [26]. Krabi is located in southern Thai-

land (8˚ 5’ 10.68" N Latitude, 98˚ 54’ 22.62" E Longitude). The western and southern parts of

the Krabi border on the Andaman sea. It is primarily lowland, with small monadnocks distrib-

uted around the province and mountains from the north to the south. The population in Krabi

observed in December 2017 is around 0.47 million people [25]. It consists of 8 districts and 53

sub-districts. Due to the proximity with the sea, the rainfall is quite heavy, and the temperature

is steady, with an average of about 28˚C throughout the entire year [26]. Bangkok (13˚ 45’

22.79" N Latitude, 100˚ 30’ 6.35" E Longitude) is the capital of Thailand. It consists of lowlands,

with the Chao Phraya River flowing through it to the Gulf of Thailand. The population in

Bangkok is about 5.7 million people observed in December 2017 [25]. There are 50 districts

and 180 sub-districts in total. The average annual temperature in Bangkok is about 28˚C [26].

The three provinces in the study are shown in Fig 1.

Study data

Dengue incidence is the dependent variable in our models. The dengue incidence will be pre-

dicted using the information on population, container density from GSV images, and weather

variables.

Dengue incidence

The dengue incidences were obtained from the dengue surveillance reporting system in Thai-

land by the Bureau of Epidemiology (BoE), Ministry of Public Health (MoPH) [27]. The num-

ber of dengue cases was initially recorded at local hospitals with Form 506 and accumulated at

the Bureau of Epidemiology (BoE) for further collation and analysis [27]. A dengue case is

defined according to the definitions established by the BoE [27]. For the analysis, we used the

dengue incidence per population in each sub-district of Bangkok, Nakhon Si Thammarat, and

Krabi provinces from 2015 to 2018. In Fig 2, the monthly dengue incidence, average monthly

rainfall, average monthly temperature between 2015 and 2018 are presented for each province.

Population and weather data

Mosquitoes feed on humans and their breeding sites are directly associated with the popula-

tion. Population data were obtained from the Thailand National Statistics Office and includes

the total population in each subdistrict, as well as the breakdown by age and gender. Climate

directly influences mosquito abundance and distribution. Significant correlations have been

reported between annual dengue incidence and estimates of Aedes aegypti populations at a

national scale, using climate-based models [28]. In Thailand, Nakhapakorn and Tripathi [29]

reported that the dengue occurrences in Thailand were positively associated with rainfall and

negatively associated with temperature and humidity. We obtained rainfall and LST data for

the study period from satellite images from the Global Rainfall Map (GSMaP), JAXA global
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rainfall watch system [30], and MOD11C2 V006 [31]. Monsoon weather patterns predominate

in Thailand. The dengue season corresponds to the rainy season, which in Bangkok is from

May to October, and in Nakhon Si Thammarat and Krab is from June to November [32].

Container density

Dengue vector breeding sites consist of open containers of varying sizes that can contain

water. The frequency of occurrence and the suitability of containers as breeding sites vary,

with ceramic containers generally more suitable than plastic containers. Haddawy et al. [4]

detected outdoor open containers which constitute potential dengue vector breeding sites

from geotagged Google street view (GSV) images using convolutional neural networks. In this

study, we make use of their dataset and provide here a brief description of their approach and

their data. Their pipeline to detect and map containers involves image retrieval and object

detection. Image retrieval is done by plotting points along each road at 50-meter increments.

A distance of 50 meters gives complete image coverage without overlap. At each point, a pan-

oramic view is achieved by retrieving five images 72 degrees apart at a field of view of 75 and a

Fig 1. Three provinces highlighted in the Thailand map indicate the locations of Nakhon Si Thammarat (Pink),

Krabi (Yellow), and Bangkok (Red). The map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands,

CA, USA). Source of shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

https://doi.org/10.1371/journal.pntd.0009122.g001
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pitch of -15 degrees. Also, the metadata consisting of geo-coordinate and the month and year

the image was taken is retrieved. A total of 790,450 GSV images were retrieved from Bangkok,

958,027 from Nakhon Si Thammarat, and 386,819 from Krabi. While there was some variation

in the dates of the images, the vast majority were from 2016. It is reasonable to assume that

while the location or presence of individual containers may change over time, the total number

in an area (absent major intervention efforts) is quite stable, as indicated by a study in Thailand

Fig 2. Monthly dengue cases (bar), rainfall (blue dotted line), and temperature (orange line) between 2014 and 2018 in the study areas. The left y-axis

represents the number of dengue cases, the right y-axis represents the temperature (LST) and the amount of rainfall (RF).

https://doi.org/10.1371/journal.pntd.0009122.g002
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[33]. The percentage image coverage of the three provinces varied considerably. Bangkok had

the best image coverage at a mean of 77.06% of total area over all districts, followed by Nakhon

Si Thammarat at 8.40%, and Krabi at 7.31%. Coverage tends to be highest in the main popula-

tion centers and lower in more rural areas.

The object detection component of the pipeline detects eight types of containers comprising

the most common breeding sites in Thailand: bin, bowl, bucket, jar, potted plant, discarded

tire, miscellaneous short open (Misc_Short), and miscellaneous tall open (Misc_Tall) (Fig 3).

Their object recognition algorithm has a precision of 0.90, recall of 0.92, and an F-score of

0.91 over a test set of images. A total of 298,391 containers were detected in Bangkok, 84,609

in Nakhon Si Thammarat, and 30,025 in Krabi province. Container density per population

(the number of containers/population) was markedly more uniform across the three provinces

but showed considerable variation among districts within the provinces (Fig 4). We provide

the histograms showing the distribution containers (S1–S3 Figs), the maps showing the distri-

bution of the population (S4–S6 Figs), and the distribution of individual container type density

by population in each province in S7–S30 Figs.

Correlations among predictor variables can affect predictive models. Since containers are

generated from human activity, some container types tend to occur together and the number

of containers in an area is related to the population there. So we examine the correlation

between the eight detected containers and the size of the population in sub-districts to deter-

mine the relationship between different containers as well as with the population. The correla-

tion between container types and population in the study provinces. In Bangkok, Misc_Short,
PottedPlant, and tire container types are strongly correlated (Pearson correlation > 0.9) with

Bin, Bowl, and Bucket containers. In Nakhon Si Thammarat, Bowl, Bucket, Misc_Short, Potted-
plant, and tire are strongly correlated with Pearson correlation > 0.9. Similarly in Krabi, bowl,
bucket, Misc_Short, Pottedplant, and Tire are strongly correlated with Pearson

correlation > 0.9. We have provided a correlation among containers and the population for all

three provinces in S31–S33 Figs.

Data preparation

Relatively coarse spatial resolutions were considered in previous spatial risk mapping studies,

for example at the state level in Singapore [34], at the district level in Brazil [35], and the dis-

trict level in Thailand [36]. To effectively target dengue in Thailand, the Ministry of Public

Health considers a finer resolution at the sub-district level to be appropriate for prediction.

But at such a high resolution, there is a significant amount of noise in the number of dengue

cases throughout the year. Aggregating them at a large temporal scale can help in mitigating

the noise. As noted by Campbell et al. [37], seasonal cycles of dengue disease are observed in

Fig 3. Eight outdoor container types detected from street view images [4], from left to right: Jar, bucket, discarded tire, potted plant, bin,

bowl, miscellaneous short open, miscellaneous tall open.

https://doi.org/10.1371/journal.pntd.0009122.g003
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every province in Thailand and the public health officials are familiar with the seasonal projec-

tions of disease. Besides, we wish to relate the analyses in this study to the results from the pre-

vious work [4] which examined the seasonal correlation between container densities and the

Breteau index and found a strong correlation during the dengue season. The distribution of

Aedes vectors was found to be influenced seasonally by breeding outdoors rather than indoors

in a study in Thailand [16]. Predictive models at weekly or monthly temporal resolution nor-

mally account for lagged effects of weather variables. But with the choice of seasonal resolu-

tion, including lag effects is not necessary. Our dataset contains fifteen candidate predictor

variables including eight container variables, six weather variables, and a population variable,

as shown in Table 1.

Since the container types were shown to have a high correlation with one another, we

assessed the collinearity between container variables. For the target variable (Dengue

Fig 4. Container density by population (A) Bangkok (B) Nakhon Si Thammarat (C) Krabi province. White color represents sub-districts with no data. The

choropleth map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the

Coordination of Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundaries.

https://doi.org/10.1371/journal.pntd.0009122.g004
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incidence), we computed the variance inflation factor (VIF) to measure how much the vari-

ance of a regression coefficient is inflated due to multicollinearity between variables. Through

experiments, we set the threshold value at two and removed the concerned variables to address

the presence of multicollinearity among variables. We used an R function vif() from the car
package to detect multicollinearity in a regression model for dengue incidence. To find the

covariates between different categories of variables, two VIF functions were used separately,

one for a GLM model including container variables and a separate GLM model with only the

weather variables. The list of container variables and the weather variables in each province

after applying the VIF functions are presented in Table 2. From the VIF results, the two con-

tainer types (Jar and Misc_Tall), and Average rainfall (AVG_RF) were selected for every prov-

ince, meaning that these variables play a significant role in dengue incidence. All variables in

the models, including the target dengue incidence, are standardized by dividing by the stan-

dard deviation and log-transformed before building the models. In addition, the container

count and dengue incidence variables are first divided by population. The sub-districts with

missing weather and dengue incidence values were removed, and 159, 167, and 45 sub-districts

are available for Bangkok, Nakhon Si Thammarat, and Krabi province, respectively.

Models

To determine the added-value of the containers in the models, we took a step-by-step

approach. We started by building a simple generalized linear model (GLM) model to predict

dengue incidence using the population and weather data only. The GLM model for each prov-

ince was fitted using the R’s glm() function. This reference GLM model is referred to as Base-

line1 (GLM).

Table 1. List of candidate variables in the dataset.

Type Variables Description

Dengue Cumulative incidence Seasonal

Containers • Bin, Bowl, Bucket, Miscellaneous short open containers (Misc_Short), Jar,

Potted plant, Discarded tire (tire), Miscellaneous tall open containers

(Misc_Tall)

Kept constant for all

seasons

Temperature • Minimum, maximum, and average daily temperature for dengue season

• Minimum, maximum, and average daily temperature for the non-dengue

season

Seasonal

Rainfall • Minimum, maximum, average, total daily rainfall for the dengue season

• Minimum, maximum, average, total daily rainfall for the non-dengue

season

Seasonal

Population Kept constant for all

seasons.

https://doi.org/10.1371/journal.pntd.0009122.t001

Table 2. List of variables for each province.

Container Weather

Bangkok • Jar, Misc_Tall • Maximum temperature (MAX_LST)

• Average rainfall (AVG_RF)

Nakhon Si Thammarat • Bin, bowl, bucket, jar, Misc_Tall • Maximum temperature (MAX_LST)

• Average rainfall (AVG_RF)

• Total rainfall (SUM_RF)

Krabi • Bowl, bucket, jar, Misc_Tall • Minimum temperature (MIN_LST)

• Average rainfall (AVG_RF)

https://doi.org/10.1371/journal.pntd.0009122.t002
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Some sub-districts may have a great probability of disease occurring due to weather, and

others may have a lower probability, even after we have accounted for the differences in

weather and population traits. These differences are accounted for by incorporating random

effects in our second reference model. To capture the mixed effects of the weather, we built the

generalized linear mixed models using the lmer() function from the lme4 package in R with the

random effect term (1|Year_season). The Year_Season variable represents either the dengue or

non-dengue season of each study year and (1|Year_season) is a random intercept which can be

different for each season of the study year in the training data. We refer to this reference

LMER model as Baseline 2 (LMER).

Next, we built our proposed models by introducing the container variables into Baseline 2

(LMER) models. The container types we considered in this study are man-made and thus

likely to be linked to population. Indeed, the analysis of correlation shows the abundance of

some container types to be highly correlated to the population (S31–S33 Figs). For each con-

tainer type identified by the VIF function in the data preparation stage, we added the interac-

tion terms between the container density with the population to the model. With a similar take

on seasonal random effects, we incorporated the random effects from among sub-districts

with the random effects term with (1| sub-district). With the (1|sub-district) intercept, the

model will consider an intercept that is different for each sub-district of the study year in the

training data. These LMER models with container information are referred to as (LMER+C)

models. Table 3 summarizes the models and the model equations in our study.

Results

Initially, three years of data from 2015 to 2017 were used in both building the model and evalu-

ating the model fitness. We measured the correlation between actual and predicted dengue

incidence, R-squared, which represents the proportion of the variance for a target-dependent

variable that is explained by the independent variables in a model, and Adjusted Akaike Infor-

mation Criteria (AICc), which indicates the goodness-of-fit measures for each model. The

Table 3. Models and model equations in standard mathematical equations.

Model Model equation

General
log yið Þ ¼ b0 þ

P3

j¼1

bjxi;j þ
P8

k¼1

bkþ3ci;k� 1þ gkxi;1

� �
þ
P2

j¼1

b0i;j þ εi

i = 1,2, � � �, Number of sub − districts
yi: dengue incidence of sub-district i
εi: random error (mean zero) of sub-district i
βj, γk and bj: regression coefficients

• Explanatory variables: fixed effect

xi,1: population of sub-district i
xi,2: rainfall of sub-district i
xi,3: temperature of sub-district i
ci,k: container count of kind k (k = 1, 2, � � � for Jar, Bin, . . .) of sub-district i

• Random intercepts

b0i,1: year-season (dengue and non-dengue season) of sub-district i
b0i,2: sub-district i
yi, xi,j and ci,k are all standardized by the standard deviations over all sub-districts.

Baseline1

(GLM)

General model with βj>3 = 0, γk = 0 and b0i,j = 0.

R code: glm(DengueIncidence ~ Population + Weather variables)
Baseline2

(LMER)

General model with βj>3 = 0, γk = 0 and b0i,2 = 0.

R code: lmer(DengueIncidence~ Population + Weather variables + (1|Year_Season))
LMER+C General model

R code: lmer(DengueIncidence ~ Population + Weather variables + (1|Year_Season) + Container
variables � Population + (1|Sub-district))

https://doi.org/10.1371/journal.pntd.0009122.t003

PLOS NEGLECTED TROPICAL DISEASES Mosquito vector breeding sites from street view images in risk mapping of dengue

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009122 March 8, 2021 10 / 26

https://doi.org/10.1371/journal.pntd.0009122.t003
https://doi.org/10.1371/journal.pntd.0009122


results are summarized in Table 4. Correlation values range from +1 to -1 and R-squared val-

ues range from 0% to 100%, with a value of 100% indicating that all variation in dengue inci-

dence is explained by variation in the independent variables in the model. A low AIC score of

a model indicates a simple model with great explanatory predictive power AIC [38].

The simple Baseline 1 (GLM) models using only Population and Weather variables

achieved moderate performance in Bangkok and Nakhon Si Thammarat over the training data

(2015–2017). Performance in Bangkok is characterized by Pearson correlation 0.85, Spearman

correlation 0.85, and R-Squared 0.72, while performance in Nakhon Si Thammarat is charac-

terized by Pearson correlation 0.76, Spearman correlation 0.76, and R-Squared 0.58. On the

other hand, the Baseline 1 (GLM) model performance is considerably lower in Krabi relative

to the other two provinces, with Pearson correlation 0.53, Spearman correlation 0.53, and

R-Squared 0.28.

Improvements in performances are observed in Baseline 2 (LMER) models in all three

provinces over the training data. We compared the performance between the two baseline

models by computing the percentage increase in Spearman rank correlation coefficients. Com-

pared to the Baseline 1 (GLM) models, Baseline 2 (LMER) models have a 2.47% higher correla-

tion in Bangkok and 13.13% in Nakhon Si Thammarat, but 4.21% lower correlation in Krabi.

The Baseline 2 (LMER) models have higher R-squared values over the training data in all three

provinces, but lower AIC for only Bangkok and Krabi.

Next, we evaluate the LMER+C models. In Bangkok, LMER+C has a 15.45% and 12.66%

higher correlation than the Baseline 1 (GLM) model and Baseline 2 (LMER) model, respectively.

The LMER+C model correlation increased in Nakhon Si Thammarat (Baseline 1 (GLM): 28.58%,

Baseline 2 (LMER): 13.66%), and in Krabi (Baseline 1 (GLM): 84.31%, Baseline 2 (LMER):

92.41%). Also, we can observe that the LMER+C models have the lowest AIC and the highest R-

squared compared to the Baseline 1 (GLM) and Baseline 2 (LMER) models in all provinces.

Next, we use the models fitted earlier with three years of training data (2015–2017) and per-

form prediction on one year of test data (2018). The results are shown in the right half of

Table 4. In Bangkok, the Pearson correlation of the LMER+C model is 12% higher than that of

Table 4. Performance of the models on training data (2015–2017) and test data (2018).

Training data (2015–2017) Test data (2018)

Pearson Spearman R-squared AIC %increased (Pearson) Pearson Spearman R-squared %increased (Pearson)

Over Baseline1 Over Baseline 2 Over Baseline1 Over Baseline 2

Bangkok

Baseline (GLM) 0.85 0.85 0.72 2377.43 0.83 0.83 0.68

Baseline

(LMER)

0.87 0.92 0.76 1798.70 2.47% 0.87 0.90 0.76 6%

LMER+C 0.98 0.99 0.96 1563.84 15.45% 12.66% 0.92 0.92 0.85 12% 6%

Nakhon Si Thammarat

Baseline (GLM) 0.76 0.76 0.58 2087.09 0.66 0.66 0.43

Baseline

(LMER)

0.86 0.78 0.75 2109.90 13.13% 0.78 0.64 0.62 18.98%

LMER+C 0.98 0.97 0.96 2049.32 28.58% 13.66% 0.87 0.70 0.75 32% 11%

Krabi

Baseline (GLM) 0.53 0.53 0.28 765.07 0.55 0.55 0.30

Baseline

(LMER)

0.51 0.62 0.26 717.82 -4.21% 0.70 0.65 0.49 27%

LMER+C 0.98 0.95 0.96 601.95 84.31% 92.41% 0.78 0.76 0.61 42% 12%

https://doi.org/10.1371/journal.pntd.0009122.t004
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the Baseline 1 (GLM) model and 6% higher than the Baseline 2 (LMER) model. In Nakhon Si

Thammarat, the Pearson correlation of the LMER+C model is 32% higher than that of the

Baseline 1 (GLM) model and 11% higher than the Baseline 2 (LMER) model. In Krabi, the

Pearson correlation of the LMER+C model is 42% higher than that of the Baseline 1 (GLM)

model and 12% higher than the Baseline 2 (LMER) model.

The scatter plots in Fig 5 show the relationship between observed and predicted dengue

using the LMER+C model for the three provinces for the training and testing data. There is an

overall positive association between observed and predicted counts in all three provinces.

With the fitted data, the models are highly predictive for Bangkok (Pearson = 0.98, Spear-

man = 0.97, p-value< 0.001), for Nakhon Si Thammarat (Pearson = 0.98, Spearman = 0.97, p-

value < 0.001) and for Krabi (Pearson = 0.98, Spearman = 0.95, p-value < 0.001). Using the

test data, the models are highly predictive for Bangkok (Pearson = 0.91, Spearman = 0.91, p-

value < 0.001), and moderately predictive for Nakhon Si Thammarat (Pearson = 0.87, Spear-

man = 0.70, p-value< 0.001) and for Krabi (Pearson = 0.78, Spearman = 0.76, p-

value < 0.001). The distribution of residuals of the developed models was also analyzed. The

normal Q-Q plot and residual sequence plots of the study provinces are provided in (S34–S39

Figs). A straight line can be observed in the residual normal probability plot in all three prov-

inces, and the residual sequence plots illustrate the consistent distribution of errors around

zero within ± 1.96. These observations indicate a normal distribution of residuals.

Next, we visualize the accuracy of the risk maps over the sub-districts using maps of each

province for the training and test data (Fig 6). For each province, the sub-districts are grouped

into three categories: Acceptable, if the actual value falls within three standard deviations;

Under, if it is more than and Over if it is below three standard deviations of the predicted value.

In Bangkok, the predicted dengue level corresponds well to the observed level in both train-

ing and testing data. The same is true of Krabi except for four sub-districts in the testing data.

Predictions for the testing data in Nakhon Si Thammarat have the largest number of sub-dis-

tricts in which dengue incidence is under (69) or over (10) estimated. A plausible explanation

is that for the year 2018 the dengue incidence was considerably higher than in any of the three

years in the training data, as shown in Fig 2B.

The coefficients of the predictors in the LMER+C models for test data from 2018 are shown in

Tables 5–7. We provide the intercepts of the individual sub-districts and season from random

effects in Supplements (S1–S3 Tables). The population variable is found to be significant in all

provinces. The container-related variables in the models are not always significant. For example,

in Nakhon Si Thammarat only the Jar container type is found to be significant, however, Jar con-

tainer interaction with the population is not significant.

The Population variable is significant in the LMER+C models of all three provinces. Signifi-

cant weather variables are the Average rainfall (AVG_RF) in Bangkok and the Maximum tem-
perature (MAX_LST) in Nakhon Si Thammarat. Surprisingly, only a few container-related

variables are significant across the three provinces. All container-related variables are signifi-

cant in Bangkok, whereas only the Jar variable is significant in Nakhon Si Thammarat. In

Krabi, only Bowl container type interaction with the Population is significant. Based on the sig-

nificant variables in the model, we can know the relative importance of identified outdoor con-

tainers responsible for the dengue incidences. With the significant variables identified, the

next step is to quantify the importance of each.

Sensitivity analysis

Sensitivity analysis is commonly employed to quantify the importance of each of a model’s

parameters on its behavior and to determine the robustness of model predictions to variations
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Fig 5. Scatter plots of predicted vs actual values of dengue incidence for LMER+C models for Bangkok, Nakhon Si

Thammarat, and Krabi province for the training (2015–2017) and testing (2018) data. The maximum p-value of all

panels is less than 2.384x10-10. The solid line is a linear trend line which is an indication of the linear (Pearson)

correlation between the two variables. (Note: shading shows the 99% confidence interval).

https://doi.org/10.1371/journal.pntd.0009122.g005
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in parameter values. In epidemiology, it is often used to discover parameters that have a high

impact on disease incidence and should be targeted by intervention strategies [39]. Since we

are interested in determining the impact of the different types of containers, we measure the

relative change in a dengue incidence as container parameters change.

Fig 6. The risk maps of Bangkok, Nakhon Si Thammarat, Krabi for the training (2015–2017), and test (2018) data. White color represents sub-districts with

no data. The choropleth map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the

Coordination of Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundaries.

https://doi.org/10.1371/journal.pntd.0009122.g006

Table 5. The coefficients of the LMER+C model using training data (2015–2017) for Bangkok province. Significant variables with a p-value<0.05 are indicated with

boldface.

Predictor βj βj � γk SE 95% CI p-value

Fixed effects

(Intercept) 1.08 1.01 (-0.91, 3.06) 0.297

Population 2.2 0.2 (1.81, 2.59) < 0.001

MAX_LST -0.1 0.06 (-0.22, 0.03) 0.126

AVG_RF 0.97 0.23 (0.52, 1.41) < 0.001

Jar 0.73 0.27 (0.20, 1.26) 0.008

Misc_Tall -0.21 0.1 (-0.40, -0.01) 0.04

Jar � Population -1.28 1.01 (-1.93, -0.63) < 0.001

Population � Misc_Tall 0.79 0.27 (0.32, 1.26) 0.001

Random effects Std of b0,j

Subdistrict (intercept) 0.36

Year_Season (intercept) 1.45

Note: Std stands for standard deviation.

https://doi.org/10.1371/journal.pntd.0009122.t005
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Similar to the normalized sensitivity index presented by Rodrigues et al. [39], the sensitivity

index (S) is the proportion of decrease in the dengue incidence after decreasing the number of

Table 6. The coefficients of the LMER+C model using training data (2015–2017) for Nakhon Si Thammarat province. Significant variables with a p-value<0.05 are

indicated with boldface.

Predictor βj βj � γk SE 95% CI p-value

Fixed effects

(Intercept) 2.16 0.59 (1.00, 3.32) <0.001

Population 1.29 0.2 (0.89, 1.68) <0.001

MAX_LST -0.17 0.05 (-0.27, -0.07) <0.001

AVG_RF 0.05 0.07 (-0.08, 0.18) 0.494

SUM_RF 0.14 0.08 (-0.01,0.29) 0.196

Bin -0.09 0.34 (-0.76, 0.58) 0.792

Bowl 0.05 0.29 (-0.53, 0.63) 0.864

Bucket 0.19 0.44 (-0.66, 1.05) 0.66

Jar -0.34 0.17 (-0.68, 0.00) 0.049

Misc_Tall -0.27 0.23 (-0.72, 0.18) 0.249

Bin � Population 0.36 0.39 (-0.41, 1.14) 0.359

Population � Bowl -0.29 0.37 (-1.02, 0.44) 0.435

Population � Bucket 0.04 0.48 (-0.91, 0.99) 0.927

Population � Jar 0.16 0.24 (-0.30, 0.63) 0.487

Population � Misc_Tall 0.51 0.3 (-0.07, 1.10) 0.089

Random effects Std of b0,j

Subdistrict (intercept) 0.29

Year_Season (intercept) 0.13

Note: Std stands for standard deviation.

https://doi.org/10.1371/journal.pntd.0009122.t006

Table 7. The coefficients of the LMER+C models using training data (2015–2017) for Krabi province. Significant variables with a p-value<0.05 are indicated with

boldface.

Predictor βj βj � γk SE 95% CI p-value

Fixed effects

(Intercept) -0.12 1.62 (-3.28, 3.05) 0.943

Population 2.68 0.71 (1.29, 4.07) <0.001

MIN_LST -0.09 0.11 (-0.29, 0.12) 0.419

AVG_RF 0.17 0.15 (-0.13, 0.47) 0.274

Bowl -3.01 1.71 (-6.37, 0.35) 0.087

Bucket 1.33 2.17 (-2.93, 5.58) 0.545

Jar 2.45 1.83 (-1.14, 6.05) 0.19

Misc_Tall 1.37 1.24 (-1.06, 3.80) 0.277

Bowl � Population 3.31 1.6 (0.18, 6.43) 0.046

Population � Bucket -2.26 1.95 (-6.08, 1.55) 0.253

Population � Jar -3.15 1.67 (-6.43, 0.12) 0.067

Population � Misc_Tall -0.91 1.12 (-3.10, 1.28) 0.421

Random effect Std of b0,j

Subdistrict (intercept) 0.44

Year_Season (intercept) 0.55

Note: Std stands for standard deviation.

https://doi.org/10.1371/journal.pntd.0009122.t007
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containers in each sub-district and is calculated as

Sz ¼ 100 � ½KðcÞ � KðzÞ�=KðcÞ

where

• K(c) is the dengue incidence predicted with the significant container variables from the

LMER+C model using the actual container counts, and

• K(z) is the dengue incidence predicted with the significant container variables from the

LMER+C model after removing z-percent uniformly from those container types.

In computing S, we use only the variables with significant coefficients from the LMER+C

models. We compute S twice, with z = 50 to simulate the 50% removal of identified containers

and with z = 100 to simulate the complete removal of identified containers for each sub-dis-

trict. Since setting z = 100 corresponds to predicting risk without container information, the

S100 indices provide a way to quantify the added value of the container information in the

LMER+C model.

The range of percentage reduction in dengue incidence concerning the container variables

(S100) in the LMER+C models is shown in Fig 7. In Bangkok, 140 sub-districts are identified

with dengue cases contributed from identified outdoor containers; among them, 63 sub-dis-

tricts have less than average percentage of cases (82.76%) contributed from the containers.

Similarly, in Nakhon Si Thammarat 141 sub-districts have dengue incidence contributed from

containers; among them, 97 sub-districts have less than the average percentage of cases

(31.48%) contributed from the containers. The proportions of decrease in dengue cases more

than 100% for Nakhon Si Thammarat are due to negative predictions for two sub-districts

when using the LMER+C model with only significant container variables. Similarly, in Krabi

41 sub-districts have dengue incidence contributed from containers, among them, 23 sub-dis-

tricts have less than an average percentage of cases (33.56%) contributed from the containers.

The remaining cases may be contributed from the other predictors such as temperature and

rainfall, and other factors such as indoor containers which are not considered in our models.

Fig 8 shows the sensitivity index for the sub-districts after eliminating the number of con-

tainers by 50% (blue color) and 100% (orange color) in Bangkok, Nakhon Si Thammarat, and

Fig 7. The ranges of sensitivity index (S100) for each province.

https://doi.org/10.1371/journal.pntd.0009122.g007
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Fig 8. The proportion of decrease in dengue cases in (A) Bangkok, (B) Nakhon Si Thammarat, (C) Krabi province.

https://doi.org/10.1371/journal.pntd.0009122.g008
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Krabi province. As expected, the sub-districts with the high container densities are more sensi-

tive to the reduction in containers. In Bangkok and Krabi, the sensitivity index is much higher

for S100 (complete removal of outdoor containers) than for S50 (50% removal of identified out-

door containers). A plausible explanation is that when 50% of the containers are removed, that

may still leave a good number of sites where the vectors can breed, whereas when all detected

outdoor containers are removed, that leaves only indoor containers and undetected outdoor

containers. Meanwhile, the change in sensitivity index in Nakhon Si Thammarat is roughly

linear, going from S50 to S100. This is likely due to the insignificance of interaction between

population and container terms in the model for that province.

Discussion

Vector abundance is an important factor in determining dengue risk, particularly for Aedes
mosquitoes which are more adapting to the urban environment and are more widely dispersed

now than at any time in the past [40]. Traditional vector control approaches using larval and

container surveys provide an estimate of the number of vectors but they are costly, labor-

intensive, and are not feasible to implement for the large area, and are not sustainable in long

term [2,41,42]. Studies related to vector-borne disease modeling often include the proxies of

mosquito breeding or resting sites based on the vector-knowledge reviewed in the literature

[43,44], survey data [13], and Breteau Index [15]. In this paper, we conducted a proof-of-con-

cept study to determine the effects of outdoor container information detected from geotagged

images in risk models.

Aedes mosquitoes breed in containers and are closely associated with humans. They are

highly anthropophilic, and predominantly found in densely populated urban areas. Being a

necessary driver for dengue transmission, population dynamics are often considered in disease

transmission [45]. Besides population, strong associations with dengue incidences and weather

variables have been shown in studies. Weather predictors predominantly used in the existing

studies related to dengue are rainfall and temperature [5–8]. Similar to existing studies’ find-

ings, the results from our baseline models confirm that dengue risk can be predicted reason-

ably well using a simple GLM model with only population, weather variables consisting of

temperature, and rainfall variables. Weather variables have non-linear relationships with the

dengue cases [46–48] and have delayed effects on the number of dengue cases [49,50]. To

determine the effects of container information in the models, our models were built at the

level of dengue and non-dengue seasons (two points per year) and we used a simple linear

model for temperature and rainfall. We consider the effect of the changes in weather and their

impact on dengue cases as background information. LMERC+C model results indicated that

the inclusion of container information from street-view images in the model with weather var-

iables could help in predicting the risk of dengue. The current models could be improved with

the inclusion of non-linear relationships between weather and dengue cases.

To our best knowledge, this is the first study that uses the container counts from street-view

images in dengue risk mapping. Containers are the major breeding sites of the dengue vector

and the Aedes mosquitoes tend to remain close to their breeding sites, container counts can be

highly indicative of local vector populations. We built the LMER+C models by including the

container density variables, their interactions with the population to the models as well as

intercepts for each sub-district by defining the sub-district codes as random effects variables.

The results indicate that weather variables alone may be one of several necessary to determine

risk but insufficient factors, confirming that the prediction of future dengue risk should not

rely exclusively on climatic factors [51]. The container-population interaction variables are

found to be significant in the Bangkok and Krabi models, meaning that two sub-districts with
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the same container / population ratio but with different populations and number of containers

would not result in the same impact. Fig 8, also confirms that the effect of containers varies

from one sub-district to another.

Both natural and artificial containers of all sorts near human habitats have the potential to

become mosquito breeding sites. The outdoor container information from street-view images

in the LMER+C model acts as the proxy representing the vector abundance that other models

currently obtained from manual survey data. The findings in the present study have shown the

significant contribution of container information in the dengue transmission and distribution

pattern. Vector-control strategies usually focus on reducing sources of Aedes larva and pupa

habitats [52]. One of the World Health Organization strategies to control Ae. aegypti is by

eliminating sources of Aedes such as container habitats that could become the breeding sites

[52,53]. In practice, the effectiveness of the vector-control strategies can neither be predicted

nor measured until the number of dengue cases is collected and reported at the end of the

study season. Through sensitivity analysis, we characterize the response of model outputs to

container parameter variation in the LMER+C models. Sensitivity indices of the sub-districts

were computed by varying the number of identified outdoor containers to simulate the effect

of reduction in breeding sites on dengue cases. One important aspect of such a model to a pub-

lic health decision maker is its ability to predict dengue so that areas with a high risk of dengue

can be prioritized for intervention, thereby reducing the incidence and possible epidemic. The

mapping of such areas can be done using the container detection pipeline [4] with the risk

mapping models shown in this study. Our models can also be used for the Early Warning

Alert and Response System (EWARS) [54] and other surveillance actions periodically. Areas

with high container density which are possibly associated with large vector mosquito popula-

tions can be identified, so that preventive actions, such as insecticide fogging, application of

larvicides, and elimination of the breeding sites can be conducted to prevent the incidence of

dengue fever.

It is important to note that the percentage increase in Pearson correlations is reduced in the

prediction of dengue incidence with the test data. One possible reason for the lower perfor-

mance with test data compared to the training data is contributed from the Year_season ran-

dom effect variables. While the global random effect from the Year_Season variable well

explained the dengue incidence occurrence, the individual intercepts obtained from each

study year in the training data do not apply to the new (unseen) year grouping variable in the

test data. Consequently, the yearly intercepts are not made use of in predicting the unseen test

year.

Our approach to using GSV images to obtain container counts has limitations in terms of

temporal and spatial coverage. GSV images are often two to three years old. In our study, this

was not an issue since we were also making use of historical dengue incidence data. For use of

our approach in practice, we assume that while individual containers may move or be

destroyed over time, the total count in a district or sub-district is relatively stable over time.

Phuanukoonnon et al. [32] studied the mean numbers of containers in rural and urban areas

and found that for over 10 years (between 1992–2005), the number of water storage containers

in Thailand has not changed. Alternatively, fresher images could be obtained through some of

the crowdsourcing tools such as Mapillary (www.mapillary.com) and OpenStreetCam (open-

streetcam.org) or the targeted use of drones [55]. Drones could be a particularly useful

approach for collecting data after interventions to eliminate containers.

Furthermore, GSV images do not cover every area on the map since the images are usually

captured by cars driving through the streets and thus the containers in isolated and inaccessi-

ble areas from the roads, as well as indoor containers are not considered in our study. In future

work, we will seek to incorporate such container counts by estimating them through the
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classification of housing types and socioeconomic status of neighborhoods from the street

view images [56]. Drones can also play a role here by enabling the collection of images from

outdoor areas that do not lie along roads.

Distribution pattern of dengue cases and its interaction with weather, containers, and spatial

factors can be used for modeling of interactive dengue surveillance and effective management

system not merely in study areas but also in the other highly reported dengue cases areas in

Thailand or elsewhere. The present study will stimulate further discussion on how to strengthen

current existing dengue prevention and control actions with vector-abundance indicators

which were previously not available without expensive monitoring and field evaluation.

Supporting information

S1 Fig. Bangkok–Distribution of container.

(TIF)

S2 Fig. Nakhon Si Thammarat—Distribution of containers.

(TIF)

S3 Fig. Krabi—Distribution of containers.

(TIF)

S4 Fig. Bangkok–Population. The map in this figure was produced using ArcGIS version 10.4

(Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the Coordination of

Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S5 Fig. Nakhon Si Thammarat Population. The map in this figure was produced using Arc-

GIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the

Coordination of Humanitarian Affairs https://data.humdata.org/dataset/thailand-

administrative-boundaries.

(TIF)

S6 Fig. Krabi Population. The map in this figure was produced using ArcGIS version 10.4

(Esri, Redlands, CA, USA). Source of shapefile: United Nations Office for the Coordination of

Humanitarian Affairs https://data.humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S7 Fig. Bangkok—Container density by the population (Bowl). The map in this figure was

produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S8 Fig. Nakhon Si Thammarat—Container density by the population (Bowl). The map in

this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of sha-

pefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S9 Fig. Krabi—Container density by the population (Bowl). The map in this figure was pro-

duced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)
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S10 Fig. Bangkok—Container density by the population (Bin). The map in this figure was

produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S11 Fig. Nakhon Si Thammarat—Container density by the population (Bin). The map in

this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of sha-

pefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S12 Fig. Krabi—Container density by the population (Bin). The map in this figure was pro-

duced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S13 Fig. Bangkok—Container density by the population (Bucket). The map in this figure

was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S14 Fig. Nakhon Si Thammarat—Container density by the population (Bucket). The map

in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of

shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S15 Fig. Krabi—Container density by the population (Bucket). The map in this figure was

produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S16 Fig. Bangkok—Container density by the population (Jar). The map in this figure was

produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S17 Fig. Nakhon Si Thammarat—Container density by the population (Jar). The map in

this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of sha-

pefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S18 Fig. Krabi—Container density by the population (Jar). The map in this figure was pro-

duced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/
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dataset/thailand-administrative-boundaries.

(TIF)

S19 Fig. Bangkok—Container density by the population (Misc_Short). The map in this fig-

ure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S20 Fig. Nakhon Si Thammarat—Container density by the population (Misc_Short). The

map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source

of shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S21 Fig. Krabi—Container density by the population (Misc_Short). The map in this figure

was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S22 Fig. Bangkok—Container density by the population (Misc_Tall). The map in this figure

was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S23 Fig. Nakhon Si Thammarat—Container density by the population (Misc_Tall). The

map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source

of shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S24 Fig. Krabi—Container density by the population (Misc_Tall). The map in this figure

was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S25 Fig. Bangkok—Container density by the population (Potted plants). The map in this

figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:

United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S26 Fig. Nakhon Si Thammarat—Container density by the population (Potted plants). The

map in this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source

of shapefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S27 Fig. Krabi—Container density by the population (Potted plants). The map in this figure

was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile:
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United Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.

org/dataset/thailand-administrative-boundaries.

(TIF)

S28 Fig. Bangkok—Container density by the population (Tire). The map in this figure was

produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S29 Fig. Nakhon Si Thammarat—Container density by the population (Tire). The map in

this figure was produced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of sha-

pefile: United Nations Office for the Coordination of Humanitarian Affairs https://data.

humdata.org/dataset/thailand-administrative-boundaries.

(TIF)

S30 Fig. Krabi—Container density by the population (Tire). The map in this figure was pro-

duced using ArcGIS version 10.4 (Esri, Redlands, CA, USA). Source of shapefile: United

Nations Office for the Coordination of Humanitarian Affairs https://data.humdata.org/

dataset/thailand-administrative-boundaries.

(TIF)

S31 Fig. Bangkok—Correlation between container density and population.

(TIF)

S32 Fig. Nakhon Si Thammarat—Correlation between container density and population.

(TIF)

S33 Fig. Krabi—Correlation between container density and population.

(TIF)

S34 Fig. Bangkok—Residual Q-Q plot (using training data).

(TIF)

S35 Fig. Bangkok—Residuals by sub-districts plot (using training data).

(TIF)

S36 Fig. Nakhon Si Thammarat—Residual Q-Q plot (using training data).

(TIF)

S37 Fig. Nakhon Si Thammarat–Residuals by sub-districts plot (using training data).

(TIF)

S38 Fig. Krabi—Residual Q-Q plot (using training data).

(TIF)

S39 Fig. Krabi—Residuals by sub-districts plot (using training data).

(TIF)

S1 Table. Coefficients for random effect variables (Bangkok).

(DOCX)

S2 Table. Coefficients for random effect variables (Nakhon Si Thammarat).

(DOCX)

S3 Table. Coefficients for random effect variables (Krabi).

(DOCX)
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