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Lipid-filled mature adipocytes are important for the study of lipid metabo-

lism and in the development of obesity, but whether they are capable of

reproliferation is still controversial. Here, we monitored lipid droplet

dynamics and adipocyte reproliferation in live, differentiated 3T3-L1 cells

using a phase-contrast microscope in real time. Phase-contrast microscopy

achieves a similar visual effect in situ to that obtained using traditional

dyes such as Oil Red O and BODIPY in vitro. Using this method, we cap-

tured the process that lipid droplets use for dynamic fusion in living cells.

Unexpectedly, we acquired images of the moment that differentiated 3T3-

L1 cells containing lipid droplets entered mitosis. In addition, we observed

some binucleated mature adipocytes. This information provides a better

understanding of the adipocyte differentiation process.

Lipid droplets, also known as lipid bodies, oil bodies

and adiposomes, are important dynamic cellular orga-

nelles that are used for storage of neutral lipids [1].

Almost all bacterial and eukaryotic cells have the ability

to accumulate neutral lipids and maintain them as an

energy reservoir in lipid droplets. Lipid droplets gener-

ally have a spherical shape; they consist of a neutral

lipid core (mainly of triglycerides and cholesteryl esters)

surrounded by a phospholipid monolayer surface deco-

rated with integral and peripheral proteins [2,3]. Ini-

tially, lipid droplets were considered to be merely an

inert depot of excess lipids within cells. Recent discover-

ies, however, have revealed that they are actively

engaged in a wide range of metabolic disorders such as

obesity, diabetes, steatosis, atherosclerosis, inflammation

and cancer [4–6]. However, the exact mechanisms

underlying the diverse functions of lipid droplets are

still far from clear. The study of lipid droplets has

attracted much attention from cell biologists. 3T3-L1

is a classic cell line originally developed by clonal pro-

liferation from Swiss mouse embryo tissue. Owing to

its potential for differentiation from a fibroblastic

phenotype into an adipocyte with lipid droplets, this

cell lineage is widely used as an in vitro model for

adipogenesis and lipid droplet formation [7]. Whether

lipid-filled mature adipocytes are capable of reprolifer-

ation is still controversial and there has been no study

on polyploidization in mature adipocytes.

Polyploidization, alternatively called whole-genome

amplification, refers to eukaryotic organisms containing
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more than two homologous basic sets of chromo-

somes. Polyploidy was first found in plants more than

a hundred years ago, and it is especially common in

angiosperms. In mammals, polyploid cells can occur

during some physiological processes, such as some tis-

sue development (liver, skeletal muscle, heart, placenta,

brain and bone marrow) [8], and also during patholog-

ical processes, such as hyperthyroidism (thyroid cells)

[9], hypertension (vascular smooth muscle cells) [10]

and tumorigenesis (esophageal and colorectal cancers

[11], lung and bronchus cancers [12], breast cancers

[13], prostate cancers [14], kidney and renal pelvis car-

cinoma [15], bladder cancer [16], thyroid cancer [17],

some types of leukemia [18], glioblastoma [19] and

melanoma, and rare childhood tumors [20]).

In this study, we monitored lipid droplet dynamics

in 3T3-L1 and mouse primary adipocyte over a long

time course using a live cell imaging system with phase

contrast microscopy. We refer to this method as real

time phase-contrast microscope observation (RT-

PMO). Compared with staining with Oil Red O

(ORO) and BODIPY, RT-PMO can achieve a similar

observation during the differentiation of pre-adipo-

cytes in situ. Furthermore, we captured the real time

moments when lipid droplets underwent dynamic

fusion in living cells and when differentiated 3T3-L1

cells containing lipid droplets divided into two daugh-

ter cells. We also observed some polyploids in the

mature adipocytes. Overall, our findings will help to

better understand the adipocyte differentiation process

and the development of obesity.

Materials and methods

Cell isolation and cell culture

Mouse primary adipocytes were isolated and cultured from

gonadal fat pads in 4-week-old C57BL/6 mice, as previ-

ously described [21]. All procedures were performed in

accordance with the guidelines and regulations of the

Ethics and Animal Welfare Committee of Beijing Normal

University. Briefly, the white adipose tissue pieces were

minced in Dulbecco’s modified Eagle’s medium (DMEM)

on ice and were transferred to a digestion buffer with 0.2%

(w/v) collagenase (type I, Sigma-Aldrich, St. Louis, MO,

USA) in DMEM containing 0.1% (w/v) bull serum albu-

min. The digestion was performed for 30 min at 37 °C with

continuous shaking (120 r.p.m.). We placed the cell strainer

(70 lm) into a funnel and filter-digested the tissue into a

50 mL conical tube. The cell suspension was allowed to set-

tle for 15 min on ice and was then centrifuged at 500 g for

10 min. Most of the supernatant was discarded, and the

precipitate was washed three times by centrifugation in

PBS at 4 °C. The pellet was resuspended in culture med-

ium, and the cells were counted and seeded for culture. The

culture medium was DMEM with 10% fetal bovine serum

(FBS), 1% penicillin–streptomycin and 5 ng�mL�1 epider-

mal growth factor (Invitrogen/Thermo Fisher Scientific,

Waltham, MA, USA) at 37 °C, with 5% CO2 [22]. The

murine 3T3-L1 pre-adipocyte cell line was obtained from

the Cell Resource Center, Peking Union Medical College

(Beijing, China), and was cultured in DMEM containing

10% newborn calf serum and 1% penicillin–streptomycin.

To induce pre-adipocyte cell differentiation, 2 days after

reaching confluence, the cells were cultured in differentia-

tion medium, which was DMEM containing 10% FBS,

10 lg�mL�1 insulin (Sigma-Aldrich), 0.25 lM dexametha-

sone (Sigma) and 0.5 mM methylisobutylxanthine (Sigma-

Aldrich). Cells were then incubated in DMEM supple-

mented with 10% FBS and 10 lg�mL�1 of insulin for

another 2 days, followed by DMEM including 10% FBS

with medium changes every 2 days for an additional 4 days

or more.

Antibodies and histochemical staining

Rabbit anti-perilipin antibody diluted at 1: 250 was pur-

chased from Cell Signaling Technology (Danvers, MA,

USA). Secondary antibody staining was accomplished using

Alexa Fluor 488 goat anti-rabbit IgG following the manu-

facturer’s recommendations. BODIPY 493/503 (Invitrogen/

Thermo Fisher Scientific) and 4,6-diamidino-2-phenylindole

(DAPI, Sigma-Aldrich) were added to the fixed cells for

5 min at room temperature.

The protocol for ORO staining was derived from that

developed by Koopman with minor modifications [23].

ORO (Sigma-Aldrich) dissolved in isopropanol (0.5%) was

incubated for 1 h at 60 °C, filtered, mixed with distilled

water (3: 2), and finally filtered twice before use. The cells

were washed three times with PBS and fixed with 3.7%

paraformaldehyde for 20 min. Then, 0.2% ORO was added

to the fixed cells for 20 min at 60 °C, and then washed with

60% isopropanol. If desired, the cells were counterstained

using Mayer’s hematoxylin for 60 s to visualize the nuclei.

Phase-contrast and immunofluorescence

microscopy images and movies

Real time phase-contrast microscope observation images

and in situ images of ORO- or BODIPY-stained cells were

taken using an Axio Observer Z1 (Carl Zeiss, Jena, Ger-

many) equipped with an EC Plan-Neofluar 910/0.30 ph1

phase contrast objective and a centered condenser phase

stop. Phase-contrast brightfield and BODIPY-stained

images were acquired using an Axio CamMR3 mono-

chrome camera; ORO images were simultaneously obtained

using an Axio CamMR5 color camera at a corresponding

position. RT-PMO movies were captured using a live cell
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imaging system (at 37 °C, with 5% CO2) based on the Axio

Observer Z1 equipped with an A-Plan 910/0.25 ph1 phase

contrast objective and an Axio CamMR3 camera. A lipid

droplet dynamic fusion movie (Movie S1, see Supporting

Information) was captured every 5 s per image for 20 min;

and a living differentiated 3T3-L1 cell with lipid droplets

division movie (Movie S2) was captured every 2 min per

image for 19 h. The contrast and brightness of the images

and movies acquired with the Axio Observer Z1 were regu-

lated using Axio Vision LE. Immunofluorescence imaging

of perilipin-stained cells was performed using a confocal

laser scanning microscope LSM700 (Carl Zeiss) with a

Plan-Apochromat 963/1.40 Oil DIC M27 objective. The fil-

ter set was for Alexa Fluor 488 and DAPI. The contrast of

the images was adjusted using the ZEN 2009 light edition.

The figures and movies were confirmed in more than three

separate repeated trials.

Results and Discussion

A phase contrast microscope is commonly found in bio-

logical laboratories, especially in those participating in

studies of transparent and colorless specimens. Lipid

droplets have a high density of triglycerides and choles-

teryl esters [24], and a phase-contrast microscope

exploits differences in the refractive index of different

materials to distinguish lipid droplets from other cellular

structures. In the present study, we applied an RT-PMO

technique to record the images of lipid droplets in live

differentiated 3T3-L1 cells that were known to include

numerous large lipid droplets. As shown in Fig. 1, the

lipid droplets became increasingly clear with increasing

induction times. After 8 days of induction, the tech-

nique easily distinguished the lipid droplets (Fig. 1E).

Furthermore, we captured dynamic fusion of lipid

droplets in living 3T3-L1 cells in real time (Movie S1).

Traditionally, ORO is a classical lysochrome diazo

dye that has been extensively used for the staining of

lipid droplets [23]. In this method, cells should be fixed

before being dyed because the fixing and staining pro-

cedures may disturb the structure of the lipid droplets

in adipocytes [25]. However, because unstained lipid

droplets cannot be observed in live adipocytes, we do

not know whether the fixing process brings allogenic

material into the lipid droplet structures, and we can-

not see dynamic changes in the lipid droplets in living

cells. We compared the microscope images of RT-

PMO and ORO-stained differentiated 3T3-L1 cells

in situ. Figure 2 shows that phase-contrast imaging is

comparably effective to ORO staining in the observa-

tion of lipid droplets.

BODIPY, a class of lipophilic fluorescent dyes, emits

bright green fluorescence and has been frequently used

to label lipid droplets, and has thus been convenient

for double fluorescence labeling in adipocytes [26].

BODIPY can stain live cells without the need for

fixing, but is toxic to living cells. In addition, its fluo-

rescence dims with cell growth. As shown in Fig. 3,

RT-PMO imaging gave similar results to BODIPY-

labeled lipid droplets in mouse primary adipocytes.

Among the various models used for studying the

process of pre-adipocytes differentiating into adipo-

cytes in vitro, the 3T3-L1 cell line is very important. It

has allowed us to gain a detailed perspective on adipo-

cyte proliferation, differentiation, transcriptional acti-

vation and the repression of lipogenesis and other

aspects of adipocyte biology, which have been

described in some excellent reviews [27–32]. Confluent
3T3-L1 pre-adipocytes can be differentiated with an

adipogenic cocktail consisting of methylisobutylxan-

thine, dexamethasone and insulin in 10% FBS. When

induced to differentiate, the first growth-arrested stage

Fig. 1. Diagram of the differentiation protocol for 3T3-L1 differentiation and RT-PMO of lipid droplets at different differentiation stages. (A)

Induction day 0, (B) second day of induction, (C) fourth day of induction, (D) sixth day of induction, and (E) eighth day of induction. Bar:

50 lm.

654 FEBS Open Bio 7 (2017) 652–658 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Reproliferation and polyploidy in mature adipocytes P. Xu et al.



is achieved by contact inhibition after pre-adipocytes

have been cultured to confluence [28]. Upon hormonal

cocktail induction, growth-arrested 3T3-L1 pre-adipo-

cytes immediately reenter the cell cycle, trigger DNA

replication and undergo at least two rounds of cell

division, a phase often referred to as mitotic clonal

expansion (MCE) [27,29,33]. MCE has been consid-

ered necessary for the subsequent differentiation pro-

cesses and the expression of specific adipogenic

transcription factors, as well as cell cycle regulators,

A B

C D

Fig. 2. In situ image of phase-contrast (A,

C) and ORO-stained (B, D) differentiated

3T3-L1 cells. Bars: 100 lm (A, B), 50 lm

(C, D).

Fig. 3. Phase-contrast (A, C) and BODIPY-

stained (B, D) fixed mouse primary

adipocyte in situ images. Bars: 100 lm (A,

B), 50 lm (C, D).
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during this period. MCE is followed by cell-cycle

arrest [28,34]. The differentiated 3T3-L1 cells then exit

the cell cycle, change their fibroblastic morphology,

accumulate lipid droplets and take on the appearance

of mature adipocytes [27]. Generally, most researchers

think that the mature adipocytes cannot undergo mito-

sis after they have accumulated lipid droplets. Fortu-

nately, we captured the moment that differentiated

3T3-L1 adipocytes containing lipid droplets were

dividing by using a live cell imaging system under RT-

PMO (Movie S2). These results showed that mature

adipocytes still have the ability to undergo cell divi-

sion. This knowledge will help us to better understand

the adipocyte differentiation process.

Furthermore, we found that the induced differenti-

ated 3T3-L1 cells have a double-nucleus appearance

on day 10 (Fig. 4A) and day 20 (Fig. 4A, Movie S3);

the binucleated mature adipocytes are also shown in

Figs 2 and 3. In previous studies, there is some evi-

dence of mature adipocytes with a double-nucleus

appearance, which are polyploid adipocytes (Nan

et al., fig. 6A [35]; Verstraeten et al., figs 1G, 2A

(15,16) and 4A(3,5) [36]; Kuerschner et al., figs 7A

and 9 [37]; Bochet et al., fig. 4E [38]), even though the

authors did not characterize or note these phenomena

in the papers. In our opinion, the formation of poly-

ploid adipocytes may be due to lipid droplets disrupt-

ing the normal cytoskeleton and causing the failure of

cytokinesis. That mature adipocytes have two or multi-

ple nuclei during the differentiation process has not

been adequately described, and the exact mechanism

of this process needs further research. Such studies will

help us to clarify the ‘rules’ of lipid droplet accumula-

tion in adipocytes. Moreover, whether mature adipo-

cytes can divide or form polyploids in vivo requires

further confirmation. This may be a biological event

that is stimulated in vivo and may explain why obese

people become overweight more quickly in special

cases such as when using hormones or when they have

endocrine disorders. Our findings therefore provide a

novel perspective on obesity development.
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