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Abstract

Background: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known
about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the
relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses
to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese
green tea cultivars.

Methodology/Principal Findings: We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit
thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells
(HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the
tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To
evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts
were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses,
principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed
differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar,
polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares
(PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory
effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were
associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites
enriched in SR were able to transform the extract into a bioactive extract.

Conclusions/Significance: Our findings suggest that metabolic profiling is a useful approach for nutraceutical evaluation of
the health promotion effects of diverse tea cultivars. This may propose a novel strategy for functional food design.
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Introduction

Natural products derived from medicinal plants are an

abundant source of biologically active compounds, many of which

have formed the basis for development of nutraceuticals and

pharmaceuticals [1]. Tea (Camellia sinensis L.) is a popular beverage

worldwide, and because of its possible health effects, it has received

considerable attention as a medicinal herb [2]. There are three

main types of tea, which differ according to the fermentation

process; green (unfermented), oolong (semi-fermented), and black

(fermented). Green tea constituents show various biological and

pharmacological activities, such as anti-carcinogenic, anti-meta-

static, anti-oxidative, anti-hypertensive, and anti-hypercholester-

olemic activities [2–5]. The chemical components of tea vary

according to species/cultivar, environment, growth, storage

conditions, and leaf quality [6]. In most cases, the quality and

bioactive functions (i.e., the health promotion effects in human

and animal models) of tea are defined by their specific

compositions.

The functional biochemistry of plants is very diverse. The

concentrations of many compounds vary widely, and metabolomic

analyses are required to determine all metabolites in plant extracts.
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Among many analytical platforms, mass spectrometry (MS) is the

most sensitive and selective technique, and thus it is the method of

choice for metabolomic research on plants [7]. LC-MS can be

adapted to a wide range of molecules, such as secondary

metabolites [8]. Metabolomic studies coupled with chemometric

methods including principal component analysis (PCA) and partial

least-squares (PLS) regression analysis have been used to explore

the relationships between the metabolome of diverse plant species

and their genotype, origin, vintage, quality, or other specific

attributes [9–12]. Metabolic profiling techniques are often used to

evaluate the nutraceutical (nutritional or physiological) value of a

single plant cultivar for quality control and breading. In the field of

nutraceutical (functional food) research, such techniques have

been used to identify subtle metabolic differences among

individuals or among different environmental conditions, e.g.,

diet [1,13]. However, to date, there has been little research on the

use of metabolic profiling to compare or predict the nutraceutical

(bioactive) properties (the health promotion effects in human and

animal models) of many plant cultivars. Therefore, elucidating the

relationship between the metabolome and the bioactivity of

diverse cultivars could be a novel strategy for identifying the

nutraceutical potential of various plant cultivars for functional food

design.

All the traditional cardiovascular risk factors (dyslipidemia,

arterial hypertension, hyperglycemia, and diabetes) are associated

with endothelial dysfunction [14–16]. Thrombin is a protease

produced on the surface of injured endothelium from prothrombin

circulating in the blood. It alters endothelial permeability by

stimulating cell contraction through reorganization of the

cytoskeleton. This increases the size of intercellular gaps and

allows entry of inflammatory cells and atherogenic lipoproteins

[14–16]. A key event in the regulation of endothelial barrier

function is actomyosin-driven contraction. Contraction of endo-

thelial cells (ECs) is initiated by Thr-18/Ser-19 phosphorylation of

the 20-kDa myosin regulatory light chain (MRLC), which is tightly

associated with F-actin filament reorganization. Thrombin activity

rapidly increases MRLC phosphorylation, stress fiber formation,

and endothelial permeability. Thus, suppression of thrombin-

induced MRLC phosphorylation in ECs may improve endothelial

dysfunction and may prevent progression of cardiovascular

diseases such as atherosclerosis.

Green tea has various health-promoting activities, and these

activities vary from cultivar to cultivar. However, there is little

information available for comparing numerous cultivars on the

basis of their bioactivity. To properly utilize the nutraceutical

properties of green tea, therefore, we need to clarify the

relationship between cultivar and bioactivity. For nutraceutical

evaluation, it is important to elucidate which cultivars have

bioactivity, and which compounds contribute directly or indirectly

to this bioactivity. In this study, we applied metabolic profiling

techniques to evaluate the bioactivity of 43 representative cultivars

of Japanese green tea (Table 1). The aim of our research was to

evaluate the relationship between the metabolome and bioactivity

(health promotion effect) of diverse tea cultivars. To test bioactivity

we investigated the ability of leaf extracts to inhibit thrombin-

induced MRLC in human umbilical vein endothelial cells

(HUVECs), as a potential hallmark of vascular endothelial

dysfunction. In addition, analyses of metabolic data from all tea

extracts clearly discriminated green tea cultivars according to their

bioactivity. Using regression analysis, we constructed a model to

predict the bioactivity of tea cultivars on the basis of their

metabolic data. These approaches comprise a useful strategy both

for evaluation of bioactivity of green tea cultivars and for

identification of bioactive factors.

Materials and Methods

Chemicals and antibodies
Epigallocatechin-3-O-gallate (EGCG) was obtained from DSM

Nutritional Products (Amsterdam, Netherlands). Epicatechin-3-O-

gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) were

obtained from Mitsui Norin Co. Ltd. (Tokyo, Japan). Thrombin,

myricetin, quercetin-3-b-D-glucoside (Que-glu), anti-b-actin anti-

body, superoxide dismutase (SOD), and catalase were purchased

from Sigma-Aldrich (St. Louis, MO, USA). Caffeine and quercetin

(Que) were obtained from Nacalai Tesque Inc. (Kyoto, Japan).

Theanin was purchased from Taiyo Kagaku (Yokkaichi, Japan).

Theobromine was obtained from Wako Pure Chemical Industries,

Ltd. (Osaka, Japan). Cyanidin (Cya), cyanidin-3-O-galactoside

(Cya-gal), cyanidin-3-O-glucoside (Cya-glu), delphinidin (Del),

delphinidin-3-O-glucoside (Del-glu), and quercetin-3-O-galactoside

(Que-gal) were obtained from ExtraSynthese (Genay Cedex,

France). Petunidin-3-O-glucoside (Pet-glu) was purchased from

Tokiwa Phytochemical Co., Ltd (Sakura, Japan). Rabbit anti-

phosphorylated MRLC (Thr-18/Ser-19) antibody was purchased

from Cell Signaling Technology, Inc. (Danvers, MA, USA).

Rabbit anti-MLC2 (FL-172) antibody (against whole MRLC) was

obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA,

USA). Horseradish peroxidase (HRP)-conjugated anti-rabbit IgG

antibody was purchased from Rockland Immunochemicals Inc.

(Gilbertsville, PA, USA). Cyanidin-3-O-(6-O-(E)-p-coumaroyl)-b-

galactoside (Cya-cou-gal) was kindly provided from Asahi

Breweries Ltd. (Moriya, Japan).

Tea sample preparation
We analyzed 43 major Japanese green tea cultivars (Table 1),

which are registered at and harvested from the National Institute

of Vegetable and Tea Sciences, Japan. For each cultivar, dried leaf

powder (200 mg) was added to 10 mL boiling water. The mixture

was soaked for 10 min and stirred twice during this time. The

extract was filtered through 90-mm filter paper (Advantec, Tokyo,

Japan), and the filtrate was centrifuged at 1,6806g for 10 min. The

Table 1. Forty-three kinds of the representative Japanese
green tea cultivars.

No. Cultivar No. Cultivar No. Cultivar

1 Seishin-oolong 16 Asagiri 31 Samidori

2 Fukumidori 17 Hokumei 32 Komakage

3 Benifuji 18 Asahi 33 Hatsumomiji

4 Minekaori 19 Sayamakaori 34 Ryoufuu

5 Benihikari 20 Meiryoku 35 Minamisayaka

6 Minamikaori 21 Kanayamidori 36 Saemidori

7 Benihomare 22 Yamatomidori 37 Okuyutaka

8 Izumi 23 Asatsuyu 38 Okumidori

9 Fuusyun 24 Toyoka 39 Yutakamidori

10 Tamamidori 25 Yaeho 40 Yabukita

11 Ohba-oolong 26 Ujihikari 41 Benifuuki

12 Seishintaipan 27 Ooiwase 42 Cha Chuukanbohon
Nou-6

13 Kuritawase 28 Gokou 43 Sunrouge

14 Syunmei 29 Inzatsu131

15 Sayamamidori 30 Surugawase

doi:10.1371/journal.pone.0023426.t001
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supernatant was filtered through a 0.2-mm syringe filter (Sartorius

Stedim Biotech, Goettingen, Germany). We used polyvinylpoly-

pyrrolidone (PVPP: Sigma-Aldrich, St. Louis, MO, USA) as a

polyphenol adsorbent to remove polyphenols from the solution.

The PVPP (100 mg) was swollen in 1 mL H2O for 30 min. After

centrifugation at 3006g for 5 min, the supernatant was removed

and the precipitated gel pellets (300 mL) were mixed with a one-

half volume of tea extract (150 mL). After centrifugation at 3006g

for 5 min, the recovered supernatant was used as PVPP-treated

tea extract.

Cell culture and stimulation
Normal human umbilical vein endothelial cells (HUVECs) were

obtained from Lonza (Basel, Switzerland) and were maintained in

EGM-2 (Lonza) supplemented with 5% fetal bovine serum (FBS:

Biological Industries, Kibbutz Beit Kaemek, Israel) in a humidified

atmosphere with 5% CO2 at 37uC. The level of MRLC

phosphorylation was determined by western blot analysis using

specific antibodies against phosphorylated MRLC at Thr-18/Ser-

19 and antibodies against whole MRLC. For this analysis, the cells

were incubated at a density of 26105 cells/well in 24-well plates

for 24 h. Then, the cells were treated with each 1% tea extract or

each polyphenol (10 mM) in EGM-2 medium supplemented with

5 U/mL SOD and 200 U/mL catalase for 20 min. These

antioxidant enzymes were added to decrease the pro-oxidant

effect of green tea polyphenols. Then, thrombin (0.5 U/mL) was

added and the cells were incubated for 5 min. This method

comprises the modified and optimized conditions based on our

previous report [17] to effectively evaluate the effect of tea extracts

on thrombin-induced MRLC phosphorylation in HUVECs. The

samples obtained were subjected to western blot analysis.

Western blot analysis
After stimulation, the cells were lysed in cell lysis buffer

containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton

X-100, 1 mM EDTA, 50 mM NaF, 30 mM Na4P2O7, 1 mM

phenylmethanesulfonyl fluoride, 2 mg/mL aprotinin, and 1 mM

pervanadate. Proteins were resolved on 10% SDS-polyacrylamide

gels and then transferred onto a nitrocellulose membrane. The

membranes were blocked with 2.5% bovine serum albumin and

incubated with anti-phosphorylated MRLC (Thr-18/Ser-19) or

anti-MLC2 antibody to evaluate phosphorylated or whole MRLC,

respectively, followed by incubation with HRP-conjugated anti-

rabbit IgG secondary antibodies. Epitopes on proteins specifically

recognized by the antibody were visualized using the ECL

Advance kit (GE Healthcare UK Ltd., Buckinghamshire, En-

gland). Band intensities were quantified using NIH Image-J

software (Bethesda, MD, USA). Samples were analyzed in

triplicate, and representative data are shown in figures. The

relative band intensity (phosphorylated MRLC/whole MRLC:

pMRLC/MRLC) of each sample was calculated using data from

triplicate analyses. The results are shown as a percentage,

calculated from the amount of pMRLC/MRLC in treated cells

(thrombin + tea extract or single compounds) compared with that

in non-treated control cells (+ thrombin only). Data shown are

means 6 SEM (n = 3). In Fig.1, the inhibitory effect of various tea

extracts on MRLC phosphorylation is expressed as the rate of

inhibition of MRLC phosphorylation (%). This was calculated by

comparing the intensity of pMRLC/MRLC in each treatment

with that in non-treated cells (+ thrombin only).

LC-MS analysis
All extracts were subjected to high-performance liquid chro-

matography (HPLC) with time-of-flight MS (LC-MS) analysis

using a LCMS-IT-TOF instrument (Shimadzu, Kyoto, Japan).

For the PVPP test, both PVPP-treated and -untreated tea extracts

(YB and SR) were analyzed. The instrument was fitted with a

Luna 5u C18(2) 100A, 5 mm, 1.06250 mm column (Phenomenex,

Torrance, CA). The oven temperature was 40uC. The conditions

of the mobile phase were as follows; linear gradient, consisting of

solvent A, H2O (0.05% formic acid), and solvent B, methanol

(0.05% formic acid). Solvent B was increased from 5% to 60%

over 7.5 min, and further increased from 60% to 100% at

10.1 min, at flow rate of 0.1 mL/min. HPLC chromatograms of

tea extracts (YB and SR) with or without PVPP treatment were

obtained at UV 254 nm. The MS instrument was operated using

an ESI source in positive ionization mode with survey scans

acquired from m/z 70 to 700. Ionization parameters were as

follows: capillary voltage, 4.5 kV; nebulizer gas flow, 1.5 L/min;

CDL temperature, 200uC; heat block temperature, 200uC. Tea

extracts were diluted 1:10 with distilled water and 10 mM 4-

hydroxybenzophenone (4-HB) was added as an internal standard.

Samples were filtered through a 0.2-mm PTFE filter, and 3 mL was

injected.

Multivariate statistical analysis
For all LC-MS datasets, data were processed using the free

software XCMS (http://masspec.scripps.edu/xcms/xcms.php) to

extract and align peaks. Total tea extracts (43 tea cultivars; Fig. 1

and 2), tea extracts from three cultivars (YB, BF, and SR; Fig. 2),

and two types of treated tea extracts (YB and SR with or without

PVPP treatment; Fig. 3) were evaluated separately by multivariate

statistical analysis. Generally, this analysis is used to clarify

similarities and differences among samples on the basis of

multivariate data (e.g., MS datasets). A multivariate approach

can decrease the complexity of huge MS datasets, and can reveal

relationships among samples or datasets. These relationships are

usually displayed as scatter plots (score plots). Since hundreds of

variables (peaks) are obtained in MS analyses, the relationships

among samples must be theoretically interpreted on hundreds of

dimensional axes (variables), but these relationships cannot be

displayed simply. To visualize the features of samples, multivariate

statistical analysis can extract features of samples by dimensional

reduction. That is, hundreds of original variables are decreased to

two or three synthetic variables, which are orthogonal with each

other. This maximizes the statistical variance of samples, while

leaving the original feature of samples largely unaffected [18]. The

synthetic variables consist of hundreds of original variables. An

understanding of the contribution of each original variable to the

synthetic variables (loading plot) leads to the identification of key

variables (compounds) that contribute to the relationships

(similarity or difference) among samples. In this study, we carried

out multivariate data analyses (PCA and OPLS-DA) [19] using

SIMCA-P+ version 12.0 (Umetrics, Umea, Sweden). PCA models

are depicted as score plots and consist of two synthetic variables:

principal component (PC) 1 (the greatest variance of data) and

PC2 (the second greatest variance of data, orthogonal with PC1).

These display intrinsic groups of samples based on spectral

variations. The corresponding loading plots show the contribution

of each spectral variable to score formation. Therefore, this

analysis can explain the original feature of samples based on the

ratio of the sum of percentages of PC1 and PC2. All variables

obtained from LC-MS datasets were mean-centered and scaled to

Pareto variance [19]. The quality of OPLS-DA models was

evaluated by the goodness-of-fit parameter R2 and the predictive

ability parameter Q2. R2 and Q2 values higher than 0.5 indicated

good quality of OPLS-DA models. Metabolite peaks were assigned

by MS/MS analysis or by searching their accurate masses using

Metabolomics-Driven Nutraceutical Evaluation
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Figure 1. Effects of extracts from 43 Japanese green tea cultivars on thrombin-induced MRLC phosphorylation in HUVECs. A) After
treatment of HUVECs with each 1% tea extract for 20 min, cells were stimulated with thrombin for 5 min, then lysed. Total cellular protein was
subjected to western blot analysis using anti-phosphorylated MRLC (Thr18/Ser19) antibody. B) Inhibitory rate of MRLC phosphorylation (%) was
calculated by comparing pMRLC/MRLC intensity in treated cells with that in non-treated cells (thrombin only).
doi:10.1371/journal.pone.0023426.g001
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Figure 2. Multivariate statistical analysis of LC-MS metabolite profiles derived from various tea extracts. A) Heat map of diverse
Japanese green tea extracts. Columns represent metabolic profile of single cultivars, rows represent 541 individual analytes. Colors correspond to
relative metabolite areas. B) PCA score plot shows separate clustering of MS profiles corresponding to Nou-6 and SR, and other cultivars.
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online metabolite databases (KEGG; http://www.genome.jp/

kegg/, METLIN; http://metlin.scripps.edu/, MassBank; http://

www.massbank.jp/).

PLS, PLS-orthogonal signal correction (OSC), and OPLS were

chosen to create the prediction model. PLS, which can be

described as the regression extension of PCA, was calculated using

SIMCA-P+. PLS derives latent variables that maximize the

covariation between measured metabolite data and the response

variable (inhibitory activity) regressed against. This differs from

PCA, which utilizes the maximum variation in the metabolite data

matrix. OSC is normally used to remove uncorrelated variables or

those orthogonal to inhibitory activity from metabolite data using

the nonlinear iterative partial least-squares algorithm.

A heat map was generated the statistical package Multi-

Experiment Viewer (MeV v4.6.1) (http://www.tm4.org/mev/).

This summarizes the Z-score values of 541 peaks, which shows

differences in metabolite profiles among cultivars.

Results

Effects of Japanese green tea extracts on thrombin-
induced phosphorylation of MRLC in HUVECs

Here, we examined the effects of extracts from 43 cultivars of

Japanese green tea (Table 1) on thrombin-induced MRLC

phosphorylation in HUVECs by western blot analysis. We used

aqueous extracts to determine bioactivity and composition,

because this is the form in which green tea is consumed. As

shown in Table 2, the 43 cultivars showed diverse effects. Some

inhibited MRLC phosphorylation (Fig. 1A, B), especially Cha

Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR). Some

enhanced MRLC phosphorylation, especially Meiryoku and

Okumidori. Several cultivars did not affect the level of MRLC

phosphorylation, e.g., Inzatsu131, Ujihiraki, and Komakage.

Thus, there were differences among cultivars in their ability to

regulate thrombin-induced MRLC phosphorylation. The different

compositions of these extracts were expected to underlie cultivar-

specific bioactivity.

LC-MS-based metabolic profiling to evaluate bioactivity
of Japanese green tea

Aqueous crude extracts of tea leaves from the 43 cultivars were

subjected to LC-MS to investigate differences in their composi-

tions. In analyses of complex mixtures such as crude extracts, two

or more compounds can be co-eluted. The obtained complex

spectral data are usually processed to extract and align peaks. We

extracted 541 peaks from a complex chromatogram and used

multivariate statistical analysis to decrease the complexity of the

spectra datasets. This chemometric approach has the potential for

use in classification and bioactivity assessment without any

prepurification methods such as extraction of arbitrary constitu-

ents from crude extracts prior to LC-MS measurement. To

provide comparative interpretations and to visualize metabolic

differences among cultivars in relation to their bioactivity, we

analyzed the LC-MS spectra datasets using several multivariate

analyses (see detailed information about multivariate statistical

analyses in Materials and methods).

Heat map analysis provides an overview of all observations or

samples in a dataset by highlighting holistic differences in the

complex metabolic data. This method can be used to visualize

simultaneously the metabolic profiles of many cultivars. As shown

in Fig. 2A, the metabolic profiles clearly differed among green tea

cultivars. The differences in chemical composition among cultivars

may be responsible for differences in their bioactivity. Thus, we

conducted further experiments to determine which analytes were

responsible for variations in bioactivity.

Another unsupervised multivariate analysis method, the PCA

model, provides an overview of all observations or samples in a

dataset [18]. Groupings, trends, and outliers can also be found.

Unlike the heat map analysis, this model can visualize the

relationships among samples on a two dimensional model plane.

The PCA score plot showed clear independent clusters, one

consisting of cultivars with higher bioactivity (Nou-6 and SR), and

the other consisting of the remaining cultivars (Fig. 2B). In the

corresponding loading plot (Fig. 2D), several metabolites, such as

EC, EGC, ECG, EGCG, caffeine, theanin, myricetin, theogallin,

and other non-assigned m/z peaks had a comparatively strong

impact on the clear separation of each cluster along the principal

component axes (PC 1 and PC 2). In particular, theanin and

caffeine strongly contributed to the separation of groups along

PC1, and theogallin contributed to the separation of groups along

PC2. To further explore the metabolic differences among tea

cultivars, we performed another PCA analysis using three

representative tea cultivars: the non-bioactive cultivar Yabukita

(YB), the bioactive cultivar SR, and the less bioactive cultivar

Benifuuki (BF). YB is the most commonly consumed and widely

distributed cultivar in Japan, accounting for 70280% of all green

tea consumed. In the bioactivity assay, YB was ranked 32/43

(inhibitory rate ,0), SR was ranked 2/43 (inhibitory rate .100),

and BF was ranked 18/43 (0,inhibitory rate,50). BF was also

selected because it has reported biomedical activities in human

models [20,21]. The PCA score plot showed a clear independent

cluster formation (Fig. 2C), and the distribution of the three tea

cultivars was relatively similar to that observed among the 43

cultivars (Fig. 2E).

Although the PCA model provided an overview of all

observations or samples, the details of differences in each cluster

remained unclear. The supervised method, OPLS-DA, was then

used to isolate the variables responsible for differences among the

three representative tea cultivars. The OPLS-DA score plots are

shown in Fig. 2F and 2H. The goodness-of-fit parameter R2 and

the predictive ability parameter Q2 were 0.926 and 0.999,

respectively (YB vs SR), or 0.921 and 0.999, respectively (BF vs

SR). These results indicated that the OPLS-DA models were

reliable. The OPLS-DA loading S-plot, a plot of the covariance

versus the correlation in conjunction with the variable trend plots,

allows easier visualization of the data. The variables that changed

most significantly are plotted at the top or bottom of the ‘S’ shape

plot, and those that do not vary significantly are plotted in the

middle [19]. OPLS-DA S-plots for YB vs SR and BF vs SR are

shown in Fig. 2G and 2I, respectively. Values for p (corr) . |0.8|

were used to select variables that strongly contributed to the

difference between the two cultivars. YB . SR was 116 peaks,

YB , SR was 200 peaks, BF . SR was 158 peaks, and BF , SR

C) Corresponding loading plots of all samples show MS peaks that differ among samples. D) PCA score plot derived from three representative tea
cultivars; Yabukita (YB), Benifuuki (BF) and SR. E) Corresponding loading plots of three tea cultivars (YB, BF, and SR) show MS peaks that differ among
samples. OPLS-DA score plots (F and G) and loading S-plots (H and I) were derived from each LC-MS data set (F and H: YB vs SR; G and I: BF vs SR). S-
plot shows covariance w against correlation p (corr) of variables of the discriminating component of OPLS-DA model. Cut-off values for p (corr) , |0.8|
were used to select metabolites that most strongly contributed to differences between two tea extracts.
doi:10.1371/journal.pone.0023426.g002
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was 145 peaks. As shown on the S-plot, Cya-glu, Cya-gal, and

theobromine contributed to the differences between cultivars.

These peaks could not be found in the PCA score plot, indicating

that OPLS-DA can provide valuable information for clarifying

which factors are responsible for differences among cultivars.

Involvement of polyphenols in bioactivity of Japanese
green tea extract

Among green tea constituents, polyphenols are the most

abundant and most active components for inhibiting diseases

and related reactions. To examine whether polyphenols are

involved in the inhibition of thrombin-induced MRLC phosphor-

ylation by tea extracts, we removed polyphenols from samples

using the polyphenol adsorbent PVPP. HPLC-UV chromato-

grams from the non-bioactive tea cultivar YB and highly bioactive

tea cultivar SR are shown in Fig. 3A. The decreased sizes and

disappearance of many peaks showed that various polyphenols

were effectively removed from these extracts. We determined the

effects of these PVPP-treated tea cultivars on thrombin-induced

MRLC phosphorylation in HUVECs (Fig. 3B). PVPP treatment

did not affect the activity of YB. However, it prevented the activity

of SR, suggesting that polyphenols have an important role in the

bioactivity of SR. To further explore the bioactive components of

SR, samples of SR and PVPP-treated SR were analyzed by LC-

MS. PVPP treatment resulted in a decrease or disappearance of

many peaks from the total ion current chromatogram (Fig. 3C).

The affected peaks were identified by analyzing LC-MS

metabolite peak profiles from SR and PVPP-treated SR tea

extracts by OPLS-DA. In the score plot, the independent cluster

formation between both samples, with R2 (0.999) and Q2 (0.999),

showed that the OPLS-DA model was statistically significant

(Fig. 3D). This observation indicates that this statistical model can

discriminate the differences among metabolite profiles based on

PVPP treatment. The loading S-plot can visually extract variables

(metabolite peaks) contributing to the differences between SR and

PVPP-treated SR (Fig. 3E). Values for p (corr) .0.8 were used to

select variables that strongly contributed to differences between the

two extracts. In total, 359 peaks were decreased or removed by

PVPP treatment, suggesting that some of these peaks are bioactive

components.

Taken together with this finding (Fig. 3) and the above-

mentioned PCA and OPLS-DA results (Fig. 2), many metabolite

Table 2. Ranking of inhibitory rates of 43 Japanese green tea cultivars on thrombin-induced phosphorylation of MRLC in HUVECs.

Rank Cultivar Inhibitory rate (%) No. Rank Cultivar Inhibitory rate (%) No.

1 Nou-6 115.9 42 23 Ryoufuu 14.4 34

2 Sunrouge 104.8 43 24 Benifuuki 14.3 41

3 Seishintaipan 75.8 12 25 Hatsumomiji 9.6 33

4 Fuusyun 74.4 9 26 Fukimidori 8.4 2

5 Minamikaori 67.6 6 27 Okuyutaka 7.1 37

6 Tamamidori 66.0 10 28 Toyoka 5.5 24

7 Yamatomidori 65.5 22 29 Inzatsu131 1.0 29

8 Benihomare 64.2 7 30 Komakage 24.1 32

9 Sayamamidori 62.3 15 31 Ujihikari 24.4 26

10 Asagiri 60.8 16 32 Yabukita 213.9 40

11 Samidori 52.3 31 33 Hokumei 224.5 17

12 Kuritawase 45.4 13 34 Saemidori 231.3 36

13 Syunmei 43.2 14 35 Asahi 232.6 18

14 Benihikari 42.0 5 36 Minamisayaka 233.6 35

15 Yaeho 40.3 25 37 Asatsuyu 234.8 23

16 Izumi 39.4 8 38 Sayamakaori 241.0 19

17 Surugawase 38.2 30 39 Gokou 242.3 28

18 Benufuji 37.1 3 40 Yutakamidori 246.8 39

19 Ohba-oolong 32.6 11 41 Ooiwase 249.2 27

20 Seishin-oolong 29.5 1 42 Okumidori 285.4 38

21 Minekaori 28.3 4 43 Meiryoku 2112.6 20

22 Kanayamidori 27.9 21

doi:10.1371/journal.pone.0023426.t002

Figure 3. Effects of removing polyphenols on activity of tea extracts in MRLC phosphorylation and on metabolite profiles. A) HPLC-
UV chromatograms of YB and SR extracts with or without PVPP treatment. Asterisk marks internal standard (4-HB). B) After treatment of HUVECs with
each 1% tea extract for 20 min, cells were stimulated with thrombin for 5 min and then lysed. Total proteins were analyzed by western blot. Relative
band intensity (pMRLC/MRLC) is expressed as a percentage, calculated from value in tea extract-treated cells compared with that in non-treated
control cells (+thrombin). Values shown are means 6 SEM (n = 3). C) Total ion current chromatograms of SR with or without PVPP treatment. Asterisk
marks internal standard (4-HB). D) OPLS-DA score plots and E) loading S-plots derived from each LC-MS data set (SR vs SR+PVPP). S-plot shows the
covariance w against the correlation p (corr) of variables of the discriminating component of OPLS-DA model. Cut-off values for the p (corr) , |0.8|
were used to select metabolites that most strongly contributed to differences between two tea extracts.
doi:10.1371/journal.pone.0023426.g003
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peaks were possible candidates for contributing to bioactivity of

SR extracts. To decrease the number of metabolite peaks, we

selected some metabolite peaks from OPLS-DA under the

following constraints: in S-plots, we used cut-off values for p (corr)

,|0.8| and w,|0.05| to select metabolites that strongly

contributed to the differences between the two cultivars. A Venn

diagram illustrating the proportion of unique and overlapping ion

features in the three different tea extracts is shown in Fig. 4.

Among a total of 502 metabolite peaks, 56 were more abundant in

SR than YB, and 43 were more abundant in SR than in BF

(Fig. 4A). Forty peaks overlapped between SR . YB and SR . BF

groups. Intriguingly, almost all of these peaks, 34/40 (85%),

overlapped with the data of SR . SR+PVPP (Fig. 4B). Among

these 34 peaks (Table S1) and the 29 peaks derived from PCA

(Table S2), the representative peaks contributed to the formation

of the independent cluster consisting of YB, BF, and SR in the

PCA score plot. The representative peaks were assigned by MS/

MS analysis or by searching their accurate masses using online

metabolite databases. Chemical structures of nine types of

identified metabolites, including anthocyanins, flavonols, and

galloyl glucose are shown in Fig. S1. Generally, many bioactivities

of glycosides depend on the structure of the aglycon. We examined

the effects of identified glycosides and their aglycons as well as

major green tea constituents, catechins, flavonols, and methylated

xanthines, which were also observed in the PCA loading analysis,

on the thrombin-induced MRLC phosphorylation in HUVECs

(Fig. 5). None of these compounds inhibited MRLC phosphory-

lation. This result suggests that other unidentified compounds and

compounds excluded by the narrowing procedure (Fig. 4), and/or

combinations of compounds may be involved in bioactivity.

Bioactivity-prediction model
To determine whether bioactivity of the tea cultivars was

correlated with their metabolic profiles, we created a bioactivity

prediction model based on regression analysis. To obtain the

regression, a mathematical model is created based on the system

behavior, and then optical values for model parameters are

determined with respect to training samples [22]. Then, values of

unknown independent values are predicted using the resulting

training model [22]. We used PLS or OPLS regressions, which are

chemometric projection methods relating two independent

variables via a linear multivariate model, to predict the bioactivity

of tea cultivars. The predicted inhibitory activity was calculated

from the peak intensity of each metabolite (Table S3). The entire

dataset from 43 samples was divided into two parts: 38 training set

samples used to create the model, and five test set samples (sample

no. 5, 10, 19, 21, and 32). When all 43 samples were ranked

according to bioactivity, these samples corresponded to every

eighth sample, and were used to verify the model’s predictive

ability. They were not included in the regression model. The PLS

or OPLS relationship between measured and predicted inhibitory

activities of green tea cultivars is shown in Fig. 6. The quality of

the regression model can be verified by the correlation coefficient

R2 and the cross-validated correlation coefficient Q2, as well as the

validation errors of estimation and that between measured and

predicted values; these are known as root mean squared error of

estimation (RMSEE) and root mean squared error of prediction

(RMSEP), respectively. Generally, R2, which describes how well

the data of the training set is mathematically reproduced, varies

between 0 and 1, where 1 indicates a perfect fit between the model

and the data. A prediction model is considered to be good when

Q2 .0.5, and excellent if Q2 .0.9. The PLS regression model

showed R2 = 0.392 and Q2 = 0.233 with RMSEE = 39.76 (Fig. 6A),

indicating a poor fit and poor prediction ability. The ability of the

model to predict the bioactivity of green tea cultivars was tested by

entering the test set values into the PLS regression (Fig. 6B). The

result was rather scattered from the ideal diagonal with RMSEP

= 33.31. The large validation error (33.31) was likely due to

uncorrelated metabolite data variables interrupting the prediction

of bioactivity variables, hence distorting the predictability of the

model.

The quality of PLS regression can be improved by simplifying

the complexity of variations using an orthogonal signal correction

(OSC) approach. This decreases the number of variables in the

metabolite data matrix by removing those that are linearly

unrelated (orthogonal) to the bioactivity matrix [18]. By OSC

processing of the PLS model, the linearity (R2) was improved by

251% (0.984/0.392), and the predictability was also improved (Q2

increased from 0.233 to 0.914; Fig. 6C). The cross-validation of

the PLS-OSC regression model was performed using a test set as

described above (Fig. 6D). The RMSEP value significantly

decreased from 33.31 to 8.62. Both the increase of Q2 and the

decrease of RMSEP indicated that the power of the predictive

model was drastically improved by removing unwanted variations

by signal correction. This meant that OSC was an effective

filtering method to remove the anticipated variables and enhance

the accuracy of the regression model.

Figure 4. Decreasing number of candidate metabolites con-
tributing to bioactivity of tea extracts. We used variables
corresponding to p (corr) . |0.8| and the w . |0.05| in OPLS-DA
loading S-plot to identify peaks most strongly contributing to
differences among cultivars. Venn diagram illustrating the proportion
of unique and overlapping ion features in A) extracts from YB, BF and
SR, and B) SR extracts with or without PVPP treatment.
doi:10.1371/journal.pone.0023426.g004
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Figure 5. Effect of the representative tea constituents and several identified metabolites on MRLC phosphorylation. After treatment
of HUVECs with each tea constituent at the concentration of 10 mM for 20 min, the cells were stimulated with thrombin for 5 min, then lysed. Total
cellular proteins were analyzed by western blot. Relative band intensity (pMRLC/MRLC) is expressed as a percentage, calculated from value in treated
cells compared with that in non-treated control cells (+thrombin). Values shown are means 6 SEM (n = 3).
doi:10.1371/journal.pone.0023426.g005
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OPLS is a modified version of ordinary PLS. This model may

be built with one PLS-factor, and thus is much simpler than the

corresponding PLS model [18]. OPLS was applied to the

regression model for predicting bioactivity of green tea. The

regression is shown in Fig. 6E and 6F, with R2 and Q2 values of

0.983 and 0.353, respectively. However, the predictive ability of

the OPLS regression model did not improve, as the value of

RMSEP increased from 33.31 to 38.64.

By comparing the R2, Q2, and RMSEP values of the three

regression models, we determined that the best bioactive predictive

model (that is, the one with the highest prediction accuracy) was

that obtained from the PLS-OSC regression. In this model,

variables that were highly relevant for explaining predicted

bioactivity were also identified from VIP (variable importance in

the projection) values (Fig. 6G). Large VIP values (.1) are the

most relevant for explaining predicted bioactivity. Forty-six

metabolite peaks showed VIP values greater than 1 (Table S4).

Theanin (chemical structure; Fig. S2) showed the highest VIP

value. Among the 46 peaks, eight (Cya-glu, Cya-gal, Cya-cou-gal,

Del-glu, Del-gal, Que-glu, Que-gal, and theogallin) were identical

to the selected peaks obtained from narrowing analysis of OPLS-

DA data (Fig. 4). These eight peaks were relatively abundant in the

cultivar SR, which showed higher bioactivity. The relative level of

theanin was strongly inversely correlated with bioactivity (Fig. 6H).

The cultivar SR, which had higher bioactivity, had lower levels of

theanin than the non-bioactive cultivar YB. These observations

suggest that theanin may act as a possible negative regulator of

bioactivity in tea cultivars.

To further elucidate the potential role of theanin in the

bioactivity of tea, we examined its effects on the ability of SR to

inhibit MRLC phosphorylation in HUVECs (Fig. 7). We added

47 mM theanin to SR extract (containing 24 mM theanin) to

achieve the same concentration as that in YB extract (71 mM).

This addition of theanin decreased the inhibitory rate of SR

extract from 42% to 30%. Although addition of theanin only

weakly inhibited the bioactivity of SR, this result suggested that

theanin could negatively regulate SR action and this could

partially contribute to the non-bioactive properties of YB.

Combined effects of identified metabolites in cultivar YB
While individual compounds may account for some bioactivity,

a combination of compounds might be more effective with respect

to the bioactivity of tea. Although successive OPLS-DA (Fig. 4)

and regression analysis (Fig. 6) revealed several tens of important

metabolite peaks, many of these peaks remained unassigned.

Elucidating the bioactivity of each identified metabolite in the

presence of numerous known and unknown constituents in tea

extracts is an important approach for understanding the

bioactivity of green tea and its effective nutraceutical applications.

In that sense, an investigation on combinations of certain

identified metabolites in non-bioactive tea extract could help to

clarify the effect of each metabolite in a mixture of known and

unknown tea constituents. In this study, we conducted combina-

tion tests in which we added 17 different compounds to extracts of

the non-bioactive cultivar, YB. The 17 different compounds are

shown in Fig. 5 (ECG, EGCG, Cya, Cya-gal, Cya-glu, Del, Del-

gal, Del-glu, Cya-cou-gal, Pet-glu, caffeine, theogallin, theobro-

mine, myricetin, Que, Que-gal, and Que-glu). Nine of these were

metabolites with higher VIP values (theogallin, caffeine, Cya-gal,

Cya-glu, EGCG, ECG, theobromine, Del-gal, Del-glu). When

added to the non-bioactive tea extract, Del, Del-glu, Del-gal, Que,

Que-glu, Que-gal, myricetin, theogallin, and Cya-cou-gal (chem-

ical structures shown in Fig. S3) inhibited thrombin-induced

MRLC phosphorylation (Fig. 8). Thus, these compounds were

able to transform the non-bioactive YB extract into a bioactive

extract.

Discussion

Metabolomic analyses of plants have been used to study

genotype, production origin, manufacturing type, sensory evalu-

ation, cultivation method, climatic variables, and postfermentation

year [6,9–12,23–28]. However, little is known about the

relationship between bioactive function (health promotion effect

in human and animal models) and numerous cultivars in a single

plant species. Here, we have demonstrated for the first time that a

metabolomics approach can be used to evaluate the bioactivity of

various Japanese green tea cultivars and to identify bioactive

factors. These new findings highlight the potential applications of

metabolic profiling techniques to evaluate nutraceutical properties

of diverse plant cultivars and foods, and thus propose a novel

strategy for functional food design or drug discovery. Interestingly,

a new Japanese green tea cultivar, Sunrouge (SR), showed some

potential to improve endothelial dysfunction by suppressing

thrombin-induced MRLC phosphorylation. Furthermore, this

Figure 7. Combined effects of SR extract and theanin on
thrombin-induced MRLC phosphorylation. HUVECs were pretreat-
ed with 1% YB or SR extract with or without theanin at indicated
concentration for 20 min. Then, the cells were treated with thrombin
for 5 min and lysed. Total cellular proteins were analyzed by western
blot. Phosphorylation levels of MRLC were normalized to MRLC. Relative
band intensity (pMRLC/MRLC) is expressed as a percentage, calculated
from value in treated cells compared with that in non-treated control
cells (+thrombin).
doi:10.1371/journal.pone.0023426.g007

Figure 6. Observed and predicted activity of 43 green tea cultivars, using three regression models. A, B) PLS model, C, D) PLS model
with OSC preprocessing method, and E, F) OPLS model. Models were calculated from LC-MS data set of (A, C, E) 38 tea samples as the training set and
B, D, F) 43 tea samples included in training and test (red circle) sets. G) Bar chart showing influence of variables used to create bioactivity predictor for
green tea cultivars (Y-axis is value of variable importance in the projection, VIP). H) Theanin, the metabolite with the highest VIP value, was significant
for creating the bioactivity prediction model for tea cultivars.
doi:10.1371/journal.pone.0023426.g006
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metabolomic approach allowed us to identify several bioactive

factors that are enriched in SR. If introduced into non-bioactive

lines, such factors may be capable of transforming non-bioactive

cultivars into bioactive ones.

Recently, Ku and coworkers used metabolomic approaches

(PCA, OPLS-DA, or PLS regression analysis) to determine the

effect of manufacturing type or cultivation method on chemical

composition of a single tea cultivar (green tea or pu-erh tea)

[26,27]. They suggested that several polyphenolic compounds

were associated with manufacturing type, cultivation method, or

antioxidant activity. In contrast, here, we investigated relationships

between metabolomic data and health promotion effects (inhib-

itory effect on MRLC phosphorylation in HUVECs) in 43 green

tea cultivars. In the cultivar SR, certain polyphenolic constituents

(Del-glu, Del-gal, Que-glu, Que-gal, theogallin, and Cya-cou-gal)

were associated with bioactivity. Although polyphenols have many

health promotion effects, the relationship between these com-

pounds and the inhibition of MRLC phosphorylation in human

endothelial cells remains unclear. These polyphenols differed from

those reported by Ku et al [26,27]. In addition, such polyphenols,

especially anthocyanins, were barely present in the most consumed

and distributed Japanese green tea cultivar. These facts support

the potential value of our identified polyphenols, and indicate that

a metabolomic approach is a useful tool for identifying unique

bioactive factors. In this study, we created a bioactivity-predictive

PLS regression model using 43 Japanese green tea cultivars (Fig. 6).

These analyses yielded unique lists of bioactivity-correlated

constituents (46 peaks) in tea extracts. In future, such information

may be useful for the development of markers to produce new

cultivars with greater bioactivity, and to screen for bioactive tea

cultivars. Furthermore, we can predict the potential bioactivity of

numerous tea cultivars by analyzing their metabolomic data with

our regression model, without the requirement for additional

bioactivity assays.

In this study on bioactivity of 43 green tea cultivars, Nou-6

showed the highest activity for inhibiting thrombin-induced

MRLC phosphorylation in HUVECs (Fig. 1). Previously, we

reported that Nou-6 inhibited thrombin-induced MRLC phos-

phorylation in the rat aortic smooth muscle cell line A7r5. We

suggested that this effect may provide an approach to suppress

stress-induced contraction of blood vessels [17]. In addition, Nou-

6 was found to contain high levels of anthocyanins. Recently, it

was reported that intake of anthocyanins and anthocyanin-rich

foods had a therapeutic effect against cardiovascular diseases [29].

In our most recent study, a crossover trial in healthy human

volunteers showed that drinking of Nou-6 tea infusion reduced

video display terminal work-induced visual fatigue and stress, as

compared with YB (unpublished data). This unique cultivar is also

rich in theogallin, one of the bioactive factors that inhibited

thrombin-induced MRLC phosphorylation in HUVECs (Fig. 8)

and a novel inhibitor of IgE production as a promising anti-allergic

target [30]. These observations suggest that Nou-6 is an attractive

green tea cultivar for ameliorating effects of stress and vascular

function or for anti-allergic effects. However, this is a low-yielding

cultivar, and it is difficult to grow. To overcome these problems, a

new tea cultivar, Sunrouge (SR), was generated by natural

crossbreeding of Nou-6. This novel cultivar contains high levels

of anthocyanins, grows vigorously, is high yielding and easy to

grow, and shows high resistance to anthracnose and gray blight.

Interestingly the bioactivities and metabolotypes of Nou-6 and SR

are very similar (Fig. 1, 2A, 2B). In the PCA score plot (Fig. 2B),

Nou-6 and SR (no. 42 and 43, respectively) formed a group that

was separate from the other 41 cultivars. In this plot (Fig. 2B, 2D),

the confidence interval is defined by the confidence ellipse (95%

confidence interval), and observations outside the confidence

ellipse are considered outliers. If a sample shows a remarkably

different metabolic profile from that of other samples it will fall

outside the confidence ellipse. In the case of Nou-6 and SR, we

repeatedly obtained similar results. This reproducibility suggested

that Nou-6 and SR were unique cultivars with interesting

compositional patterns, rather than outliers. We selected the SR

cultivar for focused PCA analyses to elucidate detailed metabolic

difference among tea cultivars (Fig. 2D, 2F–I). This was because of

its interesting composition, but also because of its cultivation

properties. The OPLS-DA results (Fig. 2) suggested that there

were many differences in metabolites between SR and YB/BF.

Almost all of the metabolite peaks focused by the two OPLS-DA

(SR vs YB & SR vs YB) overlapped with those removed by PVPP

treatment (Fig. 4). Considering the significance of the PVPP test to

indicate bioactive groups (polyphenols) in SR tea extract (Fig. 3), it

may be reasonable to use OPLS-DA for simple and high-precision

screening for bioactive factors, without the need for additional

experiments such as PVPP tests. These observations support the

applicability of metabolic profiling with multivariate statistical

analysis in nutraceutical research. Although some problems need

to be solved, further metabolomic analyses and bioassays will

increase our knowledge of the health promotion effects of the

novel cultivar SR. In previous metabolomic research on tea,

almost all analyses focused on differences among production

regions, and little was known about biochemical differences among

cultivars. Considering this fact and our findings (Fig. 1), functional

studies on various green tea cultivars may expand the nutraceu-

tical potential of green tea.

At present, human studies suggest that consumption of green tea

can reduce the risk of cardiovascular diseases such as atheroscle-

rosis. However, the mechanisms underlying this, including direct

involvement in MRLC phosphorylation, and the differences in

bioactivity among various green tea cultivars remain unclear

[31–33]. Endothelial dysfunction is an early step in the

development of atherosclerosis, and is associated with cardiovas-

cular risk factors [14–16]. Enhancement of MRLC phosphoryla-

tion increases contraction and permeability of ECs, and therefore

promotes dysfunction of the endothelial barrier during athero-

genesis. Here, we showed for the first time the ability of numerous

green tea cultivars to inhibit MRLC phosphorylation in HUVECs

(Fig. 1). Although further animal and human studies are required,

these results suggest that intake of green tea may help to prevent

cardiovascular diseases such as atherosclerosis via a novel

therapeutic target, i.e., the inhibition of MRLC phosphorylation.

A combination of certain SR-specific polyphenols with an extract

from the non-bioactive cultivar YB inhibited MRLC phosphor-

ylation (Fig. 8). The fact that certain constituents identified by

metabolic profiling can change non-bioactive extracts into active

ones suggests that this approach could be used to expand the

function and utilization of some tea cultivars. To further elucidate

this bioactivity-inducing mechanism, we are now investigating

Figure 8. Combined effects of YB extract and identified metabolites on thrombin-induced MRLC phosphorylation. HUVECs were
pretreated with 1% SR or YB extract with or without each indicated compound at 10 mM for 20 min. Then, cells were treated with thrombin for 5 min,
then total proteins were extracted and analyzed by western blot. Phosphorylation levels of MRLC were normalized to MRLC. Relative band intensity
(pMRLC/MRLC) is expressed as a percentage, calculated from value in treated cells compared with that in non-treated control cells (+thrombin).
doi:10.1371/journal.pone.0023426.g008
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various combinations of single tea constituents to clarify the

molecular mechanism underlying the bioactivity of SR.

In the field of nutraceutical research, there are many reports on

screening of plants and foods for positive bioactivity. However,

there is little information about negative bioactive regulators. In

addition to positive regulators in bioactive plants and foods,

elucidation of negative regulators and the unique concomitant

factors would be useful for the design of nutraceutical products for

use in effective and safe functional foods. In that sense, combining

metabolic profiling methods (PCA, OPLS-DA, and PLS regression

analysis) with bioassays can yield information on both positive and

negative bioactive compounds as mentioned above. In fact, several

SR-specific biofactors were also found to be able to activate the

non-bioactive cultivar YB (Fig. 8). This discovery provides a

promising strategy to explore bioactivity-enhancing combinations

of green tea and foods with abundant YB-activating biofactors

(Del, Del-glu, Del-gal, Que, Que-glu, Que-gal, myricetin,

theogallin, or Cya-cou-gal). Although theanin has been reported

to have many health promotion effects, we observed for the first

time a negative role of theanin on the inhibition of MRLC

phosphorylation in HUVECs (Fig. 6, 7). On the other hand, our

identified metabolites did not act directly as bioactive compounds

when administered singly (Fig. 5). This information, along with the

peak lists of unique concomitant factors serving as a metabolic

fingerprint (Tables S1, S2, S4), will also be helpful for optimizing

the use of green tea as a nutraceutical. We found several tens of

metabolite peaks by OPLS-DA and PLS regression analysis;

however, many remain unidentified. For reliable nutraceutical

evaluation, it is necessary to extend the molecular coverage of

identified metabolites in plants and foods. Together with further

identification of metabolites, application of other ionization

methods (atmospheric pressure chemical ionization, and matrix-

assisted laser desorption/ionization), combinations of different

separation modes (reverse phase chromatography and hydrophilic

interaction chromatography), and/or the integration of other

platforms (gas chromatography-MS and proton nuclear magnetic

resonance spectroscopy) may be effective methods for enhancing

the value and breadth of nutraceutical studies. At least,

metabolomics-driven strategies such as the one described here

may open new avenues in green tea-based functional food design.

In nutraceutical and biomedical research fields, metabolomic

techniques have been used to identify subtle metabolic differences

between individuals, or between different factors or conditions,

e.g., diet and formulation [1,13]. Application of a metabolomic

approach to evaluate the bioactivity of plants, plant-derived

functional foods, or botanical multicomponent drugs may be

useful for unraveling their complex mechanisms of action, and/or

for exploring the complex interactions between foods/drugs and

human health.

In summary, the aim of this study was to investigate the

relationship between metabolomic data and bioactivity (health

promotion effect) of diverse green tea cultivars. Our findings

illustrate the usefulness of metabolic profiling with multivariate

statistical analysis for evaluation of nutraceutical properties (in this

case, the inhibitory effect on MRLC phosphorylation in

HUVECs), for identification of bioactive green tea cultivars

(Nou-6 and SR), and for identification of bioactive factors

(polyphenols). Some bioactive factors that were enriched in SR

were able to alter the function of extracts from YB, a major

Japanese green tea cultivar, changing it from non-bioactive to

active. Thus, the combination of a metabolomic approach and a

bioassay, as a simple and effective methodology, may advance

nutraceutical research. This has potential applications for the

discovery of valuable plant cultivars and bioactive factors.
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Figure S2 Chemical structures of theanin showing the
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