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Cancer research has seen explosive development exploring deep learning (DL)
techniques for analysing magnetic resonance imaging (MRI) images for predicting
brain tumours. We have observed a substantial gap in explanation, interpretability,
and high accuracy for DL models. Consequently, we propose an explanation-driven DL
model by utilising a convolutional neural network (CNN), local interpretable model-
agnostic explanation (LIME), and Shapley additive explanation (SHAP) for the
prediction of discrete subtypes of brain tumours (meningioma, glioma, and pituitary)
using an MRI image dataset. Unlike previous models, our model used a dual-input CNN
approach to prevail over the classification challenge with images of inferior quality in
terms of noise and metal artifacts by adding Gaussian noise. Our CNN training results
reveal 94.64% accuracy as compared to other state-of-the-art methods. We used SHAP
to ensure consistency and local accuracy for interpretation as Shapley values examine all
future predictions applying all possible combinations of inputs. In contrast, LIME
constructs sparse linear models around each prediction to illustrate how the model
operates in the immediate area. Our emphasis for this study is interpretability and high
accuracy, which is critical for realising disparities in predictive performance, helpful in
developing trust, and essential in integration into clinical practice. The proposed method
has a vast clinical application that could potentially be used for mass screening in
resource-constraint countries.
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1 INTRODUCTION

According to the world health organization (WHO) world cancer report (2020), cancer is
amongst the leading death-causing diseases, ranked second (after cardiovascular disease),
accounting for nearly 10 million deaths in 2020 (Sung et al., 2021). Compared to other
diagnoses, cancer screening is a different and more complicated public health approach that
needs extra resources, infrastructure, and coordination. The WHO recommends the
implementation of screening programs when the following conditions are fulfilled (Sung
et al., 2021):

1. The efficiency of tool/model/software has been demonstrated
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2. Sufficient resources and facilities to confirm diagnoses and
treatments are available

3. The prevalence of the disease is extreme enough to justify the
screening

The total prevalence of all central nervous system tumours is
3.9 per 100,000 persons worldwide; the incidence differs with age,
gender, race, and region and is extremely frequent in Northern
Europe, followed by Australia, the United States, and Canada.
Meningioma is themost common one, accounting for 36.8% of all
tumours; glioma is the most widespread malignant tumour,
accounting for 75% of central nervous system malignant
tumours, with a total incidence of six cases per 100,000 people
per year. MRI is presently the ideal method for early detection of
human brain tumours as it is non-invasive (Spatharou et al.,
2021). However, the interpretation of MRI is predominantly
centred on the opinions of radiologists.

The advent of convolution neural network (CNN)-based deep
learning (DL) provides the basis for imaging-based artificial
intelligence (AI) solutions. DL-guided solutions intend to
supplement clinical decision making. There are several motives
why the proposed architecture is a CNN-based DL architecture.
First, it is observed that CNN-basedDL is extremely good at lowering
the threshold of parameters whilemaintainingmodel quality. Second,
it does not require human feature engineering because it can
automatically extract features from an image. Third, the literature
supports the CNN-based DLmodel by several researchers and that it
has achieved good image classification and recognition accuracy.
However, it is crucial to observe that very few researchers have
applied local interpretable model-agnostic explanation (LIME) and
Shapley additive explanation (SHAP) along with CNN. Researchers
demonstrated the immense potential of imaging tools to mitigate the
heavy burden on medical experts (Wojciech et al., 2017). It further
allows devoting additional help in patient care, reducing burnout, and
shrinking overall medical costs for patients (Dave et al., 2020).
Working on the detection system, Gupta et al. (2016) applied DL
algorithms, Resnet50, to distinguish COVID-19 from X-rays to
achieve a fully autonomous and speedier diagnosis. With an

average COVID-19 detection time of roughly 2.5 s and an average
accuracy of 0.97, the authors aimed tominimise the run time to about
2.5 s. Kollias et al. (2018) introduced different performance indicators
such as precision, responsiveness, specificity, precision, F1 value, and
DL. The results showed a standard accuracy of 92.93% and sensitivity
of 94.79% to provide robust identification and detection of COVID-
19 in the chest X-ray dataset. In one of the research (Ke et al., 2019),
the deep neural network correlation learning mechanism for CT
brain tumour detection used palettes of CNN architecture to adjust
them to the best possible detection result of ANN. The AISA
framework for MRI data analysis demonstrated its application to
brain scan data by deriving independent subspaces and extracting
texture features. Then, dimensionality is reduced using t-SNE
embedding for discriminative classification. Finally, the KNN
classification is applied. Despite the immense popularity of DL
models in clinical decision making, the lack of interpretability and
transparency by algorithm-driven decisions remains the biggest
challenge, particularly in medical settings. Although, many
researchers (Richard et al., 2020; Zucco et al., 2018) observed
various impediments in developing XAI-based clinical decision
support systems (CDSS) due to the non-availability of any
universal notion of explainability. Our study proposes an
explanation-driven DL-based model to predict distinctive
subtypes of brain tumours (meningioma, glioma, and
pituitary) using an MRI image dataset. We also implemented
LIME and Shapley additive explanations to create more
transparency in the models while keeping intact a high
performance rate. Our study will help the users (medical
professionals, clinicians, etc.) in comprehending and
efficiently managing the ever-increasing number of trustable
and reliable AI partners (Sharma et al., 2020).

Compared to previousmodels, ourmodel used a dual-input CNN
approach to prevail over the classification challenge with inferior-
quality images and an accuracy of 94.64% compared to other state-of-
the-art models. Previous studies lack explanation, and thus, we used
Explainable AI (XAI) algorithms such as LIME and SHAP, which is
the differentiating element of this study. We used SHAP to ensure
consistency and local accuracy for interpretation as Shapley values

FIGURE 1 | Sample image data of different types of tumours. (A) Normal: the intensity of the parenchyma in the brain without any tumour is normal. The ventricular
system and cisternal spaces are supposed to be in good working order. There is always no evidence of an intracranial space-occupying lesion (Gaillard, 2021). (B)
Glioma tumour: gliomas have thick, irregularly enhancing borders of the focal necrotic core with a haemorrhagic component. They are surrounded by vasogenic-type
oedema, containing malignant cell infiltration. Intratumoural haemorrhage happens rarely (less than 2%) (Frank, 2021) (C) Meningioma tumour: meningiomas are
extra-axial tumours arising frommeningocytes or arachnoid cap cells of meninges and can be found where meninges exist, as well as in some sites where only rest cells
are thought to exist (Gaillard and Rasuli, 2021) (D) Pituitary tumour: for pituitary adenomas, minor intra-pituitary lesions appear differently than larger lesions that spread
into the suprasellar region and pose various surgical and diagnostic issues. Based on tumour aspects, overall signal qualities can vary (Weerakkody and Gaillard, 2021).
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examine all potential predictions using all possible combinations of
inputs. Conversely, LIME constructs sparse linear models around
each prediction to describe how the model operates in the
immediate area.

The deep neural network correlation learning mechanism for
computed tomography (CT) brain tumour detection used
palettes of CNN architecture to adjust them to the best
possible detection result of DL. Though the previously
suggested models have higher accuracy, they lack
explainability, interpretability, and transparency (Abdalla and
Esmail, 2018; Khairandish et al., 2021). The proposed model used
XAI algorithms such as LIME (Vedaldi and Soatto, 2008) and
SHAP as detailed in Algorithm 2.

The contributions in this study are summarised in what follows:

1. We aimed to create an explanation-driven multi-input DL
model where SHAP and LIME are used for an in-depth

description of results. One set of two input datasets is fed
to the convolution layer and one to the fully
connected layer.

2. We have achieved high accuracy of (94.64%) brain MRI
images compared to other state-of-the-art models.

2 METHODS

2.1 Datasets
In this study, we used the publicly available MRI images (Bhuvaji,
2020). The datasets are annotated into three categories of
tumours: glioma tumour, meningioma tumour, and pituitary
tumour, along with the normal image. Out of 2,870 total
images, 2,296 images of distinct types are used as training sets
and the remaining as test sets.

FIGURE 2 | The proposed explanation-driven DL model for prediction of brain tumour status using MRI image data: 2870 MRI images are pre-processed and
divided into training, validation, and test sets. Two copies of datasets are fed into a multi-input CNN model to find the training, validation, and test accuracy. The same
CNN model was further imposed on LIME and SHAP.

FIGURE 3 | Training and validation results of CNN. (A) Shows the overall training loss as 0.1149 and validation loss as 0.53. (B) Shows the overall training accuracy
as 94.64% and validation accuracy of 85.37%.
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2.1.1 Data Pre-Processing
All 512 × 512 × 3 images are resized to 150 × 150 × 3. The images
are rearranged for faster convergence and preventing the CNN
model from learning the training order. For better classification
results, we have introduced Gaussian noise as it improves the
learning for DL (Neelakantan et al., 2015) with mean = 0 and
standard deviation 100.5. Figure 1 shows a single instance among
the categories of tumours from the dataset.

2.2 Proposed Framework
The overall architecture of the model used is shown in Figure 2
composed of feature extraction, a CNN model, statistical
performance measures, and explanation extraction frameworks.

For improved accuracy, two copies of the dataset are fed to the
CNN model having an output layer of size 1 × 4 and six hidden
layers (Yu et al., 2017). Adam optimiser with its default parameters
is applied with the rectified linear unit (ReLU) and softmax as the
activation function. The final CNN model is used for statistical
accuracy measurement, LIME and SHAP. For LIME explanations,
perturbation is calculated, whereas for SHAP, a gradient explainer
is applied. The whole process is formalized in Algorithm 1.

Algorithm 1. Explanation-driven multi-input DL model for
prediction of brain tumour.

For the classification task in the proposed explainable model, a
CNNwith dual-input architecture is used. The CNN is imposedwith
ReLU as activation in all hidden layers. Compared with the input
value and zero value, ReLU is simple to calculate. Furthermore,
ReLU has a derivative of either 0 or 1 based on positive or negative

input. This feature of ReLU is essential in comparing explainable
modules such as LIME and SHAP. Adam optimiser with its default
parameter (Kingma and Ba, 2015) is used along with sparse
categorical cross entropy; the kernel size is set to 3 × 3.

3 RESULTS

Following the classification process, the performance of CNN
models is evaluated based on accuracy and the number of wrong
predictions. The curves for the conventional results of CNN are
presented in Figure 3.

3.1 CNN
The model was iterated for 20 epochs, and during callback in
CNN modules, we had monitored the loss with min mode and
patience level of three to cross the over-fitting. Achieving the
training accuracy of 94.64% and overall test accuracy of 85.37%,
the model has 26 wrong predictions with 0.1149 as training loss
and 0.53 as validation loss.

Furthermore, to estimate the performance of the CNN model
on the configured dataset, K-fold cross validation is performed
with K = 10 non-overlapping folds for 20 epochs with a batch size
of 128. The test and train sets were split in the ratio of 1:4. The
final validation result of the cross fold is shown in Table 1. The
proposed model has achieved almost 100% training accuracy
during cross validation.

Table 2 shows the confusionmatrix for 287 test images. A total
of 7 normal images out of 46, 14 glioma images out of 84, 12
meningioma images out of 77, and 3 pituitary images out of 80
were misclassified.

To validate our model statistically, we performed McNemar’s
test (Smith et al., 2020). For labels of test data and labels of model
prediction under test data, McNemar’s test gave a chi-squared
value of 42.022 and p value 9.02 x e−11. We can reject the null-
hypothesis that both labels perform equally well on the test set,
since the p value is smaller than α = 0.005.

3.2 SHAP
For each pixel on a predicted image, the scores show its
contribution and can be used to explain tumour classification
tasks. The Shapley values correspond to each feature for different
categories of the tumour according to Algorithm 2.

Algorithm 2. Algorithm to calculate the Shapley values.

TABLE 1 | K-fold cross-validation results.

Fold Final validation loss Final
validation accuracy (%)

1 0.011 44 99.5
2 0.017 06 98.47
3 0.021 52 99.13
4 0.009 88 99.34
5 0.005 54 100
6 0.012 98 99.13
7 0.008 74 99.78
8 0.005 33 99.78
9 0.010 18 99.34
10 0.008 8 99.56
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The CNN model with mathematical behaviour is
complicated to interpret directly. Thus, the effect of
individual input features on the model’s output is clearly
explained using SHAP and shown in Figures 4, 5. Positive
SHAP values that raise the likelihood of the class are
represented by red pixels. In contrast, negative SHAP
values that lower the probability of the class are
represented by blue pixels. Figure 4 and Figure 5 are test
images. In contrast, the rest of the figures indicate the normal
image and three other categories of tumour: glioma,
meningioma, and pituitary tumours in successive order.

3.3 LIME
A total of 150 perturbations are used. Random ones and zeros are
produced and formed into a matrix, with perturbations as rows

and superpixels as columns. A superpixel is ON if it is 1, and it is
OFF if it is 0. The length of the displayed vector represents the
number of superpixels in the image. The test image is perturbed
based on the perturbation vector and predefined superpixels
(Vedaldi and Soatto, 2008). The final perturbed image is
shown in Figure 6C for normal test image under
consideration and in Figure 7C for test image under
consideration with meningioma tumour, which shows the
portion of the image having a major role for classification.

The CNN model is utilised to generate the explanation using
LIME. Figure 6Ais a normal image, and Figure 7A is under the
meningioma category. The classification produces a vector of
2,870 probabilities for each category accessible in the CNN
model. The quick-shift segmentation method is used to create
superpixels. 22 superpixels are generated for Figure 6A and

TABLE 2 | Confusion matrix for the CNN.

Actual value

Normal Glioma Meningioma Pituitary

Predicted values Normal 37 8 1 0
Glioma 7 70 5 2
Meningioma 0 12 65 0
Pituitary 0 3 0 77

FIGURE 4 | On the basis of Shapley values, we can say that the MRI image is normal.

FIGURE 5 | On the basis of Shapley values, we can say that the MRI image holds meningioma tumour.
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shown in Figure 6B, and 24 superpixels are calculated for
Figure 7A and shown in Figure 7B.

4 DISCUSSION

4.1 Comparison of the Proposed Feature
Extraction Methods Using Traditional
Machine learning (ML) Methods
We compare the proposed feature extraction methods to
traditional ML methods. The comparative results are presented
in Table 3. Minz and Mahobiya (2017) pre-processed the

MICCAI BraTS dataset to eliminate noise and employed the
GLCM (gray-level co-occurrence matrix) for feature extraction
and classification boosting (Adaboost). An MRI was used to
extract 22 characteristics. The Adaboost classifier is utilised for
classification, and the suggested system achieves a maximum
accuracy of 89.90%. Abdalla and Esmail (2018) executed a
computer-aided detection system after collecting the MRI
images. They processed the image before implementing the
back-propagation algorithm and extracted the features using
Haralick’s features based on the spatial gray-level dependency
matrix (SGLD). The results were 99%, but the study could not
focus on the explainable section in the training images. A
comparative study between support vector machine (SVM)

FIGURE 6 | Interpretations generated by LIME for a normal image. (A) Sample of the normal image from the test image. (B) Superpixels generated from a sample of
the normal image from test image quick-shift segmentation to create perturbations. (C) Final perturbed image for the normal image.

FIGURE 7 | Interpretations generated by LIME for meningioma tumour. (A) Sample of meningioma tumour from the test image. (B) Superpixels generated from
quick-shift segmentation to create perturbations. (C) Final perturbed image showing meningioma tumour.

TABLE 3 | Brain tumour detection using traditional ML methods.

Authors Algorithm Dataset Accuracy (%) XAI

Martinez et al. (2020) Random Forest BraTs Dataset 76 No
Minz and Mahobiya (2017) Adaboost Classifier BraTs Dataset 89.90 No
Abdalla and Esmail (2018) Back-Propagation Network MRI Images 99 No
Asodekar and Gore (2019) Random Forest BraTs Dataset 81.90 No
Asodekar and Gore (2019) SVM BraTs Dataset 78.57 No
Proposed model Dual-Input CNN MRI Images 94.64 Yes
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and random forest (RF) classified benign and malignant tumours.
First, the brain tumour’s region of interest was determined for
feature extraction, and then, features were calculated. Shape
characteristics were obtained and utilised to classify benign
and malignant tumours. According to the authors, RF
(81.90%) outperformed the SVM (78.57%). By combining
principal component analysis (PCA), KSVM, and GRB
kernels, Arora and Ratan (2021) established a unique
technique for categorisation of MRI brain images using
discrete wavelet transform (DWT). The experiment was
carried out with four different kernels. The findings
demonstrate that combining DWT, PCA, KSVM, and the GRB
kernel yields the highest accuracy compared to other
methodologies. The results show that the time it takes to
classify a segmented picture significantly decreases, which
might be a watershed moment in the medical profession for
tumour diagnosis. Martinez et al. (2020) worked on the FLAIR
images on the BRATS 2015 training dataset; it is used to
restructure and increase data attributes that lead to a pixel-
based classifier. The U-net suggested method performs a
semantic segmentation with a precision of 76%, which
increases by 23% compared to the random forest classifier
with synthetic minority oversampling technique (SMOTE)
class balancing algorithm.

4.2 Comparison of the Proposed Method
With the Other State-of-the-Art Methods
This section compares our dual-input CNN model with other
state-of-the-art models. The results are compared in Table 4.
After several data-collection and pre-processing steps such as
average filtering segmentation, the DL model was implemented
by researchers (Hemanth et al., 2019). In comparison to existing
approaches such as conditional random field (89%), SVM
(84.5%), and genetic algorithm (GA) (83.64%), the research
represents overall performance and comparative output on the
brain MRI images. In contrast to existing algorithms, the
suggested CNN (91%) produces improved results. The
TensorFlow library was used to construct a DL method called
faster R-CNN in the work of Avsar and Salcin (2019), and the
classifier algorithm was trained and tested using a publicly
available dataset of 3,064 MRI brain pictures (708
meningiomas, 1,426 gliomas, and 930 pituitary gland tumours)
from 233 patients. The quicker RCNN algorithm has been
demonstrated to attain 91.66% accuracy, which is exceptional
compared to past work on the same dataset. Ranjbarzadeh et al.

(2021) proposed a cascaded convolutional neural network
(C-ConvNet/C-CNN). A simple but effective cascade, the
CNN model, has been suggested to extract local and global
characteristics in two methods, with different extraction
patches in each. Those patches were chosen to feed the
network that their centre was located inside this area after
extracting the tumour’s predicted location using a
sophisticated pre-processing strategy. As a result of removing
a high number of insignificant pixels from the picture in the pre-
processing stage, the computing time and ability to generate quick
predictions for categorising the clinical image are reduced. The
results were compared to other algorithms. Still, the CNN model
achieved the highest accuracy (92.03%) on the whole Dice score
(mean) and the highest precision (97.12%) on the core sensitivity
score (mean). Khairandish et al. (2021) made use of a hybrid
model of CNN and SVM in phrases of classification, type, and
threshold-based segmentation in terms of detection to classify
benign and malignant tumours in brain MRI images. This hybrid
CNN–SVM is rated as having an overall accuracy of 98.49%. Still,
their study does not show evidence for manipulating low-quality
images and XAI. Shahzadi et al. (2018) proposed a CNN cascade
with a long short-term memory (LSTM) network for classifying
3D brain tumour MRIs into HG and LG glioma. The features
from the pre-trained VGG-16 were retrieved and fed into an
LSTM network for learning high-level feature representations.
The components extracted from VGG-16 had a classification
accuracy of 84%, higher than that of those extracted from
AlexNet and ResNet, 71%. Isola et al. (2018) investigated
conditional adversarial networks as a general-purpose solution
for image-to-image translation challenges by using a 1,616
PatchGAN. The PatchGAN 70 × 70 reduces these distortions
and improves scores slightly. It is observed that scaling to the full
286 × 286 ImageGAN does not significantly improve the visual
quality of the findings and results in a considerably lower FCN-
score, indicating that conditional adversarial networks are a
promising option for many image-to-image translation tasks,
especially those involving highly structured graphical outputs.
Milletari et al. (2016) proposed an approach to 3D image
segmentation based on a volumetric, fully convolutional neural
network. The CNN is trained end-to-end on MRI volumes
depicting the prostate and predicts segmentation for the whole
volume at once. The training was performed on 50 MRI volumes,
and the relative manual ground truth annotation was obtained
from the PROMISE2012 challenge dataset. The novel objective
function was to optimise during training based on the dice
overlap coefficient between the predicted segmentation and the

TABLE 4 | Brain tumour detection using other state-of-the-art models.

Authors Algorithm Dataset Accuracy (%) XAI

Shahzadi et al. (2018) CNN with LSTM MRI Images 84 No
Hemanth et al. (2019) CNN MRI Images 91 No
Avsar and Salcin (2019) R-CNN MRI Images 91.66 No
Ranjbarzadeh et al. (2021) C-CNN BraTs Dataset 92.03 No
Khairandish et al. (2021) CNN–SVM MRI Images 98.49 No
Proposed model Dual-Input CNN MRI Images 94.69 Yes
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ground truth annotation. Han et al. (2020) proposed an
unsupervised medical anomaly detection generative adversarial
network (MADGAN). This two-step method uses GAN-based
multiple adjacent brain MRI slice reconstruction to detect brain
anomalies at various stages on multi-sequence structural MRI.
MADGAN can detect anomaly on T1 scans at a very early stage,
mild cognitive impairment (MCI), with area under the curve
(AUC) 0.727, and anomaly detection (AD) at a late stage with
AUC 0.894, while detecting brain metastases on T1c scans with
AUC 0.921. On multi-sequence MRI, the model may accurately
detect the accumulation of subtle anatomical abnormalities and
hyper-intense enhancing lesions, such as (particularly late stage)
AD and brain metastases, as the first unsupervised varied disease
diagnosis. Baur et al. (2020) presented a novel method towards
unsupervised AD in brain MRI by embedding the modelling of
healthy anatomy into a CycleGAN-based style-transfer task,
which is trained to translate healthy brain MRI images to a
simulated distribution with lower entropy and vice versa. By
filtering high-frequency, low-amplitude signals from lower
entropy samples during training, the resulting model
suppresses anomalies in reconstructing the input data at test
time. The method outperforms the state-of-the-art method in
various measures and can deal with high-resolution data, a
current pitfall of autoencoder (AE)-based methods. Castiglioni
et al. (2021) concentrated on the issues that must be addressed to
create AI applications as clinical decision support systems in a
real-world setting. A narrative review with a critical appraisal of
publications published between 1989 and 2021 was conducted.
According to the study, biomedical and healthcare systems are
among the most significant domains for AI applications, with
medical imaging being the most suited and promising domain.
Clarification of specific challenging points facilitates the
development of such systems and their translation to clinical
practice. Barragán-Montero et al. (2021) showcased the
technological pillars of AI, as well as the state-of-the-art
methods and their implementation to medical imaging. This
review offered an overview of AI, emphasising medical
imaging analysis demonstrating the potential of the state-of-
the-art ML and DL algorithms to automate and enhance
several aspects of clinical practice.

5 CONCLUSION AND FUTURE DIRECTION

Using an explanation-driven dual-input CNN model for finding if
a particular MRI image is subjected to a tumour or not, the
proposed study achieved an accuracy of 94.64%. A brain MRI
image dataset is used to train and test the proposed CNN model,
and the same model was further imposed to SHAP and LIME
algorithms for an explanation. Our experiment utilised two dataset

copies as input for better feature extraction, one in the convolution
layer and another in the fully connected layer. However, any
attempt to remove any features decreased the prediction
model’s overall performance; hence, no augmentation was
carried out. The proposed model is a locally interpreted model
with a model-agnostic explanation, shapely explained to describe
the results for ordinary people more qualitatively.

In future, classification algorithms with higher accuracy and
better optimiser can be used and imposed on XAI. For better
clinical issues, the research may be replicated and applied to other
XAI algorithms such as GradCAM. Furthermore, like the most
recent advances on computing capacity, neuroimaging
technologies, and digital phenotyping tools (Ressler and
Williams, 2020), algorithms to imitate natural occurrences can
be used on heterogeneous datasets for medical imaging
modalities, electronic health record engines, multi-omics
studies, and real-time monitoring (Rundo et al., 2019).
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